US3921025A - Dual-beam CRT with vertical trace bowing correction means - Google Patents

Dual-beam CRT with vertical trace bowing correction means Download PDF

Info

Publication number
US3921025A
US3921025A US486022A US48602274A US3921025A US 3921025 A US3921025 A US 3921025A US 486022 A US486022 A US 486022A US 48602274 A US48602274 A US 48602274A US 3921025 A US3921025 A US 3921025A
Authority
US
United States
Prior art keywords
electron
deflection
plates
vertical
horizontal deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US486022A
Inventor
Conrad John Odenthal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tektronix Inc
Original Assignee
Tektronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tektronix Inc filed Critical Tektronix Inc
Priority to US486022A priority Critical patent/US3921025A/en
Priority to GB20776/75A priority patent/GB1505563A/en
Priority to GB8492/77A priority patent/GB1505564A/en
Priority to NL7506542A priority patent/NL7506542A/en
Priority to CA228,762A priority patent/CA1044745A/en
Priority to JP50073016A priority patent/JPS5117658A/en
Priority to FR7520852A priority patent/FR2277431A1/en
Priority to DE2529505A priority patent/DE2529505C2/en
Priority to US05/625,612 priority patent/US3983444A/en
Application granted granted Critical
Publication of US3921025A publication Critical patent/US3921025A/en
Priority to CA287,237A priority patent/CA1038440A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/121Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen tubes for oscillography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement

Definitions

  • tion means includes beam centering plates and angled 1 0 29/70 horizontal deflection plates to direct the electron 5 Field f Search 313/413 432, 409, 412, beams toward the central axis, precluding the need for R a large-diameter tube neck in thC entire gun structures are angled.
  • Bowing control plates are dis- [561 References Cited posed adjacent the beam centering plates to minimize trace bowing, and an intergun shield is disposed be- UNITED STATES PATENTS tween the horizontal deflection plates to control and 2; g
  • the present invention relates generally to electron beam tubes having dual beams and associated deflection means, and more particularly to single scanexpansion mesh cathode ray tubes having dual electron beam guns that provide asymmetrical horizontal scanning.
  • the present invention overcomes the disadvantages of widely separated electrical centers mentioned hereinabove by angling the horizontal deflection plates to direct the electron beams toward the central axis of the tube, and by disposing a set of beam-centering plates through which the electron beam passes between each .set of vertical deflection plates and angled horizontal deflection plates to cause the beams to converge before entering the space between the horizontal deflection plates.
  • the beam centering plates have radiussed edges to correct for vertical trace bowing introduced by the mesh. Correction control to compensate for part variations introduced by mass production is provided by a bowing control plate adjacent each set of beam centering plates to which a variable voltage may be applied to change the apparent radius of the beamcentering plates as seen by the electron beam.
  • An intergun shield is disposed between the closely mounted horizontal deflection plates to minimize the support legs while providing shielding therefor.
  • Separate inner-gun and outer-gun shields are additionally provided to control horizontal keystone geometry and edge pattern distortion.
  • FIGS. 1 and 2 are schematicized top and side views respectively of a dual-beam cathode-ray tube according to the present invention
  • FIG. 3 shows a perspective view of an intergun shield assembly for use in a dual-beam cathode-ray tube
  • FIGS. 4 and 5 show side and top views respectively of an intergun shield assembly for use in a dual-beam cathode-ray tube
  • FIGS. 6A, 6B, and 6C illustrate rectangular display patterns formed by an electron beam on the fluorescent screen of a cathode-ray tube.
  • an electron discharge which may be a cathode-ray tube 10 or other electron beam deflection device has an evacuated envelope 12 of glass, ceramic, or other suitable insulating material in which a fluorescent screen 14 of phosphor material coated on theinner surface of a light transparent faceplate 16 which is secured onto the front end of such envelope.
  • a thin metallic coating 18 preferably of aluminum is disposed on the gun side of screen 14.
  • Two separate electron guns of conventional-design are disposed in envelope 12 which include cathodes 20 and 21, control grids 24 and 25, and focusing anodes 28 and 29.
  • two separate electron beam deflection systems are provided in envelope 12 including a first pair of vertical deflection plates 32 and a second pair of vertical deflection plates 33, a first pair of beam centering plates 36 and a second pair of beam centering plates 37, and a first pair of horizontal deflection plates 40 and a second pair of horizontal deflection plates 41.
  • cathode has associated therewith control grid 24, focusing anodes 28, vertical deflection plates 32, beam centering plates 36, and horizontal deflection plates 40 for controlling an electron beam 44 produced by cathode 20, to which 3 kilovolts may be applied.
  • cathode 21 may have 3 kilovolts applied thereto, and has associated therewith control grid 25, focusing anodes 29, vertical deflection plates 33, beam centering plates 37, and horizontal deflection plates 41 for controlling the electron beam 45 produced by cathode 21.
  • An annular mounting and shielding member 50 is disposed in the envelope 12 so that the output ends of horizontal deflection means 40 and 41 are positioned therein, and it is operated at near ground potential.
  • Member 50 serves to shield the horizontal deflection means from the high voltage of post deflection acceleration anode 54 which may consist of a conductive coating on the interior surface of envelope 12 in electrical contact with metallic coating 18 and has an operating potential of 20 to 24 kilovolts thereon.
  • a scan expansion mesh 58 is secured on the member 50 which has an outwardly-directed hemispherical configuration to provide diverging lens for scan expansion in the manner taught in a book entitled Cathode-Ray Tubes, pp. 51-54, published by Tektronix, Inc., in 1970. This mesh 58 causes the electron beams to be effectively scanned over the screen in full overlap operation, since both beams must be capable of covering the same screen area.
  • the electron beams 44 and 45 first pass through the vertical deflection plates 32 and 33 respectively.
  • Conventional vertical deflection plates as shown in-FIGS. 1 and 2 will provide satisfactory operation up to about 150 megahertz; however, for cathode-ray tube operation above this frequency, a vertical deflection means of the type disclosed in U.S. Pat. No. 3,694,689 will provide best operation.
  • Beam centering plates 36 and 37 are identical in configuration and each pair comprises an outer planar plate 36a, 37a and an inner planar plate 36b, 37b, which are spaced equidistant from each other and disposed parallel to the central axis of the tube to receive the electron beams 44 and 45 passing from the vertical deflection plates 32 and 33 respectively.
  • the inner beam centering plates 36b and 37b, which are closest to the central axis of the tube, are biased with an electrical potential which is positive to the outer plates 36a and 37a respectively to cause the electron beams 44 and 45 to be directed toward the central axis of the tube along the center lines of the horizontal deflection plates 40 and 41 as shown in FIG. 1.
  • the beam entrance and exit portions of the beam centering plates may be of an arcuate configuration as shown in FIG. 2 to correct for vertical trace bowing introduced by the mesh.
  • a beam 44, 45 which is deflected upward or downward by the vertical deflection plates 32, 33 must travel through a longer path as it passes through the beam centering plates 36, 37 and will be horizontally deflected more by the beam centering plates than would a beam passing through the center thereof.
  • a bow is deliberately introduced into the vertical trace which is opposite to that introduced by the mesh 58, resulting in a straight vertical center trace viewed on the screen 14..
  • Compensator plates and 71 which are planar plates with straight edges, are mounted adjacent the beam entrance edge of the outer beam centering plates 36a and 37a to provide a control of the amount of vertical tracing bowing discussed in the preceding paragraph to compensate for part tolerances and slight misalignment of parts in the manufacture of the cathoderay tubes.
  • a A variable electrical potential is applied to each compensator plate 70 and 71 to produce an electrostatic field whose equipotential lines interfere with the equipotential lines at the extreme edge of each set of beam centering plates 36 and 37 respectively, thereby changing the apparent curvature of the entrance edge of the outer beam centering plates 36a and 37a to establish the required straight vertical trace.
  • Horizontal deflection plates 40 and 41 are identical in configuration and each pair comprises an outer plate 40a, 41a and an inner plate 40b, 41b which are typically about 0.05 inches apart at the entrance and about 0.35 inches apart at the exit to form a wedge-shaped spacing therebetween.
  • Each set of horizontal deflection plates is disposed at an angle within the envelope 12 so that the electron beams 44 and 45 directed toward the central axis of the tube by the aforementioned beam centering plates may enter and pass through without obstruction along a line corresponding to the electrical center of the viewing screen 14.
  • the electrical center of the screen is defined as that point at which the beams 44 and 45 strike when the vertical deflection plates 32, 33 and the horizontal deflection plates 40 and 41 are all grounded together, establishing zero volts difference between the pairs of plates.
  • the effect of the beam centering plates 36 and 37, the horizontal deflection plates 40 and 41, and the scan expansion mesh 58 is to establish the electrical center of the screen at the physical center of the screen, even though the side-by-side electron guns are physically several millimeters apart.
  • Plates 75 are mounted between the pairs of vertical deflection plates to prevent the electrostatic fields of these vertical deflection means from interfering with each other as well as providing compensation so that the characteristic impedance is constant therealong. Plates 75 are operated at near the average potential of the vertical deflection means.
