US3929057A - Hydraulic brake mechanism for an air cylinder - Google Patents
Hydraulic brake mechanism for an air cylinder Download PDFInfo
- Publication number
- US3929057A US3929057A US427847A US42784773A US3929057A US 3929057 A US3929057 A US 3929057A US 427847 A US427847 A US 427847A US 42784773 A US42784773 A US 42784773A US 3929057 A US3929057 A US 3929057A
- Authority
- US
- United States
- Prior art keywords
- piston
- air cylinder
- piston rod
- rod
- stroke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/06—Servomotor systems without provision for follow-up action; Circuits therefor involving features specific to the use of a compressible medium, e.g. air, steam
- F15B11/072—Combined pneumatic-hydraulic systems
- F15B11/076—Combined pneumatic-hydraulic systems with pneumatic drive or displacement and speed control or stopping by hydraulic braking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/21—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
- F15B2211/212—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40507—Flow control characterised by the type of flow control means or valve with constant throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40515—Flow control characterised by the type of flow control means or valve with variable throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/41—Flow control characterised by the positions of the valve element
- F15B2211/411—Flow control characterised by the positions of the valve element the positions being discrete
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41527—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve
- F15B2211/41536—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a directional control valve being connected to multiple ports of an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/42—Flow control characterised by the type of actuation
- F15B2211/426—Flow control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/625—Accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/75—Control of speed of the output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/80—Other types of control related to particular problems or conditions
- F15B2211/885—Control specific to the type of fluid, e.g. specific to magnetorheological fluid
- F15B2211/8855—Compressible fluids, e.g. specific to pneumatics
Definitions
- ABSTRACT For retarding the motion of a piston traveling on its forward stroke in an air cylinder, a hydraulic cylinder having shorter piston stroke than that of the air cylinder is mounted on its rear side in axial alignment therewith.
- the piston rod of the hydraulic cylinder projects into the air cylinder to be telescopically received in an axial bore formed through the rear end portion of the air cylinder piston rod.
- This invention relates to an apparatus for hydraulically controlling the speed of a piston in an air cylinder.
- the air cylinder of prior art construction is used extensively as a feed mechanism in some machine tools or other classes of manufacturing equipment. It is often desired, however, that a cutting tool or the like be fed toward the work, or vice versa, at relatively high speed and then at appropriately reduced speed as the tool starts actually machining the work. To this end the air cylinder has been used in combination with a hydraulic cylinder of equal piston stroke either in serial or tandem arrangement.
- Another object of the invention is to provide an ap paratus of the above described character, wherein a hydraulic cylinder of considerably shorter piston stroke than that of the air cylinder is coupled directly thereto in serial arrangement, with the front end portion of the hydraulic cylinder piston rod telescopically received in an axial bore formed through the rear end portion of the air cylinder piston rod, so that the overall system is rendered highly compact in size and inexpensive in construction.
- a further object of the invention is to provide an apparatus of the character described, including a regu lating valve whereby the degree of reduction in the speed of the air cylinder piston is regulatable as desired.
- a further object of the invention is to provide an apparatus of the character described, including a shutoff valve typically operated by a solenoid to arrest the motion of the air cylinder piston as it travels forwardly at reduced speed.
- a still further object of the invention is to provide an apparatus of the character described, wherein the depth or axial length of the axial bore formed through the rear end portion of the air cylinder piston rod is variable to adjustably change the distances the air cylinder piston is driven at high and reduced speeds, respectively, on its forward stroke.
- the hydraulic cylinder assembly comprises a sleeve or cylinder fixedly supported on the rear side of that of the air cylinder assembly in coaxial relationship thereto, a piston slidably mounted within the cylinder to pressure tightly divide its interior into front and rear hydraulic fluid chambers which are intercommunicated through a passageway, and a piston rod securely coupled at its rear end to the piston and slidably extending into the air cylinder assembly to have its front end portion telescopically received in an axial bore formed through the rear end portion of the air cylinder pistion rod.
- the hydraulic cylinder piston rod carries a flange or larger diameter portion on its front end which is adapted to engage the air cylinder piston at the rear end ofthc said axial bore.
