US3921679A - Woven zipper - Google Patents

Woven zipper Download PDF

Info

Publication number
US3921679A
US3921679A US483760A US48376074A US3921679A US 3921679 A US3921679 A US 3921679A US 483760 A US483760 A US 483760A US 48376074 A US48376074 A US 48376074A US 3921679 A US3921679 A US 3921679A
Authority
US
United States
Prior art keywords
zipper
threads
weft thread
legs
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US483760A
Other languages
English (en)
Inventor
Friedrich Glindmeyer
Wilhelm Friedrich Hennenberg
Karl Limpens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
William Prym Werke GmbH and Co KG
Original Assignee
William Prym Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William Prym Werke GmbH and Co KG filed Critical William Prym Werke GmbH and Co KG
Application granted granted Critical
Publication of US3921679A publication Critical patent/US3921679A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • A44B19/42Making by processes not fully provided for in one other class, e.g. B21D53/50, B21F45/18, B22D17/16, B29D5/00
    • A44B19/52Securing the interlocking members to stringer tapes while making the latter
    • A44B19/54Securing the interlocking members to stringer tapes while making the latter while weaving the stringer tapes
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/06Details of garments
    • D10B2501/063Fasteners
    • D10B2501/0631Slide fasteners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/25Zipper or required component thereof
    • Y10T24/2518Zipper or required component thereof having coiled or bent continuous wire interlocking surface
    • Y10T24/252Zipper or required component thereof having coiled or bent continuous wire interlocking surface with stringer tape interwoven or knitted therewith
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/25Zipper or required component thereof
    • Y10T24/2518Zipper or required component thereof having coiled or bent continuous wire interlocking surface
    • Y10T24/2523Zipper or required component thereof having coiled or bent continuous wire interlocking surface with core encircled by coils or bends

