US3952824A - Rigid rear axle for motor vehicles - Google Patents

Rigid rear axle for motor vehicles Download PDF

Info

Publication number
US3952824A
US3952824A US05/459,799 US45979974A US3952824A US 3952824 A US3952824 A US 3952824A US 45979974 A US45979974 A US 45979974A US 3952824 A US3952824 A US 3952824A
Authority
US
United States
Prior art keywords
guide members
rear axle
rigid rear
lower guide
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US05/459,799
Inventor
Wolfgang Matschinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Application granted granted Critical
Publication of US3952824A publication Critical patent/US3952824A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/062Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper the spring being arranged around the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels

Definitions

  • the present invention relates to a rigid rear axle for motor vehicles, especially for passenger motor vehicles whose wheels are driven from a rear axle gear supported at a chassis frame or at an auxiliary frame by way of drive shafts with length compensation (so-called "De-Dion axles").
  • Rear axle suspensions are known in which the axle body of the rigid axle is guided by longitudinal guide members whereby the transverse support takes place by way of a transverse guide member, a triangular guide member or a so-called "Watt-linkage.”
  • a starting-pitch compensation can be obtained with axles of the aforementioned type in which the wheels are driven from a rear axle gear supported at a chassis frame by way of drive shafts, in that one so constructs the suspension of the axle that the wheel centers during inward spring movements are simultaneously displaced toward the rear as viewed in side view.
  • axle suspension of the aforementioned type, longitudinal guide members, i.e., guide members extending in plan view in the driving direction are used, then they have to be arranged rising forwardly in order that the aforementioned effect of the displacement of the wheel centers toward the rear occurs during the inward spring deflection.
  • a suspension has as a consequence that in a curve, when one wheel spring deflects inwardly relative to the body and the other wheel spring deflects outwardly, the axle assumes an inclined position in plan view, and more particularly in such a manner that it reduces the radius of curvature desired by the driver (so-called "over-steering"), from which results a considerable impairment of the driving behavior.
  • the present invention is therefore concerned with the task to provide a rigid rear axle of the aforementioned type in which the dipping of the vehicle rear section during the starting and accelerations is prevented without the occurrence of an oversteering inclination of the axle when driving through a curve, whereby furthermore attention should be paid to the fact that no undesirably strong outward spring deflection takes place during the braking.
  • the axle member is suspended at the vehicle frame, chassis or the like on four guide members arranged approximately at an angle of 45° to the driving direction as viewed in plan view, which are all four of approximately equal length, and of which two lower guide members point forwardly and two upper guide members point rearwardly, whereby the points of pivotal connection of the four guide members at the axle member are disposed in pairs approximately one above the other outwardly in proximity of the respective wheels, whereby additionally the connecting line of the points of intersection of the upper guide members and of the lower guide members, respectively, is arranged horizontally as viewed in side view or sloping down forwardly and whereby at least the upper guide members are arranged sloping down rearwardly.
  • FIG. 1 is a side elevational view of a first embodiment of a rigid rear axle in accordance with the present invention
  • FIG. 2 is a top plan view of the rigid rear axle of FIG. 1;
  • FIG. 3 is a side elevational view of a modified embodiment of a rigid rear axle in accordance with the present invention.
  • FIG. 4 is a top plan view of the rigid rear axle of FIG. 3;
  • FIG. 5 is a side elevational view of a still further modified embodiment of a rigid rear axle in accordance with the present invention.
  • FIGS. 1 and 2 are supported at an axle body or member 2 which is pivotally supported at the vehicle frame 5 or the like by way of two lower guide members 3 which point forwardly and by way of two upper guide members 4 which point rearwardly.
  • the rear axle gear 6 is supported at the vehicle frame, chassis or the like and drives the wheels 1 by way of drive shafts 7.
  • the present invention is applicable to constructions in which the guide members 3, 4 and axle gear 6 are supported at the frame of the vehicle, at the chassis-frame, at relatively fixed parts of a self-supporting vehicle body or at an auxiliary frame, the latter are indicated only schematically in the drawing and will be referred to hereinafter and in the claims as relatively fixed parts.
  • the lower guide members 3 and the upper guide members 4 are approximately of equal length and are inclined in plan view (FIG. 2) approximately at an angle of 45° to the driving direction. In side view (FIG. 1), the upper guide members 4 slope down toward the rear while the lower guide members 3 rise in the forward direction and are disposed parallel to the upper guide members 4.