- this passageway is equipped with a regulating valve adapted to regulate the rate of flow of the hydraulic fluid therethrough and hence to adjust the degree of reduction in the speed of the air cylinder piston.
- the passageway can be further equipped with a shut-off valve capable of completely closing the same to arrest the forward motion of the air cylinder piston.
- FIG. I is a longitudinal or axial sectional view of an arrangement formed in accordance with the principles of this invention.
- FIG. 2 is a similar view showing another preferred embodiment of the invention.
- the reference numeral 10 generally designates an air cylinder assembly the piston speed of which is to be controlled in accordance with the inventive concepts.
- the air cylinder assembly 10 includes a sleeve or cylinder ll pressure-tightly closed at its left hand end, as seen in the drawing, by a front end cap 12 and at its right hand end by a rear end cap I3.
- a piston 14 is slidably but pressure-tightly mounted within the cylinder 11 thereby dividing its interior into a pair of opposed air chambers 15 and I6, and a piston rod 17 securely coupled at its right hand end to the piston 14 slidably but pressure-tightly extends through 3 the front end cap 12 in axial alignment with the cylinder 1].
- a pair of U-type sealing rings 18 are fitted in an opposed manner in annular recesses formed in spaced parallel relationship on the circumference of the piston 14.
- Air inlet/outlet ports 19 and 20 are formed through the front and rear end caps 12 and 13, respectively, to communicate the respective air chambers 15 and 16 with a source of compressed air, not shown, through pressure conduits having suitable valving such that air under pressure will be introduced alternately into the two opposed air chambers in the operation of this air cylinder. It is to be noted, however, that the construction of the air cylinder assembly 10 as so far described is well known and, by itself, does not constitute a part of this invention.
- a hydraulic cylinder assembly generally designated by the numeral 21 is mounted in serial realtionship to the air cylinder assembly.
- the hydraulic cylinder assembly 21 also includes a sleeve or cylinder 22 pressure-tightly closed at its front or left hand end by the rear end cap 13 of the first mentioned cylinder 11 and at its rear or right hand end by its own rear end cap 23.
- a piston 24 is slidably but pressure-tightly mounted within the cylinder 22 to divide its interior into a pair of opposed hydraulic fluid chambers 25 and 26. It will be noted from the drawing that the stroke of this piston 24 within the cylinder 22 is considerably shorter than the piston stroke within the cylinder 11.
- This axial bore 28 has a diameter sufficient to slidably accommodate a flange or larger diameter portion 29 formed on the left hand end of the hydraulic cylinder piston rod 27 and extends from the right hand end of the air cylinder piston rod 17 to a prescribed point intermediate both ends thereof.
- the right hand extremity of the axial bore 28 is closed by the air cylinder piston 14, and a shock absorber such for example as a sheet of suitably elastic material is provided at 30 to minimize the impact energy that may be produced as the larger diameter portion 29 on the hydraulic cylinder piston rod 27 engages the air cylinder piston 14 by its shoulder 31.
- a shock absorber such for example as a sheet of suitably elastic material is provided at 30 to minimize the impact energy that may be produced as the larger diameter portion 29 on the hydraulic cylinder piston rod 27 engages the air cylinder piston 14 by its shoulder 31.
- an air vent should be formed as at 32, and a groove or aperture should be formed longitudinally on or through the larger diameter portion 29 of the hydraulic cylinder piston rod 27, in order to assure its smooth sliding motion within the axial bore 28 of the air cylinder piston rod 17.
- a plurality of bores 33 are formed eccentrically through the hydraulic cylinder piston 24 substantially in annular arrangement, and these bores 33 are normally closed by a flap 34 of annular shape on the side of the left hand hydraulic fluid chamber 25.
- the flap 34 is somewhat loosely fitted over a flanged sleeve 35 fixedly supported on the hydraulic cylinder piston rod 27 between its shoulder 36 and the hydraulic cylinder piston 24 and is yieldably urged toward the bores 33 by spring means 37 supported by the flanged sleeve 35.