Definitions

  • ABSTRACT A woven zipper has two cooperating zipper sections each having an elongated zipper tape provided with a longitudinally extending margin and an elongated flexible element which extends along this margin.
  • a filament extends in an undulate path along the margin and forms a plurality of successive loops each having one leg passing in front of and another leg passing hehind the flexible element.
  • a first curved connecting portion extends outwardly of the margin and element and connects one leg of each loop with an adjacent leg of a successive loop. and a second curved connecting portion extends inwardly of the margin and element and connects the legs of each loop to one another.
  • a coupling projection is formed on each first connecting portion for engagement with a cooperating projection of the adjacent zipper section.
  • First threads extend along the element adjacent the second connecting portions and are located exclusively in front of the legs, and second threads also extend along the element adjacent the second connecting portions but are lo cated exclusively behind the legs.
  • First weft thread portions are woven into the zipper tape at longitudinally spaced locations and each extends transversely of the second threads and crosses the element in front of the latter. and second weft thread portions are also woven into the zipper tape, each being located intermediate two of the first weft thread portions and extending transversely of the first threads and crossing the element behind the latter.
  • the present invention relates generally to a zipper, and more particularly to a woven zipper.
  • a woven zipper is disclosed in US. Pat. No. 3,692,068 wherein a zipper tape is formed into a longitudinally extending marginal portion of which a filament forming the coupling portions of the zipper is inserted by means of a weft inserting needle into a separately provided weft shed of threads, and is then woven between these additional threads and the basic tape.
  • this has the advantage that the filament is secured to the tape with a plurality of threads, and that the manner in which these threads are inserted is relatively simple because they always extend above the legs of each loop into which the filament is formed, and because they always extend beneath individual weft threads.
  • such a zip per can be produced continuously and can utilize a filament of any desired length, so that no interruptions in the manufacture result from running out of the thread supply or the filament supply.
  • this type of zipper always had one pair of legs of respective loops of the filament which forms the engaging portions of the zipper, located jointly in a tunnel formed of the cover threads which hold the filament to the basic zipper tape.
  • This means that the loops of the filament are not adequately secured against transverse stresses. because they can move transversely with respect to the elongation of the tape.
  • the legs which are jointly located in such a tunnel may change their positions relative to one another and thus interfere with the proper operation of the zipper.
  • Other disadvantages also obtain.
  • Another object of the invention is to provide such a woven zipper in which the loops of the filament forming the connecting portions of the zipper are properly fixed in their relationship relative to one another and to the tape.
  • An additional object of the invention is to provide such an improved woven zipper which is characterized by being particularly easy to operate.
  • one feature of the invention resides in a woven zipper, in a combination which comprises a zipper section having an elongated zipper tape provided with a longitudinally extending margin, and an elongated flexible element which extends along the margin.
  • a filament extends in an undulate path along the margin and forms a plurality of successive loops each having one leg passing in front of and another leg passing behind the flexible element.
  • a first curved connecting portion extends outwardly of the margin and element and connects one leg of each loop with an adjacent leg of a successive loop, and a second curved connecting portion extends inwardly of the margin and connects the legs of each loop to one another.
  • a coupling projection on each first connecting portion serves to engage with a cooperating similar projection of an adjacent zipper section.
  • First threads extend along the element adjacent the second connecting portions and are located exclusively in front ofthe legs. and second threads also extend along the element adja cent the second connecting portions but are located exclusively behind the legs.
  • First weft thread portions are woven into the zipper tape at longitudinally spaced locations and they each extend transversely ofthe second threads and cross the element in front of the latter.
  • Second weft thread portions are also woven into the zipper tape and are each located intermediate two of the first weft thread portions. The second weft thread portions each extend transversely of the first threads and cross the element behind the latter.
  • Such a construction has manifold advantages. and permits the manufacture of a woven zipper under particularly advantageous economic conditions. It eliminates the need for a complicated double-shed formation during weaving. so that high and very high weaving speeds can be obtained. Even if a machine producing such a zipper is stopped repeatedly. no weaving errors or loss can develop. because the filament can be withdrawn from a supply having any desired capacity. and only a single weft inserting device is required for the weft threads.
  • FIG. I is an enlarged-scale somewhat diagrammatic perspective view. illustrating one section ofa zipper according to one embodiment of the invention.
  • FIGS. 2 and 3 are diagrammatic cross sections taken on lines IIII and IIIIII of FIG. I, respectively.
  • FIG. 4 is a view similar to FIG. 3, but illustrating a somewhat different embodiment of the invention.
  • FIG. 5 is a fragmentary section taken on line ⁇ /-V of FIG. I;
  • FIG. 6 is a view similar to FIG. 5, but illustrating a somewhat different embodiment of the invention.
  • FIGS. 7a-l0a are diagrammatic fragmentary plan views illustrating the zipper in FIGS. 1 and 5 during weaving. and in four different working positions of the various threads and the filament;
  • FIGS. 7b-I0b are diagrammatic views, illustrating the positions of the several threads and the filament of FIGS. 7a-l0a, respectively, on lines VIIb-Vllb to XbXb of FIGS. 7a-l0a. respectively;
  • FIGS. Ila-14a are views resembling FIGS. -100 but illustrating a further embodiment of the invention, namely that which is shown in FIG. 6;
  • FIGS. Ilb-l4b illustrate subject matter analogous to FIGS. 7b-l0b, but with respect to FIGS. Ila-14a and on lines XIbXIb to l4b-l4b of FIGS. Ila-14a, respectively;
  • FIG. 15 is a diagrammatic side view of an apparatus for making the zipper of FIG. 1, with only those portions illustrated that are necessary for an understanding of the invention;
  • FIG. 16 is a partially sectioned view taken on the two section lines XVluX /Iu and XVIXVIh of FIG. 15;
  • FIG. I7 is a view similar to FIG. l6. but illustrating a somewhat modified embodiment
  • FIG. I8 is an enlarged partly sectioned top-plan view of a portion of a further embodiment of an apparatus for making the novel woven zipper.
  • FIGS. l9-20 are a side view and a top view of threads at the weaving station of a further embodiment of an invention which weaves the zipper shown in FIG. 4.
  • FIGS. 1. 2, 3 DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • the woven zipper illustrated therein is generally identified with reference numeral [0. Actually. only a detail of one section of a zipper is illustrated. it being understood that a zipper. of course. has two complementary sections.