  • the axle member 2 is guided in side view in the manner of a "Watt linkage" whereby the wheel center 8 disposed between the points of pivotal connection of the upper and of the lower guide members is displaced approximately perpendicularly to the guide members 3 and 4, i.e., during inward spring deflection at the same time at an inclination rearwardly, whence the reduction of the dipping of the vehicle rear section during the starting or accelerations is achieved.
  • the axle member 2 together with the wheels 1 rotates relative to the body about the connecting line 9 of the points of intersection 10 and 11 of the lower guide members 3 and of the upper guide members 4, respectively.
  • this line 9 is horizontal, then no inclination of the axle member 2 occurs in plan view ("neutral" behavior) when driving through a curve.
  • the line 9 slightly slopes down forwardly, whereby even an often desirable "understeering" behavior during curve drives is achieved.
  • the point of intersection (pole) of the upper and of the lower guide members in side view is at infinity in FIG. 1.
  • the connecting line from the point of contact 12 of the wheel with the ground to this pole therefore extends rising forwardly, and more particularly parallel to the guide members, from which results a reduction of the outward spring deflection during braking.
  • axle suspension according to the present invention resides in that during inward spring deflections a pivot movement of the axle member 2 takes place, as viewed in side view, by means of which the portion of the axle member extending toward the rear of the rear axle gear 6 carries out a lesser vertical movement than the wheel center 8, which means again less space requirement under the luggage space.
  • FIGS. 3 and 4 illustrate a further embodiment of the present invention in side and top plan view.
  • the upper guide members 4' are arranged sloping down toward the rear, as viewed in side view, while the lower guide members 3' are arranged horizontally; the point of intersection 11' of the upper guide members 4' lies at the same height as the lower guide members 3' and the point of intersection 10' thereof, whence also the connecting line 9' of these points is disposed horizontally, which results in a "neutral" steering behavior when driving through a curve.
  • the point 11' is thereby also simultaneously pole for the movement of the axle member in side view.
  • the wheel center 8' moves perpendicularly to its connecting line with the pole 11', i.e., at an inclination toward the rear, whereby the conditions for a reduced dipping of the vehicle rear section during accelerations are fulfilled.
  • the connecting line from the point of contact 12' of the wheel with the ground with respect to the pole 11' rises rearwardly, which would produce a strong outward spring deflection during braking if the brakes were to be mounted at the wheels.
  • the axle suspension according to FIG. 3 is particularly well suited if the brakes, as is illustrated in FIG. 4, are secured at the rear axle gear 6' and act on the wheels by way of the drive shaft 7'.
  • a spring leg 15 formed of shock absorber and spring is used for the spring support in FIG. 3, which in the illustrated embodiment is pivotally connected directly at the axle member 2', and more particularly in front of the wheel center 8', from which results a progressive spring characteristic in connection with the axle suspension according to the present invention.
  • the lower guide members 3' may be supported at an auxiliary frame 16 for the better noise insulation with respect to the passenger space; the auxiliary frame 16 is thereby again elastically suspended at the vehicle frame or the like.
  • the upper guide members 4' may be supported at an auxiliary frame; furthermore, it is within the scope of the present invention that all four guide members and possibly also the rear axle gear are all supported at an auxiliary frame. Similar modifications are also feasible in connection with the other described embodiments of the present invention.
  • FIG. 5 illustrates an axle suspension similar to FIG. 3, whereby the brake anchoring plates or the brake saddles 17 of the brakes mounted at the wheels are secured at brake mounting supports 18 which are rotatably supported at the axle member 2" concentrically to the wheel center 8".
  • These brake mounting supports 18 are pivotally connected with the vehicle frame or the like by way of one further guide member 19 each in such a manner that the connecting line from the point of contact 12" of the wheel with the ground with respect to the pole 20, which results as point of intersection of the guide member 19 and of the connecting line 9 from the wheel center 8" to the pole 11', rises forwardly whereby the outward spring deflection during braking is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A rigid rear axle for motor vehicles, especially for passenger motor vehicles, whose wheels are driven by way of drive shafts from a rear axle gear supported at a frame or the like; the axle member is thereby suspended by a vehicle part such as the frame or the like on four guide members arranged approximately at an angle of 45° to the driving direction as viewed in plan view; all four guide members are of approximately equal length, of which the two lower ones point forwardly and the two upper ones point rearwardly; the points of pivotal connection of the four guide members at the axle member are disposed approximately one above the other outwardly in proximity of the wheel whereby the line of connection of the points of intersection of the upper and of the lower guide members, respectively, as viewed in side view, are arranged horizontally or sloping down forwardly and at least the upper guide members are arranged sloping down rearwardly.