- the flap 34 in combination with the spring means 37 is adapted to perform the function of a check valve, permitting the flow of hydraulic fluid such as oil through 4 the bores 33 only from the right to the left hand hydraulic fluid chamber during the rightward or return stroke of the hydraulic cylinder piston 24.
- the left and right hand hydraulic fluid chambers 25 and 26 have hydraulic fluid inlet/outlet ports 38 and 39 formed in the end caps 13 and 23, respectively, and these ports 38 and 39 are intercommunicated through a passageway 40 which is equipped with a regulating valve 41 of the type operated manually to regulate the flow rate of the hydraulic fluid therethrough and with a shut-off valve 42 of the type operated by a solenoid mechanism 43 of well known construction to completely close the passageway 40 as required, as hereinafter set forth in more detail.
- the reference numeral 44 generally indicates a compensating mechanism adapted to compensate for the undersupply of hydraulic fluid which will take place in the right hand hydraulic fluid chamber 26 as the hydraulic cylinder piston 24 moves on its leftward or forward stroke, due largely to the presence of the hydraulic cylinder piston rod 27 in the left hand hydraulic fluid chamber 25.
- the compensating mechanism 44 includes a cylinder 45 closed at both ends thereof, and a piston 46 slidably mounted therein. The right hand one of the two opposed chambers defined within the cylinder 45 by the piston 46 is pressure tight.
- the piston 46 is yieldably urged, as by a helical compression spring 47, toward that one pressure-tight chamber of the cylinder 45 to constantly force hydraulic fluid into the right hand hydraulic fluid chamber 26 of the hydraulic cylinder assembly 21 through a passageway 48 at a prescribed pressure.
- the right hand hydraulic fluid chamber 26 can thus be held filled with hydraulic fluid regardless of the position of the hydraulic cylinder piston 24 within the cylinder 22.
- the air cylinder piston 14 continues traveling to the left on its forward stroke at reduced speed since now its motion is retarded by the hydraulic cylinder piston 24 traveling in the same direction against the resistance offered by the hydraulic fluid within the left hand hydraulic fluid chamber 25.
- its bores 33 are held closed by the aforesaid check valve means comprising the flap 34 and the spring means 37, so that the hydraulic fluid within the left hand hydraulic fluid chamber 25 is forced out into the hydraulic fluid inlet/outlet port 38 and flows into the right hand hydraulic fluid chamber 26 through the passageway 40 at a rate determined by the regulating valve 41.
- the solenoid mechanism 43 If the solenoid mechanism 43 is energized while the air cylinder piston 14 is thus traveling on its forward stroke at reduced speed, its plunger retracts to cause the shut-off valve 42 to completely close the passage way 40 intercommunicating the hydraulic fluid chambers 25 and 26. The forward motion of the hydraulic cylinder piston 24 is then arrested, and the air cylinder piston 14 is also caused to stop rapidly through the hydraulic cylinder piston rod 27. As the solenoid mechanism 43 is succeedingly de-energized, the shut-off valve 42 reopens the passageway 40 thereby permitting the flow of the hydraulic fluid from the left hand chamber 25 to the right hand chamber 26, so that the air cylinder piston 14 resumes traveling on its forward stroke at reduced speed.
- the air cylinder piston 14 can be caused to travel forwardly at reduced speed in an intermittent manner.
- air under pressure is to be introduced into the left hand air chamber through the air inlet/outlet port 19.
- the air cylinder piston 14 starts traveling to the right on its return stroke at relatively high speed causing the air within the right hand air chamber 16 to escape through the air inlet/outlet port 20.
- the hydraulic cylinder piston 24 also is caused to start traveling to the right on its return stroke through the hydraulic cylinder piston rod 27.
- the hydraulic cylinder piston 24 is capable of traveling back to the position of FIG. 1 without any substantial resistance.
- the air cylinder piston I4 is allowed to complete its return stroke with hardly any appreciable reduction in speed.
- FIG. 2 Illustrated in FIG. 2 is another preferred embodiment of the invention, in which the working length of the axial bore 28 formed in the air cylinder piston rod 17 is made adjustable to change the position in which the speed of the air cylinder piston 14 traveling on its forward stroke is reduced from high to low level.