  • the illustrated section has a diagrammatically shown zipper tape 25 which serves to connect the zipper to a garment or the like in conventional manner. It also has a marginal portion I3 on which a filament I5 forms a plurality ofloops I4. in that it is woven to the tape so as to lie thereon in an undulate path. Weft thread portions 34 and 34' are woven into the zipper tape 25 extending transversely thereof.
  • each of the portions 34. 34' is formed of a loopshaped double thread which. as the views of the indi vidual weaving steps shown in FIGS. 7a-l0a show. is formed along the edge 35 with loops 36. 36' which are held in place. for instance by interengagement as shown in FIGS. 7a-l0u.
  • the filament IS which advantageously is of deformable synthetic plastic filamentary material. is laid down in an undulate path and forms the loops 14. Where each loop is laid down the filament forms a curved connecting portion 20 which is provided with a coupling projection 21 that is intended to cooperate with a corresponding projection of the other zipper section. These coupling projections 21 are formed in advance in the filament at the requisite locations. At the opposite side of the loops 14 the latter are formed with curved connecting portions 26 which are free of any other threads. that is not engaged by any other threads. The connecting portions 20 and 26 are connected with one another by legs 27, 28 which are located in pairs essentially vertically spaced and extend parallel to the plane 32 of the tape 25, which plane is indicated in broken lines in FIGS. 2 and 3.
  • the series of loops I4 could also be produced by configurating the filament 15 as a meander. but aside from this the zipper would be the sam as in FIGS. 1, 2, 3 and 5.
  • the weft thread portins 34, 34' alternately extend in front of and behind the element 60.
  • the margin 13 is further provided with cover threads 18 and I9. of which the threads 18 form one group that is located exclusively in front of the legs 27, and the threads 19 form another group that is located exclusively behind the threads 28.
  • the threads I8. 19 are looped together with the weft thread portions 34. 34'. in that the lower group of threads l9 always travels over one of the portions 34, 34'. whereas the upper group of threads 18 always travels under the same.
  • FIGS. 1, 2 and 3 show particularly clearly.
  • the connecting portions 26 are free of engagement by any other threads.
  • the series of loops I4 is located at one side of the plane 32 of the tape 25. so that an excellent guide surface is obtained for a zipper slider (not shown).
  • the weft thread portions 34, 34' are mirrorsymmetrically engaged by the two groups of threads l8, l9, and the points of engagement 37. 13' are alternately located in front of and behind the element 60. Each fullloop of this zipper. which loop is composed of a pair of legs 27. 28 requires only a single weft thread portion 34, 34'.
  • FIG. 6 shows that different embodiments are also possible.
  • the zipper 10' in FIG. 6 differs primarily from that of the preceding embodiment of FIG. I in that over the height of one loop there are provided two weft thread portions 38, 38 or 38'. 39'. so that the zipper tape has the double weft thread thickness.
  • the points of engagement 37, 37 of the threadsl8, 19 are alternately located twice above the element 60 at 37', and twice behind the element 60 at 37.
  • FIG. 6 shows that this provides for a particularly good and stable construction. because there are always two of these points of engagement located between two adjacent legs 27, 28; i.e.. an upper point 37' and a lower point 37 for the legs 27, and alternately two upper points 37', 37'. and two lower points 37, 37' for the legs 28.
  • the element 60 determines, due to its cross section, the positioning of the weft thread portions 34, 34' in the region of the loops 14, it would be possible in the case of two groups of mirror-symmetrically arranged threads l8, 19 to omit the element 60, because the alternation of these threads relative to one another will still result in a proper retention of the weft thread portions 34, 34' in cooperation with the threads I8, 19.
  • FIG. I The zipper of FIG. I can be produced on an apparatus which is shown in FIGS. and I6 insofar as its components are necessary for an understanding of the invention. Components which are not considered to be necessary for an understanding of the invention, and which are conventional, have been omitted.
  • FIG. 15 shows in a lateral view
  • FIG. [6 in a top view that the threads I I, the filament l5 and the groups of threads l8, 19 must form an appropriate shed which is visible in side view in FIG. I5, to permit the travel of the inserting needle 17.
  • the members 22, 23 serve as the thread guiding arrangement for the threads ll; their number depends upon the type of weave that is desired, and at the middle they are formed with barnesses 24 provided with eyelets.
  • the control arrangement which effects the movement of the members 22, 23 in the direction of the arrow 29 is well known in the art and requires. therefore. no discussion.
  • the thread inserting devices for the threads 18, 19, which devices are in form of harnesses 41, 42 of requisite number, the front ends of which are formed with eyelets 44 for a respective one of the threads 18 and I9 and which are also controlled for movement in the direction of the arrow 45 by a known control device.
  • a known control device During this movement. they pass through the working plane 49 of the needle 17, which plane is shown in broken lines in FIG. 15.
  • FIG. l5 shows such a passing through the plane, because the harnesses 42 intended for the lower threads 19, which are usually located in the lower part of the shed beneath the plane 49, have just been lifted up into the upper part of the shed in FIG. I5, whereas conversely the harnesses 41 for the threads 18 which are supplied from above. have just been made to travel through the plane 49 into the lower part of the shed.
  • the threads 18 and 19 are withdrawn from non-illustrated supply spools and are guided in the direction of the arrow 50 over two vertically spaced guide rollers 48. 48
  • a turnable rotor 47 is mounted behind the harnesses 41, 42 and has essentially the form of a flat discshaped wheel.
  • FIG. 16 shows that the rotor 47 extends diagonally to the direction 50 so that at the side facing towards the needle 17 there is sufficient room ahead of the rotor 47 for locating the harnesses 41, 42.
  • the rotor 47 is mounted in an annular housing 46 which is formed with an inner groove for the rotor 47, as best shown in FIG. 16, where the rotor is illustrated along the line XVIb-XVIb of FIG. 16, but in a position which is turned with reference to the position shown in FIG. 15.
  • the rotor 47 has an opening 56 in its marginal portion, through which the filament 15 passes.
  • the opening 56 is illustrated in an approximately horizontal location 56' in FIG. 16.
  • the periphery of the rotor 47 is formed with teeth 51 which mesh with a gear 52 that is driven by a shaft 53 and turns in the direction of the arrow 54. thus imparting to the rotor 47 a rotation in the direction ol'the arrow 53.
  • the diame ter and height of the rotor 47 are so selected that from the upper portion ofthe open shed the filament [5 will travel, during further rotation of the rotor 47, into the lower portion of the shed.
  • the rotor 47 has a central insert 55 which is stationary when the rotor turns.
  • This insert 55 has connected to it one end 31 of a loop-forming member 16 which is stationarily located. always on one side with reference to the above mentioned working plane 49, that is in the illustrated embodiment below the working plane 49.
  • the other free end 33 of the member 16 extends somewhat into the interior of the row of loops I4 being formed, as FIGS. 15 and 16 illustrate.