  • Intergun isolation shield is disposed between the pairs of horizontal deflection plates 40 and 41 to prevent the electrostatic fields generated by the respective pairs of horizontal deflection plates from affecting each other.
  • Shield 80 is operated at or near the average potential of the horizontal deflection means. This shield also serves to minimize the capacitance between the sets of deflection plates, thus minimizing highfrequency crosstalk between the two gun systems.
  • Inner gun shield 82, and out gun shields 84 and 85 are disposed adjacent the exit of horizontal deflection plates 40 and 41, and are operated at potentials sufficient to correct overall display pattern distortion, particularly horizontal keystone distortion, which will be further discussed later.
  • Input signals are applied at input terminals 100 and 101, which are connected respectively to vertical amplifiers 106 and 107.
  • Vertical amplifiers 106 and 107 develop push-pull output signals which are connected respectively to vertical deflection means 32 and 33.
  • Horizontal ramp generators 110 and 111 are triggered in response to the receipt of input signals atinput terminals 100 and 101 by providing trigger circuits 116 and 117 having their inputs connected respectively to input terminals 100 and 101 and having their outputs connected respectively to the inputs of horizontal ramp generators 110 and 111.
  • Horizontal ramp generators develop push-pull sawtooth signals suitable for driving deflection plates, and these signals are applied respectively to horizontal deflection means 40 and 41.
  • electron beams 44 and 45 emitted respectively from cathodes 2 and 21 are properly focused by focusing anodes 28 and 29, thereafter vertical deflection means 32 and 33 and horizontal deflection means 40 and 41 operate on thefocused electron beams to deflect the beams in accordance with the signals at input terminals 100 and 101 whereafter the beams are passed through scan expansion mesh 58 whereby they are accelerated about 24 kilovolts before they strike the target comprising phosphor layer 14 and metallic coating 17 which produces light images of these electron beams, which under most circumstances will be the signal waveform traces of the vertical deflection signals.
  • the thin film of aluminum which is several angstroms thick, is electron transparent and reflects the light emitted by the phosphor layer 14 to increase the brightness of the displays in a conventional manner.
  • FIG. 3 shows a perspective view of an intergun and crosstalk shield assembly in accordance with the preferred embodiment of the present invention
  • FIGS. 4 and show respectively side and top views of .this preferred embodiment.
  • An isolation shield comprising slotted halfdiscs 120 and 121 is insulatively attached to the intergun isolation shield 80 on a plane transverse to the shield 80 to provide isolation of the horizontal deflection means from the high-voltage field established by the post deflection anode 54 described earlier.
  • the outer gun shields 84 and 85 are insulatively attached to the shield 120 and 121 respectively.
  • the intergun shield 80, isolation shields 120 and 121, and outergun .shields 84 and 85 are assembled by means of support legs 125, which may be wires spot-welded to the various members and insulated from each other by glass beads 128.
  • Inner gun shield 82 comprises two separate shield members 130 and 131 which are insulated from each other and insulatively mounted in the space provided in intergun shield 80.
  • the completed intergun shield assembly hereinabove described is mounted in the tube between the two pairs of horizontal deflection plates 40 and 41, attached to the inner horizontal deflection plate support rods 134 and 136, which may suitably be fabricated of glass or other insulating material, by means of support legs 140 which are spot welded to isolation shield 80 and em- 'bedded in the support rods 134 and 136 as shown in FIG. 4.
  • shield 80 The edges of shield 80 are scalloped to permit the inner horizontal deflection plate support legs 144 which are spot welded to the inner horizontal deflection plates 40b and 41b to be embedded in the support rods 134 and 136 without touching the shield 80.
  • This arrangement allows the two sets of horizontal deflection plates 40 and 41 to be mounted as close together as possible to achieve full scan overlap while minimizing diplay distortion, and simutaneously reducing the capacitance due to the dielectric mediums, i.e. the air and the support rods, between the two sets of horizontal deflection plates.
  • the deflection plate support legs 144 are at the same electrical potential as their associated deflection plates 40b and 41b, and to complete the shielding and further minimize capacitance in the support rods 134 and 136, the outside of the rods 134 and 136 are coated with an electrically conductive paint 150 in bands connecting the shield 80 support legs 140.
  • the display generated by the left electron gun means would provide a keystone-shaped display as shown in FIG. 6A whereby the horizontal lines above and below the center horizontal line will deviate away therefrom in a direction from left to right, whereas the display generated by the right electron gun means would provide a keystone-shaped display as shown in FIG. 6B whereby the horizontal lines above and below the center horizontal line will deviate away therefrom in a direction opposite to that of the display of the left gun means as shown by FIG. 6A.
  • FIGS. 6A and 6B 1 interaction of the electrostatic fields of the vertical and horizontal deflection means without the innergun shields 82 and outer gun shield 84 and will provide displays having keystone distortion as shown by FIGS. 6A and 6B in a dual-beam cathode-ray tube wherein the electron guns are disposed parallel to each other in side-by-side relationship.
  • a true rectangular display as shown in FIG. 6C is provided thereby correcting for keystone distortion.
  • An electron beam apparatus comprising:
  • dual electron gun means disposed side by side in said envelope on each side of a central axis of said envelope and spaced from said target means for generating electron beams therefrom; and deflection means for each of said dual electron gun means disposed between said electron gun means and said target means for deflecting said electron beams over said target means in accordance with signal voltages applied thereto to provide image displays thereover;
  • said deflection means including beam centering means for directing said electron beams toward said central axis of said envelope so that the electrical center of said deflection means corresponds to the center of said target means, said beam centering means including correction means for correcting vertical trace bowing of said image displays.
  • the electron beam apparatus according to claim 2 including isolation shield means disposed between two sets of horizontal deflection plates and sharing a common support structure therewith.
  • said beam centering means includes a pair of parallel plates for each of said dual electron guns disposed intermediate said vertical deflection means and said horizontal deflection means for passage therethrough of said electron beams, one of each of said pairs of plates being biased positive with respect to the other for diverting said electron beams.
  • said vertical trace bowing correction means includes arcuate edges on said beam centering plates to control the path length of said electron beams therethrough as said electron beams are deflected vertically by said vertical deflection means.
  • said vertical trace bowing correction means further includes electrode means disposed adjacent at least one of said arcuate edges for controlling the electrostatic field thereof.
  • a cathode-ray tube comprising:
  • dual electron gun means disposed side by side in said envelope for generating electron beam means and being spaced from said target means;
  • deflection means disposed in said envelope between said target means and said electron gun means and including independent vertical and horizontal deflection plate means for each of said dual electron gun means for deflecting said electron beam means over said target means in accordance with signal voltages applied to said vertical and horizontal deflection plate means, said horizontal deflection plate means being diposed at an angle with respect to said vertical deflection plate means so that electron beam means passing through the center thereof corresponds to the center of said target means,
  • said deflection means further including beam centering plate means disposed between said vertical and horizontal deflection plate means for diverting said electron beam means through said horizontal deflection plate means; and
  • correction means provided by said beam centering plate means for correction of vertical trace bowing of said electron beam means.