Description

The present invention relates to a rigid rear axle for motor vehicles, especially for passenger motor vehicles whose wheels are driven from a rear axle gear supported at a chassis frame or at an auxiliary frame by way of drive shafts with length compensation (so-called "De-Dion axles").
Rear axle suspensions are known in which the axle body of the rigid axle is guided by longitudinal guide members whereby the transverse support takes place by way of a transverse guide member, a triangular guide member or a so-called "Watt-linkage."
In high-powered vehicles, it is desirable to reduce or prevent the dipping of the vehicle rear section during starting or acceleration because this impairs the comfort, especially of the passengers seated in the rear of the vehicle; this means, one aims at a so-called "starting pitch compensation." A starting-pitch compensation can be obtained with axles of the aforementioned type in which the wheels are driven from a rear axle gear supported at a chassis frame by way of drive shafts, in that one so constructs the suspension of the axle that the wheel centers during inward spring movements are simultaneously displaced toward the rear as viewed in side view.
If with an axle suspension of the aforementioned type, longitudinal guide members, i.e., guide members extending in plan view in the driving direction are used, then they have to be arranged rising forwardly in order that the aforementioned effect of the displacement of the wheel centers toward the rear occurs during the inward spring deflection. However, such a suspension has as a consequence that in a curve, when one wheel spring deflects inwardly relative to the body and the other wheel spring deflects outwardly, the axle assumes an inclined position in plan view, and more particularly in such a manner that it reduces the radius of curvature desired by the driver (so-called "over-steering"), from which results a considerable impairment of the driving behavior.
The present invention is therefore concerned with the task to provide a rigid rear axle of the aforementioned type in which the dipping of the vehicle rear section during the starting and accelerations is prevented without the occurrence of an oversteering inclination of the axle when driving through a curve, whereby furthermore attention should be paid to the fact that no undesirably strong outward spring deflection takes place during the braking.
As solution to the underlying problems, it is proposed according to the present invention that with a rigid rear axle whose wheels are driven by way of drive shafts from a rear axle gear supported at a frame, chassis or the like, the axle member is suspended at the vehicle frame, chassis or the like on four guide members arranged approximately at an angle of 45° to the driving direction as viewed in plan view, which are all four of approximately equal length, and of which two lower guide members point forwardly and two upper guide members point rearwardly, whereby the points of pivotal connection of the four guide members at the axle member are disposed in pairs approximately one above the other outwardly in proximity of the respective wheels, whereby additionally the connecting line of the points of intersection of the upper guide members and of the lower guide members, respectively, is arranged horizontally as viewed in side view or sloping down forwardly and whereby at least the upper guide members are arranged sloping down rearwardly.
The advantages of this suspension of a rigid rear axle of the aforementioned type reside in that the dipping of the vehicle rear section is reduced or even prevented during the starting or accelerations without the occurrence of an oversteering inclination of the axle when driving through a curve, whereby additionally the outward spring deflection during braking is reduced in a favorable manner.
These and further objects, features and advantages of the present invention will become more apparent from the following description when taken in connection with the accompanying drawing which shows, for purposes of illustration only, several embodiments in accordance with the present invention and wherein:
FIG. 1 is a side elevational view of a first embodiment of a rigid rear axle in accordance with the present invention;
FIG. 2 is a top plan view of the rigid rear axle of FIG. 1;
FIG. 3 is a side elevational view of a modified embodiment of a rigid rear axle in accordance with the present invention;
FIG. 4 is a top plan view of the rigid rear axle of FIG. 3; and
FIG. 5 is a side elevational view of a still further modified embodiment of a rigid rear axle in accordance with the present invention.
Referring now to the drawing wherein like reference numerals are used throughout the various views to designate like parts, the wheels in FIGS. 1 and 2 are supported at an axle body or member 2 which is pivotally supported at the vehicle frame 5 or the like by way of two lower guide members 3 which point forwardly and by way of two upper guide members 4 which point rearwardly. The rear axle gear 6 is supported at the vehicle frame, chassis or the like and drives the wheels 1 by way of drive shafts 7. Since the present invention is applicable to constructions in which the guide members 3, 4 and axle gear 6 are supported at the frame of the vehicle, at the chassis-frame, at relatively fixed parts of a self-supporting vehicle body or at an auxiliary frame, the latter are indicated only schematically in the drawing and will be referred to hereinafter and in the claims as relatively fixed parts. The lower guide members 3 and the upper guide members 4 are approximately of equal length and are inclined in plan view (FIG. 2) approximately at an angle of 45° to the driving direction. In side view (FIG. 1), the upper guide members 4 slope down toward the rear while the lower guide members 3 rise in the forward direction and are disposed parallel to the upper guide members 4. During the inward and outward spring deflections, the axle member 2 is guided in side view in the manner of a "Watt linkage" whereby the wheel center 8 disposed between the points of pivotal connection of the upper and of the lower guide members is displaced approximately perpendicularly to the guide members 3 and 4, i.e., during inward spring deflection at the same time at an inclination rearwardly, whence the reduction of the dipping of the vehicle rear section during