US3920968A - System for controlling eccentricity of rolling mill - Google Patents

System for controlling eccentricity of rolling mill Download PDF

Info

Publication number
US3920968A
US3920968A US483415A US48341574A US3920968A US 3920968 A US3920968 A US 3920968A US 483415 A US483415 A US 483415A US 48341574 A US48341574 A US 48341574A US 3920968 A US3920968 A US 3920968A
Authority
US
United States
Prior art keywords
eccentricity
roll
arithmetic unit
signals
pulse generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US483415A
Inventor
Isao Imai
Hiroyuki Shiozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Application granted granted Critical
Publication of US3920968A publication Critical patent/US3920968A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems

Definitions

  • the eccentricity of the work or backup roll is detected by measuring the rolling pressure, not by directly sensing the eccentricity of the roll by a sensor disposed around the roll so that the signal for correcting the variation in thickness may be applied to a roll gap control unit of the rolling mills.
  • AS is the roll eccentricity, it corresponds to the period of a backup roll in the case of a four-high mill.
  • a and B may .be measured from the value AP measured during .one rotation of the backup roll.
  • FIG. 1 is a graph illustrating the variation in rolling pressure
  • FIG. 2 is a graph illustrating that the rolling pressure i shown in FIG. 1 is sampled
  • FIG. 3 is a graph illustrating that the deviationsofthe sampled signals shown in FIG. 2 are obtained and the averages of these deviations are obtained.
  • FIG. 4 is a block diagram of one preferred embodi- .ment of the present invention.
  • FIG. I shows the rolling pressure curve a, the rolling pressure P being plotted along the ordinate while the time. along the abscissa.
  • the rolling pressure P is sampled as shown in FIG. 2 at a time interval in which is equal to T/n. where T is a time required for the back roll to make one rotation and n, an integer.
  • T is a time required for the back roll to make one rotation
  • n an integer.
  • the sampled digital quantities or signals are stored.
  • the rolling pressure P, and P are not equal as shown in FIG. 2.
  • the deviations of the rolling pressures from a straight line (the chain line L shown in FIG.
  • a and B obtained in the next rotation are compared with the averages A and B. and the deviations are added to A and B, respectively. so that the correction signal for the next rotation may be obtained.
  • the arithmetic control circuits must be switched when the direction of rotation is reversed.
  • the rolling mill must be controlled depending upon whether the material enters or leaves the working rolls.
  • the arithmetic operation is carried out only when the rolling pressure is produced. When the rolling pressure is intermittently produced, the intermittently obtained data must be made into the continuous data," and in some cases the slip angle between the upper and lower rolls must be corrected when the direction of rotation of the rolls is reversed.
  • a first pulse generator 3 is coupled to an upper backup roll 1 while a second pulse generator 4, to a lower backup roll 2.
  • a discriminator or sensor 8 is coupled to the rotary shaft of a motor 7, which drives an upper work roll 28 and a lower work roll 29, so as to sense the reverse in direction of the rotary shaft and hence the work rolls.
  • the rolling pressure P is picked up as the analog signal by a load cell 10, and the analog signal is transmitted to a first converter 19 to be converted into the digital signal which in turn is transmitted to a first arithmetic unit 20.
  • the deviation APk is obtained.
  • the pulses generated by the first pulse generator 3 are counted by a first counter 5, and the output signal of the counter 5 is transmitted to the first arithmetic unit as the value K used in Eq. 3. Consequently, the first arithmetic unit 20 obtains B and C in Eq. 3 based upon Pk and K.
  • a comparator l8 detects whether the rolling pressure signal exists or not so as to control a gate 21.
  • the angle of the upper backup roll 1 is detected by a third arithmetic unit 9. That is, the output K of the counter 5 is applied to the third arithmetic unit 9 so that 21r/n K in Eq. 3 is obtained.