Abstract

A dual-beam cathode-ray tube having a pair of electron guns and associated deflection means disposed side-by-side on each side of a central axis is described in which the electron guns are parallel and the deflection means includes beam centering plates and angled horizontal deflection plates to direct the electron beams toward the central axis, precluding the need for a largediamerer tube neck in which the entire gun structures are angled. Bowing control plates are disposed adjacent the beam centering plates to minimize trace bowing, and an intergun shield is disposed between the horizontal deflection plates to control and correct display pattern geometry distortion.

Description

United States Patent 11 1 Odenthal Nov. 18, 1975 DUAL-BEAM CRT WITH VERTICAL TRACE BOWING CORRECTION MEANS [75] Inventor: Conrad John Odenthal, Portland, Primary Emmiher Robert Sega] Oreg' Attorney, Agent, or Firm-George T. Noe [73] Assignee: Tektronix, Inc., Beaverton, Oreg. [22] Filed: July 5, 1974 [57] ABS CT a A dual-beam cathode-ray tube havmg a pan of elecl l PP N011 486,022 tron guns and associated deflection means disposed side-by-side on each side of a central axis is described [5.2] CL 313/437. 315/398. 313/434 in which the electron guns are parallel and the deflec- [51] Int on 1 J 29/74; tion means includes beam centering plates and angled 1 0 29/70 horizontal deflection plates to direct the electron 5 Field f Search 313/413 432, 409, 412, beams toward the central axis, precluding the need for R a large-diameter tube neck in thC entire gun structures are angled. Bowing control plates are dis- [561 References Cited posed adjacent the beam centering plates to minimize trace bowing, and an intergun shield is disposed be- UNITED STATES PATENTS tween the horizontal deflection plates to control and 2; g
correct display pattern geometry distortion. c aney 1 3,449,624 6/1969 Mayo et al 313/427 x 9 Clalms, 8 Drawmg Flgures 3,670,199 6/1972 Hawes 313/413 X HORIZONTAL RAMP loo GENERATOR I4 '6 I8 10 I06 I 4 l 2o 24 2e 32 36 54 l l A 1 J l 1 11-- x 58 4 1 r 44 1 75') -36b 88 0 I Y HORIZONTAL 1 RAMP GENERATOR l|7 US. Patent N o vQ 18, 1975 Sheet 2 of2 3,921,025
' 1 DUAL-BEAM CRT WITH VERTICAL TRACE BOWING CORRECTION MEANS BACKGROUND OF THE INVENTION The present invention relates generally to electron beam tubes having dual beams and associated deflection means, and more particularly to single scanexpansion mesh cathode ray tubes having dual electron beam guns that provide asymmetrical horizontal scanning.
In cathode-ray tubes having dual electron beams for independent, multitrace operation, it has been a common practice to provide a pair of electron guns mounted in a stacked configuration such that one gun is disposed above the central axis of the tube, and the other gun disposed below the central axis, both guns being mounted in the same vertical plane so that the horizontal angles of the two electron beams swept horizontally across the tube screen are equal. Since the screen is transverse to the central axis of the tube and the guns are mounted off-axis, the guns are angled toward the central axis so that each gun can scan the entire screen. However, this angling distorts the scanned display pattern from a rectangle to a trapezoid, which can easily be corrected by adjusting the horizontal deflection plates to be nonparallel from side to side thereby affecting the horizontal sensitivity as the tube is scanned vertically. If a divergent post deflection acceleration (PDA) field is used and full overlap of scan is desired, the guns have to be angled quite steeply, re-
sulting in a large diameter cathode-ray tube which takes up useful space.
US. Pat. No. 3,819,984, assigned to assignee of the present application, teaches the concept of mounting a pair of electron guns parallel to each other in a horizontal plane in order to reduce the tube neck diameter. However, the use of a single scan expansion mesh in a cathode-ray tube having parallel electron guns and associated deflection structures produces the undesirable effect of causing the two electrical centers of the guns to be widely separated, for example, as much as eight centimeters, and introduces a vertical trace bo'wing problem at the center of the display screen.
SUMMARY OF THE INVENTION The present invention overcomes the disadvantages of widely separated electrical centers mentioned hereinabove by angling the horizontal deflection plates to direct the electron beams toward the central axis of the tube, and by disposing a set of beam-centering plates through which the electron beam passes between each .set of vertical deflection plates and angled horizontal deflection plates to cause the beams to converge before entering the space between the horizontal deflection plates. In addition, the beam centering plates have radiussed edges to correct for vertical trace bowing introduced by the mesh. Correction control to compensate for part variations introduced by mass production is provided by a bowing control plate adjacent each set of beam centering plates to which a variable voltage may be applied to change the apparent radius of the beamcentering plates as seen by the electron beam.
An intergun shield is disposed between the closely mounted horizontal deflection plates to minimize the support legs while providing shielding therefor. Separate inner-gun and outer-gun shields are additionally provided to control horizontal keystone geometry and edge pattern distortion.
It is therefore one object of the present invention to provide a dual-beam cathode-ray tube having parallel electron guns disposed side by side in which the electrical centers for the guns are coincident.
It is another object of the present invention to provide a novel means for directing the electron beam of an off-center electron gun in a cathode-ray tube toward the central axis of such tube to preclude the need for a large diameter tube neck.
It is a further object of the present invention to provide a bowing control means to correct vertical trace bowing caused by a scan expansion mesh in a dual beam cathode-ray tube.
It is still another object of the present invention to provide an intergun shield for use in a dual beam cathode-ray tube in which the horizontal deflection plates are mounted close together.
It is still a further object of the present invention to provide an intergun shield assembly which includes inner-gun and outer-gun shield means for eliminating horizontal keystone and edge pattern distortion in a dual beam cathode-ray tube.
It is yet another object of the present invention to provide an improved dual-beam cathode-ray tube having a single scan expansion mesh in in which side-byside electron guns are controlled to provide overlapping rectangular display patterns.
BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other objects, features, and advantages of this invention will become apparent from the following detailed description of an illustrative embodiment which is to be read in conjunction with the accompanying drawings in which:
FIGS. 1 and 2 are schematicized top and side views respectively of a dual-beam cathode-ray tube according to the present invention;
FIG. 3 shows a perspective view of an intergun shield assembly for use in a dual-beam cathode-ray tube;
FIGS. 4 and 5 show side and top views respectively of an intergun shield assembly for use in a dual-beam cathode-ray tube; and
FIGS. 6A, 6B, and 6C illustrate rectangular display patterns formed by an electron beam on the fluorescent screen of a cathode-ray tube.
DETAILED DESCRIPTION As shown in FIG. 1, an electron discharge which may be a cathode-ray tube 10 or other electron beam deflection device has an evacuated envelope 12 of glass, ceramic, or other suitable insulating material in which a fluorescent screen 14 of phosphor material coated on theinner surface of a light transparent faceplate 16 which is secured onto the front end of such envelope. A thin metallic coating 18 preferably of aluminum is disposed on the gun side of screen 14.
Two separate electron guns of conventional-design are disposed in envelope 12 which include cathodes 20 and 21, control grids 24 and 25, and focusing anodes 28 and 29. In addition, two separate electron beam deflection systems are provided in envelope 12 including a first pair of vertical deflection plates 32 and a second pair of vertical deflection plates 33, a first pair of beam centering plates 36 and a second pair of beam centering plates 37, and a first pair of horizontal deflection plates 40 and a second pair of horizontal deflection plates 41.