the starting or accelerations is achieved. When driving through a curve, the axle member 2 together with the wheels 1 rotates relative to the body about the connecting line 9 of the points of intersection 10 and 11 of the lower guide members 3 and of the upper guide members 4, respectively. If this line 9 is horizontal, then no inclination of the axle member 2 occurs in plan view ("neutral" behavior) when driving through a curve. In the embodiment according to FIG. 1, the line 9, however, slightly slopes down forwardly, whereby even an often desirable "understeering" behavior during curve drives is achieved. The point of intersection (pole) of the upper and of the lower guide members in side view is at infinity in FIG. 1. The connecting line from the point of contact 12 of the wheel with the ground to this pole therefore extends rising forwardly, and more particularly parallel to the guide members, from which results a reduction of the outward spring deflection during braking.
In FIGS. 1 and 2, springs 13 and shock absorbers 14 are supported at the lower guide members 3 whereby the space requirements of the axle aggregate, especially with respect to the luggage space, is reduced. A further advantage of the axle suspension according to the present invention resides in that during inward spring deflections a pivot movement of the axle member 2 takes place, as viewed in side view, by means of which the portion of the axle member extending toward the rear of the rear axle gear 6 carries out a lesser vertical movement than the wheel center 8, which means again less space requirement under the luggage space.
If the joints of the upper and of the lower guide members are made of elastic material, they are deformed under the influence of the forces occurring during the vehicle driving operation. It has to be prevented thereby that the upper guide members 4 supporting the axle in the rear vehicle area, yield more strongly under the influence of a side force at the wheels than the lower guide members 3 because in that case the axle member 2 would assume an "oversteering" inclined position when driving through curves. If c1 and c2 are the resulting spring rates of the lower and of the upper guide members, α1 and α2 the angles thereof with respect to the driving direction in plan view, and l1 and l2 the distances of the points of intersection 10 and 11 of the lower and of the upper guide members from the wheel center axis in plan view (Fig. 2), then an elastic "oversteering" of the axle in the presence of a side force is avoided if the following equation is fulfilled:
l.sub. 1 . c.sub.1 . sin.sup.2 α.sub.1 ≦ l.sub.2 . c.sub.2 . sin.sup.2 α.sub.2
FIGS. 3 and 4 illustrate a further embodiment of the present invention in side and top plan view. In this embodiment, the upper guide members 4' are arranged sloping down toward the rear, as viewed in side view, while the lower guide members 3' are arranged horizontally; the point of intersection 11' of the upper guide members 4' lies at the same height as the lower guide members 3' and the point of intersection 10' thereof, whence also the connecting line 9' of these points is disposed horizontally, which results in a "neutral" steering behavior when driving through a curve. The point 11' is thereby also simultaneously pole for the movement of the axle member in side view. During an inward spring deflection, the wheel center 8' moves perpendicularly to its connecting line with the pole 11', i.e., at an inclination toward the rear, whereby the conditions for a reduced dipping of the vehicle rear section during accelerations are fulfilled. The connecting line from the point of contact 12' of the wheel with the ground with respect to the pole 11', however, rises rearwardly, which would produce a strong outward spring deflection during braking if the brakes were to be mounted at the wheels. For this reason, the axle suspension according to FIG. 3 is particularly well suited if the brakes, as is illustrated in FIG. 4, are secured at the rear axle gear 6' and act on the wheels by way of the drive shaft 7'.
A spring leg 15 formed of shock absorber and spring is used for the spring support in FIG. 3, which in the illustrated embodiment is pivotally connected directly at the axle member 2', and more particularly in front of the wheel center 8', from which results a progressive spring characteristic in connection with the axle suspension according to the present invention.
It is additionally illustrated in FIG. 4 that in particular the lower guide members 3' may be supported at an auxiliary frame 16 for the better noise insulation with respect to the passenger space; the auxiliary frame 16 is thereby again elastically suspended at the vehicle frame or the like. Also, the upper guide members 4' may be supported at an auxiliary frame; furthermore, it is within the scope of the present invention that all four guide members and possibly also the rear axle gear are all supported at an auxiliary frame. Similar modifications are also feasible in connection with the other described embodiments of the present invention.
If in a suspension according to FIGS. 3 and 4, the brakes are to be mounted at the wheels, then measures have to be taken in order to avoid an excessive outward spring deflection during braking. FIG. 5 illustrates an axle suspension similar to FIG. 3, whereby the brake anchoring plates or the brake saddles 17 of the brakes mounted at the wheels are secured at brake mounting supports 18 which are rotatably supported at the axle member 2" concentrically to the wheel center 8". These brake mounting supports 18 are pivotally connected with the vehicle frame or the like by way of one further guide member 19 each in such a manner that the connecting line from the point of contact 12" of the wheel with the ground with respect to the pole 20, which results as point of intersection of the guide member 19 and of the connecting line 9 from the wheel center 8" to the pole 11', rises forwardly whereby the outward spring deflection during braking is avoided.
While I have shown and described several embodiments in accordance with the present invention, it is understood that the same is not limited thereto but is susceptible of numerous changes and modifications as known to those skilled in the art, and I therefore do not wish to be limited to the details shown and described herein but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.