  • the angle of the lower backup roll 2 is detected by the third arithmetic unit 9. That is, the pulses generated by the second pulse generator 4 are counted by a second counter 6, and the output K of the counter 6 is applied to the third arithmetic unit 9, so that 21r/n K may be derived. Furthermore the third arithmetic unit 9 derives one half of the angular deviation, i.e.
  • the output of the third arithmetic unit 9 is applied to a sine-cosine generator 24 which produces sin and cos
  • the counter 5 has a function to transmit to a second arithmetic unit 22 the signal representing one rotation of the upper back roll 1.
  • the output of the first arithmetic unit 20 is controlled by the gate 21. That is, when there is no rolling pressure P. the gate 21 is closed in response to the output of the comparator 18 so that no output signal is transmitted from the first arithmetic unit 20 to the second arithmetic unit 22, but when there exists the rolling pressure P, the gate 21 is opened so that the output signal of the first arithmetic unit 20 is transmitted to the second arithmetic unit 22.
  • the first arithmetic unit 20 transmits the signals representing B and C in Eq. 3 to the second arithmetic unit 22 during one rotation of the upper backup roll 1 when and only when the rolling pressure P exists.
  • the first arithmetic unit 20 has a function of adding the minus sign to the signal C in response to the output signal of the sensor 8 when the rotation is reversed as indicated by the dotted line in FIG. 4.
  • the values B and C required for computing the eccentricity A and the phase angle B are applied to the second arithmetic unit 22 in the manner described above.
  • the continuous data may be derived from the second arithmetic unit 22. Therefore, the averages of the values B and C for a predetermined number of rotations are used as the correcting signals for the next rotation as described hereinbefore with reference to a continuous rolling mill.
  • the values B and C obtained in the next rotation are compared with the average values B and C, and the deviations are added to the average values B and C, respectively, so that the correcting signals for the next rotation may be derived.
  • the optimum values Bo and Co may be derived from the second arithmetic unit 22.
  • the second arithmetic unit 22 is connected to a multiplier 25 through a sign controller 23 which in response to the output signal from the sensor 8 adds the positive or negative sign to the optimum value Co depending upon the direction of rotation.
  • the multiplier 25 multiplies the outputs of the sine-cosine generator 24 with the output ofa weighting unit 26, which derives the cosine of the output signal of the third arithmetic unit 9. The multiplier 25 therefore obtains the products Bo.cos 0/2.c0s
  • the eccentricity computer 27 obtains Bo.cos 0/2.cos
  • the analog signal is transmitted to an adder amplifier 14 in a reduction control circuit or a circuit for controlling the gap between the working rolls.
  • an adder amplifier 14 in a reduction control circuit or a circuit for controlling the gap between the working rolls.
  • To this amplifier 14 are also applied the feedback signal derived from a sensor 15 for detecting-the position of the roll and the output signal from a roll position setting unit 17 so that a servo valve 12 controls the flow rate of working oil under pressure discharged from a hydraulic pump 13 into a cylinder 11, thereby making the difference between the two signals zero.
  • a sensor for detecting the eccentricity is not located around a roll, but the rolling pressure is set in re sponse to a rolling pressure detector or sensor, and the rotation of the rolls is measured by the first pulse generator and the first counter.
  • the measured rolling pressure is sampled at a predetermined time interval by the first arithmetic unit so that the values required for the computation of the roll eccentricity and phase may be obtained.
  • the second arithmetic unit converts these values into the optimum values, and from these opti' mum values the correction signal is computed from the eccentricity computer.
  • the eccentricity and phase of the backup rolls may be immediately measured with a higher degree of accuracy so that the correction signal for correcting the variation in thickness due to the roll eccentricity may be transmitted to the roll gap control unit.
  • the variation in thickness due to the roll eccentricity may be minimized so that the materials may be rolled with a higher degree of accuracy in thickness.