As can be discerned from FIG. 1 and FIG. 2, where like elements have like reference numerals, cathode has associated therewith control grid 24, focusing anodes 28, vertical deflection plates 32, beam centering plates 36, and horizontal deflection plates 40 for controlling an electron beam 44 produced by cathode 20, to which 3 kilovolts may be applied. Similarly, cathode 21 may have 3 kilovolts applied thereto, and has associated therewith control grid 25, focusing anodes 29, vertical deflection plates 33, beam centering plates 37, and horizontal deflection plates 41 for controlling the electron beam 45 produced by cathode 21.
An annular mounting and shielding member 50 is disposed in the envelope 12 so that the output ends of horizontal deflection means 40 and 41 are positioned therein, and it is operated at near ground potential. Member 50 serves to shield the horizontal deflection means from the high voltage of post deflection acceleration anode 54 which may consist of a conductive coating on the interior surface of envelope 12 in electrical contact with metallic coating 18 and has an operating potential of 20 to 24 kilovolts thereon. A scan expansion mesh 58 is secured on the member 50 which has an outwardly-directed hemispherical configuration to provide diverging lens for scan expansion in the manner taught in a book entitled Cathode-Ray Tubes, pp. 51-54, published by Tektronix, Inc., in 1970. This mesh 58 causes the electron beams to be effectively scanned over the screen in full overlap operation, since both beams must be capable of covering the same screen area.
After leaving the electron guns, the electron beams 44 and 45 first pass through the vertical deflection plates 32 and 33 respectively. Conventional vertical deflection plates as shown in-FIGS. 1 and 2 will provide satisfactory operation up to about 150 megahertz; however, for cathode-ray tube operation above this frequency, a vertical deflection means of the type disclosed in U.S. Pat. No. 3,694,689 will provide best operation.
Beam centering plates 36 and 37 are identical in configuration and each pair comprises an outer planar plate 36a, 37a and an inner planar plate 36b, 37b, which are spaced equidistant from each other and disposed parallel to the central axis of the tube to receive the electron beams 44 and 45 passing from the vertical deflection plates 32 and 33 respectively. The inner beam centering plates 36b and 37b, which are closest to the central axis of the tube, are biased with an electrical potential which is positive to the outer plates 36a and 37a respectively to cause the electron beams 44 and 45 to be directed toward the central axis of the tube along the center lines of the horizontal deflection plates 40 and 41 as shown in FIG. 1. The beam entrance and exit portions of the beam centering plates may be of an arcuate configuration as shown in FIG. 2 to correct for vertical trace bowing introduced by the mesh. As can be discerned, a beam 44, 45 which is deflected upward or downward by the vertical deflection plates 32, 33 must travel through a longer path as it passes through the beam centering plates 36, 37 and will be horizontally deflected more by the beam centering plates than would a beam passing through the center thereof. Hence, a bow is deliberately introduced into the vertical trace which is opposite to that introduced by the mesh 58, resulting in a straight vertical center trace viewed on the screen 14..
Compensator plates and 71, which are planar plates with straight edges, are mounted adjacent the beam entrance edge of the outer beam centering plates 36a and 37a to provide a control of the amount of vertical tracing bowing discussed in the preceding paragraph to compensate for part tolerances and slight misalignment of parts in the manufacture of the cathoderay tubes. A A variable electrical potential is applied to each compensator plate 70 and 71 to produce an electrostatic field whose equipotential lines interfere with the equipotential lines at the extreme edge of each set of beam centering plates 36 and 37 respectively, thereby changing the apparent curvature of the entrance edge of the outer beam centering plates 36a and 37a to establish the required straight vertical trace.
Horizontal deflection plates 40 and 41 are identical in configuration and each pair comprises an outer plate 40a, 41a and an inner plate 40b, 41b which are typically about 0.05 inches apart at the entrance and about 0.35 inches apart at the exit to form a wedge-shaped spacing therebetween. Each set of horizontal deflection plates is disposed at an angle within the envelope 12 so that the electron beams 44 and 45 directed toward the central axis of the tube by the aforementioned beam centering plates may enter and pass through without obstruction along a line corresponding to the electrical center of the viewing screen 14. The electrical center of the screen is defined as that point at which the beams 44 and 45 strike when the vertical deflection plates 32, 33 and the horizontal deflection plates 40 and 41 are all grounded together, establishing zero volts difference between the pairs of plates. The effect of the beam centering plates 36 and 37, the horizontal deflection plates 40 and 41, and the scan expansion mesh 58 is to establish the electrical center of the screen at the physical center of the screen, even though the side-by-side electron guns are physically several millimeters apart.
Plates 75 are mounted between the pairs of vertical deflection plates to prevent the electrostatic fields of these vertical deflection means from interfering with each other as well as providing compensation so that the characteristic impedance is constant therealong. Plates 75 are operated at near the average potential of the vertical deflection means.
Intergun isolation shield is disposed between the pairs of horizontal deflection plates 40 and 41 to prevent the electrostatic fields generated by the respective pairs of horizontal deflection plates from affecting each other. Shield 80 is operated at or near the average potential of the horizontal deflection means. This shield also serves to minimize the capacitance between the sets of deflection plates, thus minimizing highfrequency crosstalk between the two gun systems.
Inner gun shield 82, and out gun shields 84 and 85 are disposed adjacent the exit of horizontal deflection plates 40 and 41, and are operated at potentials sufficient to correct overall display pattern distortion, particularly horizontal keystone distortion, which will be further discussed later.
Further geometry correction can be effected by providing' the horizontal deflection plates 40 and 41 with arcuate, or radiussed exit edges rather than the straight exit edge shown in the drawings.
Input signals are applied at input terminals 100 and 101, which are connected respectively to vertical amplifiers 106 and 107. Vertical amplifiers 106 and 107 develop push-pull output signals which are connected respectively to vertical deflection means 32 and 33. Horizontal ramp generators 110 and 111 are triggered in response to the receipt of input signals atinput terminals 100 and 101 by providing trigger circuits 116 and 117 having their inputs connected respectively to input terminals 100 and 101 and having their outputs connected respectively to the inputs of horizontal ramp generators 110 and 111. Horizontal ramp generators develop push-pull sawtooth signals suitable for driving deflection plates, and these signals are applied respectively to horizontal deflection means 40 and 41.
Thus, electron beams 44 and 45 emitted respectively from cathodes 2 and 21 are properly focused by focusing anodes 28 and 29, thereafter vertical deflection means 32 and 33 and horizontal deflection means 40 and 41 operate on thefocused electron beams to deflect the beams in accordance with the signals at input terminals 100 and 101 whereafter the beams are passed through scan expansion mesh 58 whereby they are accelerated about 24 kilovolts before they strike the target comprising phosphor layer 14 and metallic coating 17 which produces light images of these electron beams, which under most circumstances will be the signal waveform traces of the vertical deflection signals. The thin film of aluminum, which is several angstroms thick, is electron transparent and reflects the light emitted by the phosphor layer 14 to increase the brightness of the displays in a conventional manner.