Claims (23)

What I claim is:
1. A rear axle assembly for motor vehicles comprising:
rear axle gear means for driving wheels of a vehicle by way of drive shafts, said rear axle gear means being supported by a fixed vehicle parts,
an axle member supporting said wheels, said axle member being capable of substantial vertical movement relative to said rear axle gear means, and
guide means for suspending said axle member from fixed vehicle parts, said guide means including four guide members of approximately the same length, each of said four guide members being arranged approximately at an angle of 45° to the driving direction as viewed in plan view,
wherein said four guide members include two lower guide members extending forwardly and two upper guide members extending rearwardly, each of said four guide members being pivotally connected at one end to the axle member in proximity to a respective wheel with the points of pivotal connection of a respective upper guide member and lower guide member being disposed approximately one above the other, and the respective forward and rearward points, formed by the intersection of lines extending parallel to the longitudinal dimension of each of said two lower guide members and each of said two upper guide members, defining a connecting line being arranged such that the forward point of intersection is at most at the height of the rearward point of intersection, and
wherein at least said two upper guide members are arranged sloping down rearwardly, as viewed in side view.
2. A rigid rear axle according to claim 1, characterized in that the connecting line of the points of intersection of the upper guide members and of the lower guide members is arranged at least approximately horizontally, as viewed in side view.
3. A rigid rear axle according to claim 1, characterized in that the connecting line of the points of intersection of the upper guide members and of the lower guide members is arranged sloping down forwardly, as viewed in side view.
4. A rigid rear axle according to claim 1, characterized in that the lower guide members and the upper guide members extend approximately parallel to one another, as viewed in side view.
5. A rigid rear axle according to claim 4, characterized in that the connecting line of the points of intersection of the upper guide members and of the lower guide members is arranged sloping down forwardly, as viewed in side view.
6. A rigid rear axle according to claim 4, characterized in that the connecting line of the points of intersection of the upper guide members and of the lower guide members is arranged at least approximately horizontally as viewed in side view.
7. A rigid rear axle according to claim 1, characterized in that the lower guide members extend approximately horizontally as viewed in side view of the vehicle.
8. A rigid rear axle according to claim 7, characterized in that spring and shock absorber members engage at the lower guide members.
9. A rigid rear axle according to claim 7, characterized in that spring leg means formed of a shock absorber and a spring engage at the lower guide members.
10. A rigid rear axle according to claim 7, characterized in that a spring leg is pivotally connected at the axle member.
11. A rigid rear axle according to claim 7, characterized in that with brake means mounted at the wheel, parts of the brake means are secured at brake mounting means which are rotatably supported at the axle member substantially concentrically to the wheel center, the brake mounting means being pivotally connected at the fixed vehicle part by way of further guide means in such a manner that a second connecting line from the point of contact of the wheel with the ground to the point of intersection of the further guide means with a third connecting line between the wheel center and a point of intersection of the lower guide members and of the upper guide members, extends rising forwardly as viewed in side view.