  • the insert 55 is provided with an opening 56 through the element 60 extends which is withdrawn from a supply spool 67 that is located behind the rotor 47.
  • the rotor 47 is mounted on a hollow shaft 69 which is provided with an axial bore and is a part ofthe turning device which will be described in more detail.
  • the filament 15 extends through the axial bore of the hollow shaft 69 and through the opening 56 of the rotor 47.
  • the supply spool for the filament 15 is not visible. being located to the left of the device 40 and thus outside the scope of the drawing.
  • the threads which are supplied in the direction 50 namely the threads II. the threads 18, the threads 19.
  • the filament l5 and the element 60. are beaten up by a reed 30 after each insertion of the weft threads 12 and subsequent closing of the shead. against the beating-up point 57. whereas the reed travels in the direction of the arrow 58 from its full-line position to its broken-line position 30' in FIG. 15.
  • that portion of the filament 15 which is located between the beating-up point 57 and the rotor 47 performs a movement along an imaginary conical surface about the member I6, as well as about the element 60, the base of this imaginary conical surface being determined by the rotational direction 43 of the opening 56 in the rotor 47.
  • the tip of the imaginary conical surface is located at the beating-up point 57.
  • the working field for the movement up and down of I the harnesses 41, 42 in the direction is determined by this imaginary conical surface. as is more clearly evident from FIG. 16.
  • This working field must be located within a triangular area which is determined by the intersection of the aforementioned conical surface with the above mentioned working plane 49. Two corner points of this triangular area are visible in FIG. I6. and this area determines the working field for the longitudinal movement of the harnesses 41, 42 it being understood that the section for the rotor 47 which is shown in FIG. 16 is located approximately in the working plane 49 of the needle 17.
  • One of the corner points of the triangular area is determined by the one lateral position 56' of the eye for the filament 15, whereas the other corner point of the triangular area is determined by the diametrically opposite position l5" of the filament 15, when this eye is located in the position designated with reference numeral 56" in FIG. 16.
  • the triangular area is therefore determined by the points 56, S6" and 57 and the harnesses 41, 42of which more than the illustrated four may be present-operate within this area. Assuming that a zipper is produced of the type that is to be used in a garment. then as a rule it will be customary to use eight of the harnesses 41. 42, since eight of the threads l8. 19 would be employed. if the element 60 is centrally located with respect to the opposite lateral sides of the row 14 of loops. then it is advantageous if the harnesses 41. 42 are uniformly divided and located at opposite sides of the element 60. as shown in FIG. 16.
  • the filament 15 forms the loops 14 in the region of the beating-up point 57 about the member 16 and the element 60.
  • the filament 15 also travels along a substantially conical surface which is. however. mirror-symmetrical with reference to the previously mentioned one. This could inherently lead to undesired convoluting of the filament 14 about the element 60. This. however. is eliminated by the device 40.
  • the latter has a bracket 70 provided on the hollow shaft 69 and formed with a hole 72 (see FIG. 15) which determines the point at which the element 60 is withdrawn from the spool 67. in place of. or in addition to a brake for the spool, of which brake the spring 76 is shown by way of example.
  • a blocking wheel 65 provided with teeth is coupled with the spool 67, and is unblocked at the appropriate point in time by means still to be described. so that a further increment of the element 60 becomes available at the location 57, as required.
  • the drawing shows that the element 60 travels through an additional eyelet 73, which is biased by a tension spring 66 one end of which is mounted on the bracket 70. Under the influence of the spring 66 the eyelet 73 can longitudinally shift and serves to store a short increment of the element 60 at the bracket 70.
  • a pin 74 is also provided on the bracket 70 and is formed with an angular arm 75 one end of which is provided with a pawl 77 that normally engages the teeth of the wheel 65. The other end of the arm is engaged by a restoring spring 78.
  • this arm there is also a lever system 79 against which the eyelet 73 abuts after the spring 66 has been tensioned to the maximum as a rsult of the using up of the stored increment of the element 60.
  • the lever system 79 pivots the arm 75 counter to the action of the spring 78 and withdraws the pawl 77 from engagement with the reel 65. so that the spool 67 can freely turn and permits another increment of the element 60 to be withdrawn.
  • the spring 66 restores the eyelet 73 to its original position. so that the pawl 77 is again moved into blocking engagement with the reel 65 by above.
  • bracket 70 together with the shaft 69 turns in the direction of the arrow 68, and this turning in the direction of the arrow 68 is synchronous with the rotation of the rotor 47 in the direction of the arrow 43.
  • FIG. 15 shows that this is where the member 16 is also always located. Accordingly.
  • FIG. 5 shows that the weft thread portions 34' of the weft thread 12 will be located above the element 60.
  • a pusher 62 is provided which at the appropriate time is lifted by a non-illustrated but conventional control device in the direction of the arrow 63 in FIG. 15, because a notch 64 provided in its end then engages the element 60 and raises it into the upper part of the shed.
  • FlGS. 7(1-l0u and 7h-l0h show four working positions by means of which the weaving required to produce the zipper 10 of the embodiment in FIGS. 1. 2. 3 and 5. will be discussed in more detail.
  • FIGS. 71: and 7b In the first working position. shown in FIGS. 71: and 7b. a weft thread portion 34 of the weft thread 12 is just being inserted in the direction of the arrow 80.
  • the threads 11 are spaced from one another. as shown in FIG. 7b. in the area of the zipper tape 25. A further shed formed by such spacing also exists in the marginal portion 13.
  • FIG. 7b shows that the member 16 is always located in the lower portion of the shed. which is true for the other working positions also.
  • the broken line circle 81 is intended to illustrate the movement of the cross section of the filament 15, which is shown in FIG. 7!). when this filament moves along the aforementioned imaginary conical surface.
  • the element 15 In the position of FIG. 7b the element 15 is located in the upper portion of the shed above weft thread portion 34.
  • FIGS. and 8b A further operating position or phase is shown in FIGS. and 8b.
  • the filament l8 has traveled through more than along the imaginary conical surface. which is represented diagrammatically by the broken-line circle 81, the direction of movement having taken place in the direction of the arrow 43, so that the filament is now in the 6 oclock position.
  • the weft thread portion 34 has just been completely inserted by the needle [7, and the needle l7 has been fully withdrawn from the shed.
  • the end loop 36 of the weft thread portion 34 is retained and passes through a previous loop portion 36'.
  • the member 16 continues to remain in its previous position below the working plane 49.
  • the shed of the threads ll may have closed again. and the pusher 62 has retracted so that the element 60 is back in its usual position below the working plane 49, in which position it remains during the following operating phases which are shown in FIGS. 90. 9b and 10a. 10b.