- the working length of the axial bore 28 formed in the air cylinder piston rod 17 is made adjustable to change the position in which the speed of the air cylinder piston 14 traveling on its forward stroke is reduced from high to low level.
- an axial bore 28a extending from the right hand end of a piston rod [70 of an air cylinder assembly 10a toward the left may have a length appro priately greater than that of the axial bore 28 in the FIG. 1 embodiment.
- the left hand extremity of the axial bore 28a is defined by a step 50 and is open to a second axial bore 51 of reduced diameter extending to the left hand end of the air cylinder piston rod 170.
- the second axial bore 51 is adapted to screw-thrcadedly receive an adjusting rod 52 having a flange or larger diameter portion 53 on its right hand end which is slidably received in the first mentioned axial bore 280.
- a nut 54 is fitted over the externally screw-threaded left hand end portion of the adjusting rod 52 projecting out of the second axial bore 51.
- Other details of con- 6 struction are as set forth previously with reference to FIG. 1.
- this second embodiment also sub stantially follows suit after that of the FIG. 1 embodiment.
- the working length of the first axial bore 280 can be varied as desired.
- the farther the larger diameter portion 53 of the adjusting rod 52 is located away from the right hand extremity of the first axial bore 28a the greater is the distance the air cylinder piston 14 is fed at relatively high speed on its forward stroke, and the smaller is the distance the air cylinder piston is fed at reduced speed.
- a feed mechanism for a machine tool comprising in combination:
- a double-acting pneumatic cylinder assembly having a first piston and a piston rod having its inner end secured to and terminating within said piston, said rod having an axially hollow portion and an outer end for being connected to a load, said rod being subjected to compressional axial forces as it is extended during its working stroke and to tension during retraction thereof, there being means communicating the interior of said rod with that side of said first piston which is the low pressure side during the working stroke and the high pressure side during retraction;
- a double-acting hydraulic cylinder assembly connected concentrically with said pneumatic cylinder assembly, and having a second piston, of smaller diameter and lesser stroke than said first piston, and a second piston rod having one end rigidly secured to said second piston, said second piston rod having a portion at all times projecting through and slidably guided by said first piston into said hollow portion of said piston rod;
- a throttling passageway interconnecting the oppo site sides of said second piston during a working stroke, there being a power-actuated shut-off valve in said throttling passageway for hydraulically arresting the second portion during the working 7 stroke;
- a separate second hydraulic cylinder assembly including a third piston of the single-acting spring return type and fluidly connected to the end of the first-named hydraulic cylinder which is more remote from said first piston and disposed in radially spaced relation to said first hydraulic cylinder assembly;
- a check valve directed to freely interconnect the opposite sides of said second piston during a return stroke.
- said check valve comprising: a plurality of bores in said second piston, an annular washer of resilient material disposed against said second piston at its bores, spring means normally biasing said resilient washer in a direc- 8 tion away from said pneumatic cylinder assembly toward said second piston, and a flanged sleeve secured to said second piston rod against the flange of which said spring means reacts, said sleeve centering said washer and said spring means.
- a feed mechanism according to claim 1 in which the inner end of said hollow piston rod is closed by an annular portion of said first piston through which said second rod projects.