12. A rigid rear axle according to claim 11, characterized in that the brake parts are brake anchor plates.
13. A rigid rear axle according to claim 11, characterized in that the brake parts are brake saddles.
14. A rigid rear axle according to claim 11, characterized in that the resulting spring rates c1 of the lower guide members and c2 of the upper guide members, the angle of inclination α1 of the lower guide members and α2 of the upper guide members and the distance l1 of the point of intersection of the lower guide members from the wheel center axis and the distance l2 of the point of intersection of the upper guide members from the wheel center axis, as measured in the driving direction, are so selected that the following equation is fulfilled:
l.sub.1 . c.sub.1 . sin.sup.2 α.sub.1 ≦ l.sub.2 . c.sub.2 . sin.sup.2 α.sub.2.
15. A rigid rear axle according to claim 14, characterized in that the drive shafts include length-compensating means.
16. A rigid rear axle according to claim 14, characterized in that the lower guide members and the upper guide members extend approximately parallel to one another, as viewed in side view.
17. A rigid rear axle according to claim 1, characterized in that spring and shock absorber members engage at the lower guide members.
18. A rigid rear axle according to claim 1, characterized in that spring leg means formed of a shock absorber and a spring engage at the lower guide members.
19. A rigid rear axle according to claim 1, characterized in that a spring leg is pivotally connected at the axle member.
20. A rigid rear axle according to claim 1, characterized in that with brake means mounted at the wheel, parts of the brake means are secured at brake mounting means which are rotatably supported at the axle member substantially concentrically to the wheel center, the brake mounting means being pivotally connected at the fixed vehicle part by way of further guide means in such a manner that a second connecting line from the point of contact of the wheel with the ground to the point of intersection of the further guide means with a third connecting line between the wheel center and a point of intersection of the lower guide members and of the upper guide members, extends rising forwardly as viewed in side view.
21. A rigid rear axle according to claim 20, characterized in that the brake parts are brake anchor plates.
22. A rigid rear axle according to claim 20, characterized in that the brake parts are brake saddles.
23. A rigid rear axle according to claim 1, characterized in that the resulting spring rates c1 of the lower guide members and c2 of the upper guide members, the angle of inclination α1 of the lower guide members and α2 of the upper guide members and the distance l1 of the point of intersection of the lower guide members from the wheel center axis and the distance l2 of the point of intersection of the upper guide members from the wheel center axis, as measured in the driving direction, are so selected that the following equation is fulfilled:
l.sub.1 . c.sub.1 . sin.sup.2 α.sub.1 ≦ l.sub.2 . c.sub.2 . sin.sup.2 α.sub.2.
US05/459,799 1973-04-11 1974-04-10 Rigid rear axle for motor vehicles Expired - Lifetime US3952824A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DT2318231 1973-04-11
DE2318231A DE2318231A1 (en) 1973-04-11 1973-04-11 RIGID REAR AXLE FOR VEHICLES, IN PARTICULAR PASSENGER CARS

Publications (1)

Publication Number Publication Date
US3952824A true US3952824A (en) 1976-04-27

Family

ID=5877735

Family Applications (1)

Application Number Title Priority Date Filing Date
US05/459,799 Expired - Lifetime US3952824A (en) 1973-04-11 1974-04-10 Rigid rear axle for motor vehicles

Country Status (5)