  • FIG. 8b shows that in this third phase the threads 18, indicated by the arrows 42'. has moved outside of the circle 81 and are now spaced from the filament 15 by a distance 82, whereas the threads 18 are spaced inwardly of the circle 81 by a distance 83 from the filament 15.
  • the filament 15 when the filament 15 is located at the side of the conical surface represented by the circle 81 which faces towards the threads 19, the two groups of threads l8, 19 are moved apart and form a shed, thus producing a passage composed of the distances 82, 83 through which the filament 15 can travel.
  • the filament 15 forms the leg 28 for the next-following loop of the row 14, as shwon in FIG. 8a.
  • FIGS. 9a, 9b In the operating position of FIGS. 9a, 9b, the filament 15 has traveled through 180 degrees from its starting position in FIGS. 7a, 7b, so that it has reached the I 2 oclock position.
  • the element 16 and the threads 11 have not changed their positions, and the member 16 continues to be located below the working plane 49.
  • the arrows 41, 42' indicate that the position of the threads 18, 19 is now reversed, however, so that it is now the threads 18 which are located outside the circle 81 at a spacing 82', whereas the group of threads 19 is located at the other side, preferably already inside the circle 81, to be in the position which is desired for the next-following operating position or phase which will be described with reference to FIGS. a, 10b. This means that in FIGS.
  • FIG. 9a, 9b another passage 82, 83' is obtained through which the filament can travel freely.
  • FIG. 912 also shows that at this time the upper leg 27 is produced, as a comparison with FIG. 9a will illustrate.
  • the filament 15 has traveled approximately 60 degrees further in the direction of the arrow 43, thus having moved to the 2 oclock" position.
  • the filament 15 is now located in the upper portion of the newly opened shed which has been opened for insertion of the next weft thread portion 34.
  • the element 60 is located in the lower portion of the shed, together with the member 16, that is beneath the working plane and within the area surrounded by the circle 81. Located within this area are now also the threads 18, 19. While, as indicated by the arrows 42'. the lower threads 19 are in the position which was already evident from the previous phase in FIGS.
  • FIGS. 10a and 10b corresponds to the position of FIGS. 70 and 7 b, with the difference that here the element 60 is in a lowered position located beneath the working plane. It is very evident that during the insertion of the weft thread portion 34 the element 60 cooperates with the threads 19, whereas during the next-following insertion of the weft thread portion 34 the element cooperates with the threads 18, as has already been described with respect to FIG. 5.
  • FIGS. 8h and 9b on the one hand. and FIGS. 7b and 10h on the other hand. indicate that the two passages 82. 83 on the one hand. and 82. 83' on the other hand are oriented parallel to the shed opening of the threads 11, but vertically offset with reference to it and to one another. While the insertion of the weft thread portions 34, 34' takes place approxi mately in the region of the longitudinal center of the imaginary conical surface described earlier, the aforementioned passages develope at the uppermost and lowermost position of the conical movement, respectively. It is also evident from what has been described above that the opening of the shed and the develop ment of the passages 82-83 and 82-83'. respectively. follow one another in time.
  • FIGS. Ila-14b it will be seen that these illustrate the same operating steps that have been shown with respect to FIGS. 7a-l0b, but for the weaving of the zipper 10' that is shown in FIG. 6.
  • the same reference numerals are used as in the preceding embodiment, and the operation is the same as already described. except for the following differences.
  • the filament 15 In the first operating position or phase shown in FIGS. 11a and 11b. the filament 15 is in the "6 oclock" position, and the threads 18, 19 define with one another the passage 82, 83.
  • the member 16 is always located beneath the working plane 49 in which the weft thread 12 is inserted. and the element 60 remains beneath this working plane during the following four working positions that will now be described.
  • the lower loop leg 28 In the working position or phase of FIGS. 11a and 11b, the lower loop leg 28 is being produced. as indicated also at A in FIG. 6.
  • FIGS. 12a and 1211 indicate that, while the filament 15 has traveled through less than on the circle 61 which is indicative of the imaginary conical surface along which the filament 15 travels in the direction of the arrow 43, and now a first weft thread portion 38 is inserted while the filament 15 is still in the lower part of the shed in the "8 oclock" position.
  • the threads 18 have retained their previous position in FIGS. 11a. 11b in which they are located beneath the working plane 49, but the threads 19 have been moved through the working plane 49 into the interior of the circle 81, so that they are now located above the weft thread portion 38.
  • FIG. 12a shows that in this working phase the curved connecting portion 20 is formed about the member 16.
  • FIGS. 13a and 13b In the third working position shown in FIGS. 13a and 13b. the upper passage 82', 83' has been formed for the travel of the filament 15 in the region of its 12 o clock position.
  • the threads 18 are again located outside the circle 81.
  • FIG. shows that in this working phase the upper leg 27 is produced, as indicated at B in FIG. 6.
  • the filament 15 has traveled along the circle 81 in the direction 43 through approximately 60, and has reached approximately the 2 oclock position. so that it is now located in the upper part of the shed, so that the next weft thread portion 39 can be inserted beneath it.
  • the threads 18, 19 have been moved through the working plane 49 in mutually opposite directions, and with reference to the weft thread portion 39 they are located at opposite sides.
  • a curved connecting portion 26 is being produced, as shown in FIG. 14a.
  • FIG. 17 it will be seen that this Figure is analogous to FIG. 16, but illustrates a somewhat different embodiment of an apparatus. Insofar as like elements are concerned. like reference numerals have been used to designate them as in FIG. 16, and the same explanations will also obtain as were used in FIG. 16.
  • the essential difference between FIGS. 16 and I7 resides in the fact that in FIG. 17 the member 16 has been subdivided into two branches 16, 16''. which include themselves the aforementioned triangular field in which the harnesses 41, 42 can move.
  • the branches l6, l6" converge in the direction towards the beatingup point 57, but continue to have a minimum spacing 84 between their free end portions 33'. 33". which corresponds to the desired breadth of the row 14.
  • the branches I6. 16" are located within the imaginary conical surface on which the filament 15 travels, as clearly indicated by the diametrically opposite locations of the filament l5 and its alternate position 15" shown in broken lines.
  • FIG. 18 Another embodiment of an apparatus for producing the zipper according to the present invention is shown in FIG. 18.
  • the threads 11 which advance in the direction of the arrow 50, and the two groups of threads l8, 19 are somethat diagrammatically indicated.
  • the threads 18, 19 have not been illustrated in the region of the rollers 84, 84 to avoid encumbering the drawing.
  • the spool 67 for the element 60 is located behind the rotor 47 in a space which is located within the area surrounded by the imaginary conical surface described earlier. that is the imaginary conical surface on which the filament 15 travels.
  • a turning device corresponding to the device 40 of FIG. 15 need not be provided in this embodiment. However. in the embodiment of FIG.