- a feed mechanism including adjustable means in said axially hollow portion of said piston rod for positioning said abutment which initiates the return stroke of said second piston and opening of said check valve.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Actuator (AREA)
- Fluid-Pressure Circuits (AREA)
- Fluid-Damping Devices (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4242773A JPS5341315B2 (enrdf_load_stackoverflow) | 1973-04-14 | 1973-04-14 | |
JP10514073A JPS5219272B2 (enrdf_load_stackoverflow) | 1973-09-18 | 1973-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3929057A true US3929057A (en) | 1975-12-30 |
Family
ID=26382112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US427847A Expired - Lifetime US3929057A (en) | 1973-04-14 | 1973-12-26 | Hydraulic brake mechanism for an air cylinder |
Country Status (6)
Country | Link |
---|---|
US (1) | US3929057A (enrdf_load_stackoverflow) |
CA (1) | CA979465A (enrdf_load_stackoverflow) |
DE (1) | DE2365234A1 (enrdf_load_stackoverflow) |
FR (1) | FR2225643B1 (enrdf_load_stackoverflow) |
GB (1) | GB1406520A (enrdf_load_stackoverflow) |
IT (1) | IT1000666B (enrdf_load_stackoverflow) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979109A (en) * | 1974-10-14 | 1976-09-07 | Tokico Ltd. | Locking device in gas spring |
US4012173A (en) * | 1976-01-26 | 1977-03-15 | Everson Jr Kirke B | Variable stroke compressor |
US4014515A (en) * | 1975-11-24 | 1977-03-29 | Auto Specialties Manufacturing Company | Snubber for one end lift jacks |
US4085658A (en) * | 1975-03-05 | 1978-04-25 | K. & V. Sorensen Engineering Limited | Operating means |
US4173920A (en) * | 1978-01-18 | 1979-11-13 | Lear Siegler, Inc. | Plunge shaving machine |
US4236613A (en) * | 1977-05-09 | 1980-12-02 | Lely Cornelis V D | Coupling member |
US4249614A (en) * | 1977-05-04 | 1981-02-10 | Lely Nv C Van Der | Implement |
US4271671A (en) * | 1976-05-17 | 1981-06-09 | Smeets Gerard G F | Two step pressure intensifier system |
US4387910A (en) * | 1978-05-30 | 1983-06-14 | Lely Cornelis V D | Coupling member |
US4481868A (en) * | 1983-07-21 | 1984-11-13 | Timesavers, Inc. | Fluid cylinder with motion buffered ram assembly |
US4514148A (en) * | 1982-11-01 | 1985-04-30 | Carter Controls, Inc. | Hydraulically actuated pump |
WO1987000423A1 (en) * | 1985-07-16 | 1987-01-29 | Oxygen Enrichment Company, Ltd. | Method and apparatus for pulmonary and cardiovascular conditioning of racehorses and competition animals |
US4667574A (en) * | 1984-10-31 | 1987-05-26 | The Goodyear Tire & Rubber Company | Actuator for movement of a tool and a tire carcass transfer device utilizing the actuator |
US4765225A (en) * | 1986-08-22 | 1988-08-23 | Birchard William G | Digitally controlled air-over-hydraulic actuator and method |
US4817766A (en) * | 1984-06-21 | 1989-04-04 | Saab-Scania Aktiebolag | Arrangements for damping shifting movements in transmissions |
US4907495A (en) * | 1986-04-30 | 1990-03-13 | Sumio Sugahara | Pneumatic cylinder with integral concentric hydraulic cylinder-type axially compact brake |
DE4041829A1 (de) * | 1990-12-24 | 1992-07-02 | Boge Ag | Hydraulischer, regelbarer schwingungsdaempfer |
US5553690A (en) * | 1994-08-01 | 1996-09-10 | Smc Corporation | Locking device for fluid pressure cylinder |
EP1101972A3 (de) * | 1999-11-20 | 2001-10-10 | Joh. Stiegelmeyer GmbH & Co. KG | Gas-Zugfeder |
US10260534B2 (en) | 2016-11-09 | 2019-04-16 | Caterpillar Inc. | Hydraulic flowpath through a cylinder wall |