FIG. 3 shows a perspective view of an intergun and crosstalk shield assembly in accordance with the preferred embodiment of the present invention, while FIGS. 4 and show respectively side and top views of .this preferred embodiment. Again, like elements have like reference numerals to facilitate reference to the drawings. An isolation shield comprising slotted halfdiscs 120 and 121 is insulatively attached to the intergun isolation shield 80 on a plane transverse to the shield 80 to provide isolation of the horizontal deflection means from the high-voltage field established by the post deflection anode 54 described earlier. The outer gun shields 84 and 85 are insulatively attached to the shield 120 and 121 respectively. The intergun shield 80, isolation shields 120 and 121, and outergun .shields 84 and 85 are assembled by means of support legs 125, which may be wires spot-welded to the various members and insulated from each other by glass beads 128.
Inner gun shield 82 comprises two separate shield members 130 and 131 which are insulated from each other and insulatively mounted in the space provided in intergun shield 80.
The completed intergun shield assembly hereinabove described is mounted in the tube between the two pairs of horizontal deflection plates 40 and 41, attached to the inner horizontal deflection plate support rods 134 and 136, which may suitably be fabricated of glass or other insulating material, by means of support legs 140 which are spot welded to isolation shield 80 and em- 'bedded in the support rods 134 and 136 as shown in FIG. 4.
The edges of shield 80 are scalloped to permit the inner horizontal deflection plate support legs 144 which are spot welded to the inner horizontal deflection plates 40b and 41b to be embedded in the support rods 134 and 136 without touching the shield 80. This arrangement allows the two sets of horizontal deflection plates 40 and 41 to be mounted as close together as possible to achieve full scan overlap while minimizing diplay distortion, and simutaneously reducing the capacitance due to the dielectric mediums, i.e. the air and the support rods, between the two sets of horizontal deflection plates.
As can be discerned, the deflection plate support legs 144 are at the same electrical potential as their associated deflection plates 40b and 41b, and to complete the shielding and further minimize capacitance in the support rods 134 and 136, the outside of the rods 134 and 136 are coated with an electrically conductive paint 150 in bands connecting the shield 80 support legs 140.
In the absence of the inner gun shields 82 and outer gun shields 84 and 85, the display generated by the left electron gun means would provide a keystone-shaped display as shown in FIG. 6A whereby the horizontal lines above and below the center horizontal line will deviate away therefrom in a direction from left to right, whereas the display generated by the right electron gun means would provide a keystone-shaped display as shown in FIG. 6B whereby the horizontal lines above and below the center horizontal line will deviate away therefrom in a direction opposite to that of the display of the left gun means as shown by FIG. 6A. Thus, the
1 interaction of the electrostatic fields of the vertical and horizontal deflection means without the innergun shields 82 and outer gun shield 84 and will provide displays having keystone distortion as shown by FIGS. 6A and 6B in a dual-beam cathode-ray tube wherein the electron guns are disposed parallel to each other in side-by-side relationship. When the innergun shields 82 and outergun shields 84 and 85 are provided for the horizontal deflection means in accordance with the present invention, a true rectangular display as shown in FIG. 6C is provided thereby correcting for keystone distortion.
It will be obvious to those having ordinary skill in the art that many changes may be made in the details of the above-described preferred embodiment without departing from the spirit of the invention. While a conventional cathode-ray tube has been described, it is possible to employ the present invention in a bistable charge image storage tube including the type in which the phosphor layer also functions as the storage dielectric. Therefore, the scope of the present invention is to be determined by the following claims.
I claim:
1. An electron beam apparatus comprising:
an evacuated envelope having target means;
dual electron gun means disposed side by side in said envelope on each side of a central axis of said envelope and spaced from said target means for generating electron beams therefrom; and deflection means for each of said dual electron gun means disposed between said electron gun means and said target means for deflecting said electron beams over said target means in accordance with signal voltages applied thereto to provide image displays thereover;
said deflection means including beam centering means for directing said electron beams toward said central axis of said envelope so that the electrical center of said deflection means corresponds to the center of said target means, said beam centering means including correction means for correcting vertical trace bowing of said image displays.
2. The electron beam apparatus according to claim 1 wherein said dual electron gun means are parallel to each other, and wherein said deflection means includes horizontal deflection means in which two sets of deflection plates thereof are disposed at an angle with respect to said central axis of said envelope.
3. The electron beam apparatus according to claim 2 including isolation shield means disposed between two sets of horizontal deflection plates and sharing a common support structure therewith.
4. The electron beam apparatus according to claim 1 wherein said beam centering means includes a pair of parallel plates for each of said dual electron guns disposed intermediate said vertical deflection means and said horizontal deflection means for passage therethrough of said electron beams, one of each of said pairs of plates being biased positive with respect to the other for diverting said electron beams.
5. The electron beam apparatus according to claim 4 wherein said vertical trace bowing correction means includes arcuate edges on said beam centering plates to control the path length of said electron beams therethrough as said electron beams are deflected vertically by said vertical deflection means.
6. The electron beam apparatus according to claim 5 wherein said vertical trace bowing correction means further includes electrode means disposed adjacent at least one of said arcuate edges for controlling the electrostatic field thereof.
7. The electron beam apparatus according to claim 1 wherein means are provided by said deflection means to correct for keystone distortion of said electron beams.
8. The electron beam apparatus according to claim 7 wherein said means provided by said deflection means comprise side shield means for the horizontal deflection means thereof.
9. A cathode-ray tube comprising:
an evacuated envelope having target means;
dual electron gun means disposed side by side in said envelope for generating electron beam means and being spaced from said target means;
deflection means disposed in said envelope between said target means and said electron gun means and including independent vertical and horizontal deflection plate means for each of said dual electron gun means for deflecting said electron beam means over said target means in accordance with signal voltages applied to said vertical and horizontal deflection plate means, said horizontal deflection plate means being diposed at an angle with respect to said vertical deflection plate means so that electron beam means passing through the center thereof corresponds to the center of said target means,
said deflection means further including beam centering plate means disposed between said vertical and horizontal deflection plate means for diverting said electron beam means through said horizontal deflection plate means; and
correction means provided by said beam centering plate means for correction of vertical trace bowing of said electron beam means.