  • the gate is interposed between the first and second arithmetic units and controlled in response to the control signal from the rolling pressure sensor so that the gate is automatically controlled depending upon whether the rolling pressure exists or not. That is, only when the rolling pressure exists the output signal of the first arithmetic unit is transferred into the second arithmetic unit which makes the intermittent outputs of the first arithmetic into the continuous data. Furthermore the sensor for sensing the direction of rotation is incorporated so that the signal representing the direction of rotation may be transmitted to the sign controller and other suitable units so that the data processed or to be processed by the second arithmetic unit are given a sign depending upon the direction of rotation and transmitted to the roll gap control unit. Therefore the variation in thickness may be accurately corrected depending upon the direction of rotation.
  • the pulses are generated depending upon the angular portion of the other backup or work roll and applied to the second counter. Based upon the output signals from the first and second counters, one half of the angular deviation is computed by the third arithmetic unit in the circuit for correcting the relative roll slip angle, and is applied to the sinecosine generator and to the weighing unit. Therefore even when the relative slip angle occurs between the upper and lower rolls, the correcting signal is applied to the roll gap correcting unit from the correcting circuit so that the adverse effect of the eccentricity of the rolls may be completely eliminated.
  • the present invention can eliminate the varia tion in thickness of the materials due to the eccentricity of the backup or work rolls.
  • the present invention is applied not only to the strip mills but also the plate mills which roll the materials intermittently in the opposite directions.
  • b. means including a first pulse generator (3) and a first counter (5) for sensing roll rotation, and
  • means including a first pulse generator (3) driven by the roll and a first arithmetic unit (20) operable in synchronism with the pulses generated by said first pulse generator for providing factor signals (B and C) of the eccentricity and phase ofthe roll; the improvement which comprises d.
  • means including a second arithmetic unit (22) for converting the factor signals into optimum factor signals (8,, and C e.
  • eccentricity computer means including eccentricity computer means (27), sensor means (8) responsive to the direction of rotation of the roll, and third arithmetic means (9) responsive to the slip angle between the upper and lower rolls for deriving corrected eccentricity and phase signals from said optimum factor signals; and means (11, l2, l3) responsive to said corrected eccentricity and phase signals for controlling the gap between the upper and lower rolls to correct the eccentricity of the roll by correcting the variation in thickness between said rolls. thereby to eliminate the variation in thickness of the rolled product caused by eccentricity of the roll.
  • said means for deriving the corrected eccentricity and phase signals further includes seeond pulse generator means (4) for generating pulses in accordance with the other roll of the rolling mill, second counter means (6) for counting the pulses of said second pulse generator means, said third arithmetic unit providing a signal which is one half of the angle eccentricity provided by signals from said first and second counters, and sine and cosine generator means (24) and weighing calculator means (26) connected between said third arithmetic unit and said eccentricity computer means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

A system for controlling the eccentricity of a roll especially of a reversing mill such as a plate mill is disclosed wherein the eccentricity and phase of eccentricity of a roll are measured from the rolling pressure and applied as the correcting signal to a roll gap control unit so that the variation in thickness due to the eccentricity of the roll may be eliminated.

Description

United States Patent Imai et al.