US11441534B2 (en) * | 2019-02-22 | 2022-09-13 | Flapump As | Fluid-driven linear motor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2900281A1 (de) * | 1979-01-05 | 1980-07-17 | Bosch Gmbh Robert | Druckluftzylinder mit einer daempfungsvorrichtung |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2605751A (en) * | 1949-08-10 | 1952-08-05 | Perry Fay Company | Fluid pressure tool slide control assembly |
US2857789A (en) * | 1953-01-27 | 1958-10-28 | Gardner Denver Co | Power operated tool with controlled power feed |
US2991760A (en) * | 1956-12-28 | 1961-07-11 | Jules A Rhine | Tool feed and control |
US3043278A (en) * | 1956-07-16 | 1962-07-10 | Ackerman Nathan | Turret lathe control |
US3313214A (en) * | 1964-06-16 | 1967-04-11 | Sandex Inc | Power feed with liquid check |
US3463036A (en) * | 1967-07-20 | 1969-08-26 | Oconnor Charles A | Automatic drilling device |
US3584712A (en) * | 1968-05-25 | 1971-06-15 | Armstrong Patents Co Ltd | Telescopic hydraulic shock absorbers |
US3659684A (en) * | 1969-11-25 | 1972-05-02 | Porter Co P L | Hydraulic lock refill valve |
US3678805A (en) * | 1969-11-25 | 1972-07-25 | Henry Walter Weyman | Pneumatic cylinder assemblies |
US3824900A (en) * | 1971-11-11 | 1974-07-23 | Lelland J Mc | Movement control apparatus |
US3830139A (en) * | 1972-07-31 | 1974-08-20 | Pml Precision Mechanisms Ltd | Pneumatic actuator |
-
1973
- 1973-12-26 US US427847A patent/US3929057A/en not_active Expired - Lifetime
- 1973-12-26 FR FR7346364A patent/FR2225643B1/fr not_active Expired
- 1973-12-27 GB GB5985173A patent/GB1406520A/en not_active Expired
- 1973-12-28 DE DE2365234A patent/DE2365234A1/de active Pending
- 1973-12-28 IT IT70897/73A patent/IT1000666B/it active
- 1973-12-31 CA CA189,225A patent/CA979465A/en not_active Expired
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2605751A (en) * | 1949-08-10 | 1952-08-05 | Perry Fay Company | Fluid pressure tool slide control assembly |
US2857789A (en) * | 1953-01-27 | 1958-10-28 | Gardner Denver Co | Power operated tool with controlled power feed |
US3043278A (en) * | 1956-07-16 | 1962-07-10 | Ackerman Nathan | Turret lathe control |
US2991760A (en) * | 1956-12-28 | 1961-07-11 | Jules A Rhine | Tool feed and control |
US3313214A (en) * | 1964-06-16 | 1967-04-11 | Sandex Inc | Power feed with liquid check |
US3463036A (en) * | 1967-07-20 | 1969-08-26 | Oconnor Charles A | Automatic drilling device |
US3584712A (en) * | 1968-05-25 | 1971-06-15 | Armstrong Patents Co Ltd | Telescopic hydraulic shock absorbers |
US3659684A (en) * | 1969-11-25 | 1972-05-02 | Porter Co P L | Hydraulic lock refill valve |
US3678805A (en) * | 1969-11-25 | 1972-07-25 | Henry Walter Weyman | Pneumatic cylinder assemblies |
US3824900A (en) * | 1971-11-11 | 1974-07-23 | Lelland J Mc | Movement control apparatus |
US3830139A (en) * | 1972-07-31 | 1974-08-20 | Pml Precision Mechanisms Ltd | Pneumatic actuator |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3979109A (en) * | 1974-10-14 | 1976-09-07 | Tokico Ltd. | Locking device in gas spring |
US4085658A (en) * | 1975-03-05 | 1978-04-25 | K. & V. Sorensen Engineering Limited | Operating means |
US4014515A (en) * | 1975-11-24 | 1977-03-29 | Auto Specialties Manufacturing Company | Snubber for one end lift jacks |
US4012173A (en) * | 1976-01-26 | 1977-03-15 | Everson Jr Kirke B | Variable stroke compressor |
US4271671A (en) * | 1976-05-17 | 1981-06-09 | Smeets Gerard G F | Two step pressure intensifier system |
US4249614A (en) * | 1977-05-04 | 1981-02-10 | Lely Nv C Van Der | Implement |
US4236613A (en) * | 1977-05-09 | 1980-12-02 | Lely Cornelis V D | Coupling member |