Country Link
US (1) US3952824A (en)
DE (1) DE2318231A1 (en)
FR (1) FR2225301B1 (en)
GB (1) GB1435483A (en)
IT (1) IT1009756B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086563A (en) * 1975-07-10 1978-04-25 Dickey-John Corporation Wheel slippage monitor
US4478305A (en) * 1982-09-27 1984-10-23 Martin Ii Lee R Rear suspension for a three wheel vehicle
US4632203A (en) * 1984-03-05 1986-12-30 Gkn Automotive Components Inc. Independent wheel suspension system using thrust bearing constant velocity universal drive joints as suspension members to minimize wheel camber
US4697662A (en) * 1985-04-19 1987-10-06 Daimler-Benz Aktiengesellschaft Driven axle for commercial vehicles
US5188195A (en) * 1991-11-12 1993-02-23 Haustein Norman E Vehicle driving wheel suspension system
US5823552A (en) * 1997-08-25 1998-10-20 Chrysler Corporation Strut type rear suspension
US6209676B1 (en) 1999-08-24 2001-04-03 Robert Allen Jones Differential mounting assembly
US6626454B1 (en) 2000-06-19 2003-09-30 Dana Corporation Trailer suspension
US20050082105A1 (en) * 2003-10-20 2005-04-21 Johann Epple Vehicle suspension
US20120043736A1 (en) * 2009-04-21 2012-02-23 Honda Motor Co., Ltd. Suspension device
CN104870224A (en) * 2013-01-17 2015-08-26 宝马股份公司 Rigid axle as non-driven rear axle of motor vehicle
US11220150B2 (en) 2017-08-30 2022-01-11 Dana Heavy Vehicle Systems Group, Llc Electric axle drivetrain assembly
US20240075796A1 (en) * 2022-09-07 2024-03-07 Harbinger Motors Inc. Electric commercial vehicle rear axle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3333706C2 (en) * 1983-09-17 1986-09-04 Bayerische Motoren Werke AG, 8000 München Suspension of a rigid axle for vehicles
DE3428160C1 (en) * 1984-07-31 1985-11-07 Daimler-Benz Ag, 7000 Stuttgart Axle suspension for motor vehicles, especially passenger cars
US4802689A (en) * 1984-07-31 1989-02-07 Daimler-Benz Aktiengesellschaft Suspension system for rigid vehicle axle
FR2609431B1 (en) * 1987-01-12 1991-06-14 Elf France IMPROVEMENTS ON WHEEL SUSPENSIONS FOR LAND VEHICLES AND IN PARTICULAR STEERING WHEELS
DE4235632C1 (en) * 1992-10-22 1993-12-23 Man Nutzfahrzeuge Ag Rear axle handlebar arrangement in vehicles
DE4419221C1 (en) * 1994-06-01 1995-07-27 Daimler Benz Ag Low profile rear axle suspension