[ Nov. 18, 1975 SYSTEM FOR CONTROLLING ECCENTRICITY OF ROLLING MILL Inventors: Isao Imai; Hiroyuki Shiozaki, both of Yokohama, Japan Assignee: Ishikawajima-Harima Jukogyo Kabushiki Kaisha, Tokyo, Japan Filed: June 26, 1974 Appl. No.: 483,415
Foreign Application Priority Data June 27. 1973 Japan 48-71798 References Cited UNITED STATES PATENTS 8/1963 Hulls et a1 72/8 3.194.035 7/1965 Smith 72/8 3.478.551 11/1969 Alsop i 72/8 3.543.549 12/1970 Howard 72/8 3.580.022 5/1971 Waltz et a1 i i i 72/8 3.709.009 1/1973 Shiozaki et al. 72/8 Primary ExaminerJoseph F. Ruggiero Attorney. Agent. or FirmScrivener Parker Scrivener & Clarke 3 Claims, 4 Drawing Figures U.S. Patent Nov. 18,1975 Sheet 1 of2 3,920,968
U.S. Patent Nov. 18,1975 Sheet20f2 3,920,968
1 SYSTEM FOR CONTROLLING ECCENTRICITY OF ROLLING MILL BRIEF DESCRIPTION OF THE PRIOR ART The accuracy in thickness of the materials rolled by the metal rolling mills has been recently much im-' proved, but the problem of the eccentricity of the roll into the analog signals again which are usedas the sigor rolls of the rolling mills which adversely affects the accuracy in thickness has not been solved yet. The eccentricity of the rolls presents the serious problem not only in the two-high mills but also the four-high mills. having backup rolls. When the work rolls in the twohigh mills and the backup rolls in the four-high millshave any eccentricity, the roll gap varies as the rolls make one rotation, resulting in the variation in the thickness of materials rolled.
Recently the reduction response speed of the rolling mills have been much improved so that if the eccentricity of the roll is detected, the variation in thickness due to the roll eccentricity may be substantially eliminated.
SUMMARY OF THE INVENTION Briefly stated, according to the present invention the eccentricity of the work or backup roll is detected by measuring the rolling pressure, not by directly sensing the eccentricity of the roll by a sensor disposed around the roll so that the signal for correcting the variation in thickness may be applied to a roll gap control unit of the rolling mills.
First the underlying principle of the present invention for sensing the eccentricity and phase of the work or backup roll in a rolling mill will be described. The correlation between the eccentricity of a roll and the variation in load (i.e. rolling pressure) is given by where AP variation in rolling pressure;
AS eccentricity of roll,
K mill modulus; and
M plasticity modulus depending upon rolling conditions:
Since AS is the roll eccentricity, it corresponds to the period of a backup roll in the case of a four-high mill.
That is,
A cos (mt B) l l K M Therefore, A and B may .be measured from the value AP measured during .one rotation of the backup roll.
nals for correcting the variation in thickness due to th eccentricity of the roll.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph illustrating the variation in rolling pressure;
FIG. 2 is a graph illustrating that the rolling pressure i shown in FIG. 1 is sampled;
FIG. 3 is a graph illustrating that the deviationsofthe sampled signals shown in FIG. 2 are obtained and the averages of these deviations are obtained; and
FIG. 4 is a block diagram of one preferred embodi- .ment of the present invention.
DETAILED DESCRIPTION I The present invention will be described hereinafter with reference to a four-high rolling mill. According to the present invention, first the rolling pressure and the rotation of a backup roll are measured. FIG. I shows the rolling pressure curve a, the rolling pressure P being plotted along the ordinate while the time. along the abscissa. The rolling pressure P is sampled as shown in FIG. 2 at a time interval in which is equal to T/n. where T is a time required for the back roll to make one rotation and n, an integer. The sampled digital quantities or signals are stored. In general. the rolling pressure P, and P, are not equal as shown in FIG. 2. The deviations of the rolling pressures from a straight line (the chain line L shown in FIG. I) are obtained and their average is obtained as shown in FIG. 3 where AP AP,, and APn are deviations. Deviations are detected on the basis of the line L (which connects the beginning of time T and the end thereof) because it is theprerequisite that the original value and the final value of the sine wave are to be identical with each other if deviations should arise along the sine wave. From these deviations an eccentricity A of the backup roll and a phase B from a predetermined position of the backup roll and the maximum eccentricity of the backup roll are based upon the following formula: i
. I 1" A= M B+C' 2 t 2dr where B= 2 Pk cos K (3) C= 2 Pk sin (T) i. B=tan B l Thus, from the rolling pressure the eccentricity and the phase angle may be detected. However, in order to use them as the signal for correcting the variation in thickness of a rolled steel or the like due to the eccentricity of the backup roll in a strip mill where the rolling mill rolls continuously a steel strip in the same direction, the averages of A and B during a predetermined number of rotations of the backup roll must be obtained. That is, the averages of A and B for a number of N rotations of the backup roll are obtained and used as the signal for correcting the eccentricity of the backup roll in the next rotation. A and B obtained in the next rotation are compared with the averages A and B. and the deviations are added to A and B, respectively. so that the correction signal for the next rotation may be obtained. However. in case of a plate mill where rolling is made intermittently and reversed in direction, the arithmetic control circuits must be switched when the direction of rotation is reversed. Furthermore, the rolling mill must be controlled depending upon whether the material enters or leaves the working rolls. Moreover the arithmetic operation is carried out only when the rolling pressure is produced. When the rolling pressure is intermittently produced, the intermittently obtained data must be made into the continuous data," and in some cases the slip angle between the upper and lower rolls must be corrected when the direction of rotation of the rolls is reversed.