  • the element 16 is not a single unit, but is composed of a plurality of filamentary elements 61, 61'. 61". These are convoluted laterally adjacent one another onto a common spool 67. Because of this particular possibility, a device 9 is required which is to prevent the individual filamentary elements 61-61" from becoming twisted together when they are withdrawn from the spool 67. The device 9 assures that the position of the slot 85, which is provided in a stationary housing 86 and through which the filamentary elements 61-61" are withdrawn, remains unchanged.
  • the spool 67 is mounted with its shaft 87 in the housing 86, and a braking spring 76 engages the shaft 86 at the free end thereof and exerts via a braking disc 88 a retarding effect upon the rotation of the spool 67.
  • the housing 86 is formed with a fixedly connected flange 89 extending radially ofit and provided at its circumference with a hearing 91 on which a ring 92 turns synchronously with the rotor 47 with as little friction as possible.
  • the ring 92 is provided at its annular circumference with an annulus of gear teeth 93 and is driven from a gear 94 which is mounted on a drive shaft 95 and driven by a non-illustrated motor.
  • the ring 92 is provided at its outer edge with a bore 97 extending parallel to its longitudinal axis and through which the filament I5 is passed which is withdrawn from a supply roller that is located behind the spool 67 but is not illustrated in the drawing.
  • the ring 92 is provided with additional bearings 98. 99 which serve to assure as friction-free as possible a rotation of the ring 92 in a two-part housing 96.
  • the housing 96 is mounted on a frame of the device (not illustrated in detail). It is formed on one portion of its circumference with a radial slot 101 through which the gear 94 extends into engagement with the annulus of gear teeth 93. This assures that the ring 92 will turn whereas the housing 96 is stationary. and while the housing 86 remains stationary also. As a result of this.
  • the filament 15 will perform in the region of the spool 67 a movement in the direction of the arrow 102 about the stationary housing 86, so that the rear imaginary conical surface on which the filament 15 travels is elongated. because due to this synchronous movement the bore 97 and the ring 92 rotates in alignment with the opening 56 in the rotor 47, so that after half a rotation of the rotor. the filament 18 will move into the brokenline position 15' even at the reverse side of the rotor 57.
  • the filamentary elements 61. 61'. 61" pass, after they have traveled through the slot of the housing 86 through appropriate bores 59, 59', 59" in the rotor insert 55, before they reach the front side of the rotor 47.
  • the rotor insert 55 is stationary and can, if desired. be fixedly connected with the stationary housing 86.
  • the filamentary elements 61-61" travel in a horizontal plane laterally adjacent one another at predetermined spacing in the region of the member 16, which is here advantageously again branched to form the branches 16. 16''. as in FIG. 17.
  • FIGS. 19 and 20 The further movement of the filamentary elements 61-61" in the region where the weaving takes place is shown in FIGS. 19 and 20.
  • the same reference numerals are used as in FIGS. 15 and 16. and the zipper which is produced is identified with reference numeral 10" and shown in FIG. 4.
  • FIG. 20 shows that in the space between the filamentary elements 61-6I". which space is indicated with reference numeral 103, there is located a respective cooperating pair of threads 18, 19.
  • the element 61" is located at the curved connecting portion 26 (compare FIG. 4) and forwardly of the same there is not further upper thread 18 which could slip over this curved connecting portion 26. This assures that the connecting portions 26 are free to guide a slider.
  • the elements 6l-6l". the filament 15 and the threads 18, 19 are illustrated in FIGS. 19, 20 in a position corresponding to that which has been described in FIGS. 70, 7b with respect to the embodiment to which those Figures are directed.
  • the elements 61-61" have been raised by respectively associated pushers 62 which engage them with their respective kerfs 63, as shown in FIG. 19, and have been raised through the working plane 49 of the needle l7 into the upper part of the shed.
  • the pushers 62 are mounted on a common mount 104 which can be raised in the direction of the arrow 63.
  • a curved connecting portion 26 is being produced, as shown in FIG. 20.
  • the needle 17 is about to move into the shed as indicated by the arrow 80 in FIG. 20, in order to insert a weft thread portion 34.
  • the branches l6, l6 between which all of the elements 61-6l", the threads 18 and 19 are located. are located at opposite sides of the broken-line illustrated working plane 49.
  • One branch 16' always is located above the working plane 49, whereas the other branch 16" is always located beneath this working plane. This results in a particulary exact binding of the various threads by the weft thread portions 34, 34. and also produces a particularly exact width of the row 14 of loops, in keeping with the spacing 84 of the branches l6, 16" from one another.
  • FIGS. 1, 7a-l0a and 20 indicate clearly that the row 14 of loops which, as shown in H65. 2 and 3, extends to one side of the plane of the zipper tape or, as shown in FIG. 4, extends to the other side thereof, is overlapped by the respective connecting loop portions 105 between consecutive weft thread portions 34, 34 adjacent to the respective connecting portions 20. In the region of the connecting portions 26 the weft thread portions 34, 34 pass beneath the filament 15. The loop portions 105 thus serve to further increase the stability of connection of the row 14 to the tape. This is also true for the zipper of FIGS. Ila-14b.
  • the present invention makes it possible to produce a woven zipper which is very simple, requires a minimum of wefts and filaments. has great strength and does not admit of relative displacement between successive ones of its loop portions in the row 14.
  • a woven zipper having a row of closure members which are formed from convolutions of a filament woven into a zipper tape and composed of outer curved connecting portions each provided with a coupling projection and extending from a longitudinal margin of the zipper tape.
  • inner curved connecting portions free of zipper-tape threads and adapted to guide a zipper slider, and first and second legs connecting respective ones of said outer and inner connecting portions and substantially superimposed in pairs.
  • weft thread por tions of the zipper tape forming in the spaces between the superimposed legs with cover threads which extend above and below the pairs of legs a layer of zipper'tape fabric in which each weft thread portion extends over the upper cover threads and beneath the lower cover threads and an elongated flexible element extending between said pairs of legs through said row of closure members, the weft thread portions which extend above the upper cover threads and the weft thread portions which extend beneath the lower cover threads. being located over or under said flexible element.
  • cover threads are arranged in two groups which respectively engage only the upper and lower pairs of legs in mirrorsymmetrical relationship. said groups of cover threads embracing said weft thread portions in mutually opposite directions.
  • one of said filaments forms a border of said flexible element and is located between said curved inner connecting portions and one of said cover threads which overlie said legs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Looms (AREA)
  • Slide Fasteners (AREA)
  • Outer Garments And Coats (AREA)
US483760A 1973-06-29 1974-06-27 Woven zipper Expired - Lifetime US3921679A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2333153A DE2333153C3 (de) 1973-06-29 1973-06-29 Gewebter Reißverschluß