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1919033A (en) * 1927-03-10 1933-07-18 Noble Warren Vehicle suspension
US2746766A (en) * 1950-06-13 1956-05-22 Daimler Benz Ag Suspension of a rigid axle, particularly for motor vehicles
US3174771A (en) * 1959-12-04 1965-03-23 Daimler Benz Ag Wheel suspension for vehicles, especially motor vehicles
US3193303A (en) * 1963-11-29 1965-07-06 Ford Motor Co Motor vehicle suspension system of a linkage type
DE1530575A1 (en) * 1965-05-20 1969-10-02 Daimler Benz Ag Suspension of rigid axles on a vehicle frame or body, especially in all-terrain motor vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1919033A (en) * 1927-03-10 1933-07-18 Noble Warren Vehicle suspension
US2746766A (en) * 1950-06-13 1956-05-22 Daimler Benz Ag Suspension of a rigid axle, particularly for motor vehicles
US3174771A (en) * 1959-12-04 1965-03-23 Daimler Benz Ag Wheel suspension for vehicles, especially motor vehicles
US3193303A (en) * 1963-11-29 1965-07-06 Ford Motor Co Motor vehicle suspension system of a linkage type
DE1530575A1 (en) * 1965-05-20 1969-10-02 Daimler Benz Ag Suspension of rigid axles on a vehicle frame or body, especially in all-terrain motor vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ATZ" Automobiltechnische Zeitschrift 1/1968 70 Jahrgang Nr. 1. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086563A (en) * 1975-07-10 1978-04-25 Dickey-John Corporation Wheel slippage monitor
US4478305A (en) * 1982-09-27 1984-10-23 Martin Ii Lee R Rear suspension for a three wheel vehicle
US4632203A (en) * 1984-03-05 1986-12-30 Gkn Automotive Components Inc. Independent wheel suspension system using thrust bearing constant velocity universal drive joints as suspension members to minimize wheel camber
US4697662A (en) * 1985-04-19 1987-10-06 Daimler-Benz Aktiengesellschaft Driven axle for commercial vehicles
US5188195A (en) * 1991-11-12 1993-02-23 Haustein Norman E Vehicle driving wheel suspension system
US5823552A (en) * 1997-08-25 1998-10-20 Chrysler Corporation Strut type rear suspension
US6209676B1 (en) 1999-08-24 2001-04-03 Robert Allen Jones Differential mounting assembly
US6626454B1 (en) 2000-06-19 2003-09-30 Dana Corporation Trailer suspension
US20050082105A1 (en) * 2003-10-20 2005-04-21 Johann Epple Vehicle suspension
US7077409B2 (en) * 2003-10-20 2006-07-18 Agco Gmbh Vehicle suspension
US20120043736A1 (en) * 2009-04-21 2012-02-23 Honda Motor Co., Ltd. Suspension device
US8444160B2 (en) * 2009-04-21 2013-05-21 Honda Motor Co., Ltd. Suspension device
CN104870224A (en) * 2013-01-17 2015-08-26 宝马股份公司 Rigid axle as non-driven rear axle of motor vehicle
CN104870224B (en) * 2013-01-17 2017-07-04 宝马股份公司 As the stiff shaft of the non-driven rear axle of automobile
US11220150B2 (en) 2017-08-30 2022-01-11 Dana Heavy Vehicle Systems Group, Llc Electric axle drivetrain assembly
US20240075796A1 (en) * 2022-09-07 2024-03-07 Harbinger Motors Inc. Electric commercial vehicle rear axle
US12011985B2 (en) 2022-09-07 2024-06-18 Harbinger Motors Inc. Axle arrangement for an electric commercial vehicle chassis
US12017520B2 (en) * 2022-09-07 2024-06-25 Harbinger Motors Inc. Electric commercial vehicle rear axle

Also Published As

Publication number Publication date
FR2225301B1 (en) 1978-11-10
GB1435483A (en) 1976-05-12
DE2318231A1 (en) 1974-10-17
IT1009756B (en) 1976-12-20
FR2225301A1 (en) 1974-11-08

Similar Documents

Publication Publication Date Title
US3952824A (en) Rigid rear axle for motor vehicles
US3871467A (en) Independent wheel suspension for non-steered wheels of motor vehicles
US4671532A (en) Rear wheel suspension, especially for driven rear wheels
US4828279A (en) Wheel suspension for the driven rear wheels of motor vehicles
EP1171322B1 (en) Wheel suspension arrangement in a vehicle
US4474389A (en) Axle suspension for a passenger motor vehicle
JPS6146323B2 (en)
JPS6355445B2 (en)
US4653772A (en) Independent wheel suspension for motor vehicles
US20150343868A1 (en) Rear Axle of a Two-Track Vehicle
US3891232A (en) Independent wheel suspension for motor vehicles
US2760787A (en) Independent front wheel suspension for motor vehicle
US4652009A (en) Rear suspension system for vehicle
US4799703A (en) Wheel suspension for rear wheels of motor vehicles equipped with front wheel steering, especially passenger motor vehicles
US4235300A (en) Front wheel suspension for electric vehicles with front wheel drive
CN100430250C (en) Four link rear axle suspension for a vehicle
US3831970A (en) Front wheel suspension for motor vehicles
US3246716A (en) Vehicle suspension system
US3913941A (en) Independent rear suspension for motor vehicles
US3102736A (en) Wheel suspension system
EP0198313A2 (en) Frame type flexible axle suspension system
US4840393A (en) Wheel suspension for steerable rear wheel on motor vehicles equipped with front wheel steering especially passenger vehicle
US3897844A (en) Suspension modifying means for leaf spring suspensions
US4451054A (en) Vehicle suspension system
US2607609A (en) Spring suspension for motor vehicles