The present invention will be described in more detail hereinafter with reference to FIG. 4. A first pulse generator 3 is coupled to an upper backup roll 1 while a second pulse generator 4, to a lower backup roll 2. A discriminator or sensor 8 is coupled to the rotary shaft of a motor 7, which drives an upper work roll 28 and a lower work roll 29, so as to sense the reverse in direction of the rotary shaft and hence the work rolls. The rolling pressure P is picked up as the analog signal by a load cell 10, and the analog signal is transmitted to a first converter 19 to be converted into the digital signal which in turn is transmitted to a first arithmetic unit 20. Thus, the deviation APk is obtained. Meanwhile the pulses generated by the first pulse generator 3 are counted by a first counter 5, and the output signal of the counter 5 is transmitted to the first arithmetic unit as the value K used in Eq. 3. Consequently, the first arithmetic unit 20 obtains B and C in Eq. 3 based upon Pk and K. A comparator l8 detects whether the rolling pressure signal exists or not so as to control a gate 21.
The angle of the upper backup roll 1 is detected by a third arithmetic unit 9. That is, the output K of the counter 5 is applied to the third arithmetic unit 9 so that 21r/n K in Eq. 3 is obtained. In like manner, the angle of the lower backup roll 2 is detected by the third arithmetic unit 9. That is, the pulses generated by the second pulse generator 4 are counted by a second counter 6, and the output K of the counter 6 is applied to the third arithmetic unit 9, so that 21r/n K may be derived. Furthermore the third arithmetic unit 9 derives one half of the angular deviation, i.e.
in order to correct the relative slip angle between the backup rolls. The output of the third arithmetic unit 9 is applied to a sine-cosine generator 24 which produces sin and cos In addition to transmitting the output K to the first arithmetic unit 20, the counter 5 has a function to transmit to a second arithmetic unit 22 the signal representing one rotation of the upper back roll 1.
The output of the first arithmetic unit 20 is controlled by the gate 21. That is, when there is no rolling pressure P. the gate 21 is closed in response to the output of the comparator 18 so that no output signal is transmitted from the first arithmetic unit 20 to the second arithmetic unit 22, but when there exists the rolling pressure P, the gate 21 is opened so that the output signal of the first arithmetic unit 20 is transmitted to the second arithmetic unit 22.
In response to the output signal from the counter 5, the first arithmetic unit 20 transmits the signals representing B and C in Eq. 3 to the second arithmetic unit 22 during one rotation of the upper backup roll 1 when and only when the rolling pressure P exists. The first arithmetic unit 20 has a function of adding the minus sign to the signal C in response to the output signal of the sensor 8 when the rotation is reversed as indicated by the dotted line in FIG. 4.