Publications (1)

Publication Number Publication Date
US3921679A true US3921679A (en) 1975-11-25

Family

ID=5885488

Family Applications (1)

Application Number Title Priority Date Filing Date
US483760A Expired - Lifetime US3921679A (en) 1973-06-29 1974-06-27 Woven zipper

Country Status (10)

Country Link
US (1) US3921679A (de)
JP (1) JPS583683B2 (de)
AT (1) AT332324B (de)
DE (1) DE2333153C3 (de)
FR (1) FR2235219B1 (de)
GB (1) GB1449581A (de)
HK (1) HK1678A (de)
IT (1) IT1015327B (de)
MY (1) MY7800053A (de)
NL (1) NL178653C (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184518A (en) * 1977-08-27 1980-01-22 Yoshida Kogyo K.K. Apparatus for manufacturing a slide fastener stringer having a woven coiled element
US4188982A (en) * 1977-12-29 1980-02-19 Yoshida Kogyo K.K. Woven fastener stringer
US4191220A (en) * 1977-12-29 1980-03-04 Yoshida Kogyo K.K. Woven fastener stringer
US4210180A (en) * 1977-12-29 1980-07-01 Yoshida Kogyo K.K. Woven fastener stringer
US4220182A (en) * 1977-12-29 1980-09-02 Yoshida Kogyo K.K. Woven fastener stringer
ES2152124A1 (es) * 1997-02-05 2001-01-16 Novitex C B Cinta para cabeceras de cortinas, procedimiento y dispositivo de fabricacion.
US20130232737A1 (en) * 2010-11-24 2013-09-12 Ykk Corporation Fastener Stringer and Slide Fastener
US20140223699A1 (en) * 2011-09-09 2014-08-14 Ykk Corporation Fastener Tape for Slide Fastener, and Slide Fastener