US4173920A (en) * | 1978-01-18 | 1979-11-13 | Lear Siegler, Inc. | Plunge shaving machine |
US4387910A (en) * | 1978-05-30 | 1983-06-14 | Lely Cornelis V D | Coupling member |
US4514148A (en) * | 1982-11-01 | 1985-04-30 | Carter Controls, Inc. | Hydraulically actuated pump |
US4481868A (en) * | 1983-07-21 | 1984-11-13 | Timesavers, Inc. | Fluid cylinder with motion buffered ram assembly |
US4817766A (en) * | 1984-06-21 | 1989-04-04 | Saab-Scania Aktiebolag | Arrangements for damping shifting movements in transmissions |
US4667574A (en) * | 1984-10-31 | 1987-05-26 | The Goodyear Tire & Rubber Company | Actuator for movement of a tool and a tire carcass transfer device utilizing the actuator |
WO1987000423A1 (en) * | 1985-07-16 | 1987-01-29 | Oxygen Enrichment Company, Ltd. | Method and apparatus for pulmonary and cardiovascular conditioning of racehorses and competition animals |
US4907495A (en) * | 1986-04-30 | 1990-03-13 | Sumio Sugahara | Pneumatic cylinder with integral concentric hydraulic cylinder-type axially compact brake |
US4765225A (en) * | 1986-08-22 | 1988-08-23 | Birchard William G | Digitally controlled air-over-hydraulic actuator and method |
DE4041829A1 (de) * | 1990-12-24 | 1992-07-02 | Boge Ag | Hydraulischer, regelbarer schwingungsdaempfer |
US5553690A (en) * | 1994-08-01 | 1996-09-10 | Smc Corporation | Locking device for fluid pressure cylinder |
EP1101972A3 (de) * | 1999-11-20 | 2001-10-10 | Joh. Stiegelmeyer GmbH & Co. KG | Gas-Zugfeder |
US10260534B2 (en) | 2016-11-09 | 2019-04-16 | Caterpillar Inc. | Hydraulic flowpath through a cylinder wall |
US10697480B2 (en) | 2016-11-09 | 2020-06-30 | Caterpillar Inc. | Hydraulic flowpath through a cylinder wall |
US11441534B2 (en) * | 2019-02-22 | 2022-09-13 | Flapump As | Fluid-driven linear motor |
Also Published As
Publication number | Publication date |
---|---|
IT1000666B (it) | 1976-04-10 |
DE2365234A1 (de) | 1974-11-07 |
FR2225643A1 (enrdf_load_stackoverflow) | 1974-11-08 |
GB1406520A (en) | 1975-09-17 |
FR2225643B1 (enrdf_load_stackoverflow) | 1978-03-10 |
CA979465A (en) | 1975-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3929057A (en) | Hydraulic brake mechanism for an air cylinder | |
US4693454A (en) | Air pressure shock absorber | |
US4174098A (en) | Shock absorber and mounting means therefor | |
US3678805A (en) | Pneumatic cylinder assemblies | |
US3974910A (en) | Fluid cylinder decelerating means | |
US4076210A (en) | Hydraulic valve | |
US3168168A (en) | Adjustable hydraulic shock absorber | |
US4259858A (en) | Vacuum-pneumatic power tool | |
US3419114A (en) | Hydraulic action devices with inertia insensitive snubbing circuit | |
CA2298084A1 (en) | Cushion hydraulic cylinder | |
US4151784A (en) | Shock absorber | |
US2976845A (en) | Pneumatic-hydraulic drive cylinder | |
US2376519A (en) | Valve control for presses and the like | |
US4056040A (en) | Shock absorber | |
US2922397A (en) | Adjustable stroke reciprocatory fluid pressure motor | |
US3999463A (en) | Fluid motor construction | |
US4455923A (en) | Air cylinder with end position damping | |
US3502001A (en) | Fluid operated cylinder | |
US5943862A (en) | Hydropneumatic machine tool with cushioning | |
GB1055543A (en) | A telescopic shock absorber | |
CN216199499U (zh) | 一种新型液压驱动装置的缓冲装置 | |
US3124343A (en) | Hydraulic cushion for die pads in presses | |
US3276206A (en) | Pressure intensifier mechanism | |
GB1354385A (en) | Telescopic hydraulic shock absorbers | |
US6202536B1 (en) | Pneumatic reciprocatory actuator and method of operating it |