Claims (9)

1. An electron beam apparatus comprising: an evacuated envelope having target means; dual electron gun means disposed side by side in said envelope on each side of a central axis of said envelope and spaced from said target means for generating electron beams therefrom; and deflection means for each of said dual electron gun means disposed between said electron gun means and said target means for deflecting said electron beams over said target means in accordance with signal voltages applied thereto to provide image displays thereover; said deflection means including beam centering means for directing said electron beams toward said central axis of said envelope so that the electrical center of said deflection means corresponds to the center of said target means, said beam centering means including correction means for correcting vertical trace bowing of said image displays.
2. The electron beam apparatus according to claim 1 wherein said dual electron gun means are parallel to each other, and wherein said deflection means includes horizontal deflection means in which two sets of deflection plates thereof are disposed at an angle with respect to said central axis of said envelope.
3. The electron beam apparatus according to claim 2 including isolation shield means disposed between two sets of horizontal deflection plates and sharing a common support structure therewith.
4. The electron beam apparatus according to claim 1 wherein said beam centering means includes a pair of parallel plates for each of said dual electron guns disposed intermediate said vertical deflection means and said horizontal deflection means for passage therethrough of said electron beams, one of each of said pairs of plates being biased positive with respect to the other for diverting said electron beams.
5. The electron beam apparatus according to claim 4 wherein said vertical trace bowing correction means includes arcuate edges on said beam centering plates to control the path length of said electron beams therethrough as said electron beams are deflected vertically by said vertical deflection means.
6. The electron beam apparatus according to claim 5 wherein said vertical trace bowing correction means further includes electrode means disposed adjacent at least one of said arcuate edges for controlling the electrostatic field thereof.
7. The electron beam apparatus according to claim 1 wherein means are provided by said deflection means to correct for keystone distortion of said electron beams.
8. The electron beam apparatus according to claim 7 wherein said means provided by said deflection means comprise side shield means for the horizontal deflection means thereof.
9. A cathode-ray tube comprising: an evacuated envelope having target means; dual electron gun means disposed side by side in said envelope for generating electron beam means and being spaced from saiD target means; deflection means disposed in said envelope between said target means and said electron gun means and including independent vertical and horizontal deflection plate means for each of said dual electron gun means for deflecting said electron beam means over said target means in accordance with signal voltages applied to said vertical and horizontal deflection plate means, said horizontal deflection plate means being diposed at an angle with respect to said vertical deflection plate means so that electron beam means passing through the center thereof corresponds to the center of said target means, said deflection means further including beam centering plate means disposed between said vertical and horizontal deflection plate means for diverting said electron beam means through said horizontal deflection plate means; and correction means provided by said beam centering plate means for correction of vertical trace bowing of said electron beam means.
US486022A 1974-07-05 1974-07-05 Dual-beam CRT with vertical trace bowing correction means Expired - Lifetime US3921025A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US486022A US3921025A (en) 1974-07-05 1974-07-05 Dual-beam CRT with vertical trace bowing correction means
GB20776/75A GB1505563A (en) 1974-07-05 1975-05-16 Dual beam crt
GB8492/77A GB1505564A (en) 1974-07-05 1975-05-16 Horizontal deflection apparatus
NL7506542A NL7506542A (en) 1974-07-05 1975-06-03 CATHOD BEAM TUBE WITH DOUBLE BUNDLE.
CA228,762A CA1044745A (en) 1974-07-05 1975-06-06 Dual beam crt
JP50073016A JPS5117658A (en) 1974-07-05 1975-06-16 2denshijuinkyokusenkan
FR7520852A FR2277431A1 (en) 1974-07-05 1975-06-27 TWO-BEAM CATHODIC TUBES IMPROVEMENTS
DE2529505A DE2529505C2 (en) 1974-07-05 1975-07-02 Cathode ray tube
US05/625,612 US3983444A (en) 1974-07-05 1975-10-24 Dual beam CRT with inner gun and outer gun shield means for correcting keystone distortion
CA287,237A CA1038440A (en) 1974-07-05 1977-09-22 Dual-beam crt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US486022A US3921025A (en) 1974-07-05 1974-07-05 Dual-beam CRT with vertical trace bowing correction means

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/625,612 Division US3983444A (en) 1974-07-05 1975-10-24 Dual beam CRT with inner gun and outer gun shield means for correcting keystone distortion

Publications (1)

Publication Number Publication Date
US3921025A true US3921025A (en) 1975-11-18

Family

ID=23930299

Family Applications (1)

Application Number Title Priority Date Filing Date
US486022A Expired - Lifetime US3921025A (en) 1974-07-05 1974-07-05 Dual-beam CRT with vertical trace bowing correction means

Country Status (7)