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519180A (en) * 1978-07-28 1980-02-09 Yoshida Kogyo Kk Slide fastener
JPS5568307A (en) * 1978-11-20 1980-05-23 Yoshida Kogyo Kk Apparatus for introducing element molding wire of woven slide fastener producing machine
JPS60122145A (ja) * 1984-07-27 1985-06-29 高津 和夫 無機質系積層板の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266114A (en) * 1959-02-21 1966-08-16 Novi Patentverwertungs G M B H Sliding clasp fasteners
US3524479A (en) * 1968-07-19 1970-08-18 Scovill Manufacturing Co Woven zipper stringer and method of making the same
US3847188A (en) * 1969-10-09 1974-11-12 Interbrev Sa Woven tape provided with a list having protruding loops

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK108822C (da) * 1959-02-21 1968-02-12 Novi Patentverwertungs G M B H Fremgangsmåde til fremstilling af en lynlås.
US3022803A (en) * 1959-06-26 1962-02-27 Prym Werke William Method of producing slide fasteners
FR1268647A (fr) * 1960-06-25 1961-08-04 Mediterraneenne De Fermetures Procédé de fabrication de fermetures à glissière et produit en résultant
US3249126A (en) * 1962-03-08 1966-05-03 Novi Patentverwertungs G M B H Sliding clasp fasteners
US3454052A (en) * 1967-03-10 1969-07-08 Scovill Manufacturing Co Woven zipper fastener stringer
FR1582358A (de) * 1967-09-28 1969-09-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266114A (en) * 1959-02-21 1966-08-16 Novi Patentverwertungs G M B H Sliding clasp fasteners
US3524479A (en) * 1968-07-19 1970-08-18 Scovill Manufacturing Co Woven zipper stringer and method of making the same
US3847188A (en) * 1969-10-09 1974-11-12 Interbrev Sa Woven tape provided with a list having protruding loops

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184518A (en) * 1977-08-27 1980-01-22 Yoshida Kogyo K.K. Apparatus for manufacturing a slide fastener stringer having a woven coiled element
US4188982A (en) * 1977-12-29 1980-02-19 Yoshida Kogyo K.K. Woven fastener stringer
US4191220A (en) * 1977-12-29 1980-03-04 Yoshida Kogyo K.K. Woven fastener stringer
US4210180A (en) * 1977-12-29 1980-07-01 Yoshida Kogyo K.K. Woven fastener stringer
US4220182A (en) * 1977-12-29 1980-09-02 Yoshida Kogyo K.K. Woven fastener stringer
ES2152124A1 (es) * 1997-02-05 2001-01-16 Novitex C B Cinta para cabeceras de cortinas, procedimiento y dispositivo de fabricacion.
US20130232737A1 (en) * 2010-11-24 2013-09-12 Ykk Corporation Fastener Stringer and Slide Fastener
US20140223699A1 (en) * 2011-09-09 2014-08-14 Ykk Corporation Fastener Tape for Slide Fastener, and Slide Fastener
US9668549B2 (en) * 2011-09-09 2017-06-06 Ykk Corporation Fastener tape for slide fastener, and slide fastener

Also Published As

Publication number Publication date
NL178653B (nl) 1985-12-02
ATA352374A (de) 1975-12-15
JPS583683B2 (ja) 1983-01-22
DE2333153B2 (de) 1980-02-28
DE2333153A1 (de) 1975-01-23
IT1015327B (it) 1977-05-10
GB1449581A (en) 1976-09-15
DE2333153C3 (de) 1980-10-23
HK1678A (en) 1978-01-20
MY7800053A (en) 1978-12-31
FR2235219B1 (de) 1978-08-11
AT332324B (de) 1976-09-27
JPS5036250A (de) 1975-04-05
NL7406169A (de) 1974-12-31
NL178653C (nl) 1986-05-01
FR2235219A1 (de) 1975-01-24

Similar Documents

Publication Publication Date Title
US3941163A (en) Method of making a woven zipper
Brunnschweiler Braids and braiding
US3921679A (en) Woven zipper
CS200549B2 (en) Berger johann a berger josef,de
SU1279536A3 (ru) Способ изготовлени по сной ленты на игольном лентоткацком станке с крючковой иглой и по сна лента
US3524479A (en) Woven zipper stringer and method of making the same
HUT65006A (en) Method for ribbon weaving
US4181159A (en) Method of and apparatus for making a slide-fastener stringer
US3766950A (en) Method of and apparatus for wave-weaving
US3123103A (en) Means for weaving a pre-formed slide
US3982566A (en) Method and apparatus of making a woven zipper
US3881326A (en) Device for and method of making a knitted band having a spiral zipper incorporated therein
JPS6024210B2 (ja) 回転式からみ装置における結縛糸長補償装置
US3892262A (en) Slide-fastener stringer half with woven-in coupling element and method of making same
US3316870A (en) Method of making coil type zipper fastener stringers
US3682205A (en) Needle loom
US3827463A (en) Method of and apparatus for the production of a slide fastener
US3796234A (en) Method and apparatus for anchoring a floating yarn portion in a woven fabric
US3266529A (en) Double fabric
US3550642A (en) Catch cord lockstitch selvage method and mechanism for producing same
US2891583A (en) Shuttleless looms
US1946030A (en) Manufacture of fabrics of various kinds by needle action
US1164137A (en) Needle-loom.
US4366765A (en) Combination single thread chain and lock stitch
US3791417A (en) Method and apparatus for production of a zipper by weaving