Country Link
US (1) US3921025A (en)
JP (1) JPS5117658A (en)
CA (1) CA1044745A (en)
DE (1) DE2529505C2 (en)
FR (1) FR2277431A1 (en)
GB (2) GB1505564A (en)
NL (1) NL7506542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585976A (en) * 1982-01-19 1986-04-29 Hewlett-Packard Company Beam penetration CRT with internal automatic constant deflection factor and pattern correction
US5621276A (en) * 1992-05-01 1997-04-15 Magma, Inc. Cathode ray tube
US6369498B1 (en) * 1999-11-03 2002-04-09 Intel Corporation Electron gun for addressing secondary emission targets

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124855A (en) * 1976-04-12 1977-10-20 Mitsubishi Electric Corp Cathode-ray tube
JPS52136550U (en) * 1976-04-12 1977-10-17
JPS52124854A (en) * 1976-04-12 1977-10-20 Mitsubishi Electric Corp Braun tube and its production
JPS52137762U (en) * 1976-04-13 1977-10-19
DE2804029A1 (en) * 1978-01-31 1979-08-02 Licentia Gmbh CRT with two beam electron gun - has such gun position that beams are inclined to tube axis and when not deflected intersect it at screen
US4288719A (en) * 1979-03-09 1981-09-08 Rca Corporation CRT With means for suppressing arcing therein
JPS5834789A (en) * 1981-08-25 1983-03-01 富士通フアナツク株式会社 Hand for industrial robot
US5087867A (en) * 1991-02-25 1992-02-11 International Business Machines Corporation Motor driving apparatus and printer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728873A (en) * 1953-01-13 1955-12-27 Gen Dynamics Corp Cathode ray control apparatus
US2939982A (en) * 1957-10-02 1960-06-07 Gen Dynamics Corp Cathode ray tube apparatus
US3449624A (en) * 1965-09-25 1969-06-10 Emi Ltd Focusing and deflecting system for a cathode ray tube
US3670199A (en) * 1970-04-06 1972-06-13 Tektronix Inc Cathode ray tube having auxiliary deflection plate to correct pincushion distortion
US3681645A (en) * 1969-09-15 1972-08-01 Fairchild Camera Instr Co Cathode-ray character-display tube
US3819984A (en) * 1973-02-12 1974-06-25 Tektronix Inc Side-by-side dual gun crt having horizontal deflector plates provided with side shields for correction of geometric distortion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2170944A (en) * 1937-05-29 1939-08-29 Bell Telephone Labor Inc Multicathode ray discharge device
FR1115673A (en) * 1954-12-02 1956-04-27 Csf Improvements to post-acceleration bi-curve oscilloscopes
DE1001404B (en) * 1955-12-06 1957-01-24 Philips Patentverwaltung Electron beam tubes for displaying two or more processes
FR2056162A5 (en) * 1969-07-28 1971-05-14 Tektronix Inc
US3694689A (en) * 1971-02-24 1972-09-26 Tektronix Inc Electron beam deflection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728873A (en) * 1953-01-13 1955-12-27 Gen Dynamics Corp Cathode ray control apparatus
US2939982A (en) * 1957-10-02 1960-06-07 Gen Dynamics Corp Cathode ray tube apparatus
US3449624A (en) * 1965-09-25 1969-06-10 Emi Ltd Focusing and deflecting system for a cathode ray tube
US3681645A (en) * 1969-09-15 1972-08-01 Fairchild Camera Instr Co Cathode-ray character-display tube
US3670199A (en) * 1970-04-06 1972-06-13 Tektronix Inc Cathode ray tube having auxiliary deflection plate to correct pincushion distortion
US3819984A (en) * 1973-02-12 1974-06-25 Tektronix Inc Side-by-side dual gun crt having horizontal deflector plates provided with side shields for correction of geometric distortion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585976A (en) * 1982-01-19 1986-04-29 Hewlett-Packard Company Beam penetration CRT with internal automatic constant deflection factor and pattern correction
US5621276A (en) * 1992-05-01 1997-04-15 Magma, Inc. Cathode ray tube
US6369498B1 (en) * 1999-11-03 2002-04-09 Intel Corporation Electron gun for addressing secondary emission targets

Also Published As

Publication number Publication date
CA1044745A (en) 1978-12-19
NL7506542A (en) 1976-01-07
JPS5543577B2 (en) 1980-11-07
GB1505564A (en) 1978-03-30
JPS5117658A (en) 1976-02-12
DE2529505C2 (en) 1985-03-07
GB1505563A (en) 1978-03-30
FR2277431A1 (en) 1976-01-30
FR2277431B1 (en) 1978-09-01
DE2529505A1 (en) 1976-01-29

Similar Documents

Publication Publication Date Title
US2957106A (en) Plural beam gun
US3448316A (en) Cathode ray tube
US2859378A (en) Electrode system for cathode ray tubes
US2803769A (en) Cathode ray apparatus
US3921025A (en) Dual-beam CRT with vertical trace bowing correction means
US3548249A (en) Color cathode ray tube of the pluralbeam,single electron gun type
CA1096922A (en) Cathode ray tube having an electron lens system including a meshless scan expansion post deflection acceleration lens
US2690517A (en) Plural beam electron gun
US3890541A (en) Cathode ray tube apparatus
US3467881A (en) Color picture tube
Schlesinger Progress in the development of post-acceleration and electrostatic deflection
US3819984A (en) Side-by-side dual gun crt having horizontal deflector plates provided with side shields for correction of geometric distortion
US2837689A (en) Post acceleration grid devices
US3983444A (en) Dual beam CRT with inner gun and outer gun shield means for correcting keystone distortion
US4142128A (en) Box-shaped scan expansion lens for cathode ray tube
US2726348A (en) Multiple beam gun
GB2059144A (en) Colour display crt
US4623819A (en) Accelerating and scan expansion electron lens means for a cathode ray tube
US3358172A (en) Cathode ray tube with means for splitting the electron beam into individually deflected and focused beams
US2757301A (en) Three beam gun
US2997621A (en) Image display device
EP0236740B1 (en) Decelerating and scan expansion lens system for electron discharge tube
US2911563A (en) Electrostatic lens and deflection system
US2915673A (en) Cathode ray tube apparatus
US3579008A (en) Color tube having asymetrical electrostatic convergence correction system