The values B and C required for computing the eccentricity A and the phase angle B are applied to the second arithmetic unit 22 in the manner described above. When these intermittent values are made into the continuous data or values in one direction of rotation, the continuous data may be derived from the second arithmetic unit 22. Therefore, the averages of the values B and C for a predetermined number of rotations are used as the correcting signals for the next rotation as described hereinbefore with reference to a continuous rolling mill. The values B and C obtained in the next rotation are compared with the average values B and C, and the deviations are added to the average values B and C, respectively, so that the correcting signals for the next rotation may be derived. In other words, the optimum values Bo and Co may be derived from the second arithmetic unit 22.
The second arithmetic unit 22 is connected to a multiplier 25 through a sign controller 23 which in response to the output signal from the sensor 8 adds the positive or negative sign to the optimum value Co depending upon the direction of rotation. The multiplier 25 multiplies the outputs of the sine-cosine generator 24 with the output ofa weighting unit 26, which derives the cosine of the output signal of the third arithmetic unit 9. The multiplier 25 therefore obtains the products Bo.cos 0/2.c0s
which are applied to an eccentricity computer 27. The eccentricity computer 27 obtains Bo.cos 0/2.cos
+ Cocos 9/2.sin
which in turn is applied to a second converter 16 in response to each pulse transmitted from the first pulse generator 3 (based upon the output K of the first counter 5) so that the analog signal may be derived. The analog signal is transmitted to an adder amplifier 14 in a reduction control circuit or a circuit for controlling the gap between the working rolls. To this amplifier 14 are also applied the feedback signal derived from a sensor 15 for detecting-the position of the roll and the output signal from a roll position setting unit 17 so that a servo valve 12 controls the flow rate of working oil under pressure discharged from a hydraulic pump 13 into a cylinder 11, thereby making the difference between the two signals zero.
In case of a two-high mill, the work rolls are controlled in a manner substantially similar to that described hereinabove.
As described above, according to the present invention a sensor for detecting the eccentricity is not located around a roll, but the rolling pressure is set in re sponse to a rolling pressure detector or sensor, and the rotation of the rolls is measured by the first pulse generator and the first counter. The measured rolling pressure is sampled at a predetermined time interval by the first arithmetic unit so that the values required for the computation of the roll eccentricity and phase may be obtained. The second arithmetic unit converts these values into the optimum values, and from these opti' mum values the correction signal is computed from the eccentricity computer. Therefore the eccentricity and phase of the backup rolls may be immediately measured with a higher degree of accuracy so that the correction signal for correcting the variation in thickness due to the roll eccentricity may be transmitted to the roll gap control unit. As a result the variation in thickness due to the roll eccentricity may be minimized so that the materials may be rolled with a higher degree of accuracy in thickness.
According to the present invention, the gate is interposed between the first and second arithmetic units and controlled in response to the control signal from the rolling pressure sensor so that the gate is automatically controlled depending upon whether the rolling pressure exists or not. That is, only when the rolling pressure exists the output signal of the first arithmetic unit is transferred into the second arithmetic unit which makes the intermittent outputs of the first arithmetic into the continuous data. Furthermore the sensor for sensing the direction of rotation is incorporated so that the signal representing the direction of rotation may be transmitted to the sign controller and other suitable units so that the data processed or to be processed by the second arithmetic unit are given a sign depending upon the direction of rotation and transmitted to the roll gap control unit. Therefore the variation in thickness may be accurately corrected depending upon the direction of rotation. Moreover the pulses are generated depending upon the angular portion of the other backup or work roll and applied to the second counter. Based upon the output signals from the first and second counters, one half of the angular deviation is computed by the third arithmetic unit in the circuit for correcting the relative roll slip angle, and is applied to the sinecosine generator and to the weighing unit. Therefore even when the relative slip angle occurs between the upper and lower rolls, the correcting signal is applied to the roll gap correcting unit from the correcting circuit so that the adverse effect of the eccentricity of the rolls may be completely eliminated.
Thus the present invention can eliminate the varia tion in thickness of the materials due to the eccentricity of the backup or work rolls. The present invention is applied not only to the strip mills but also the plate mills which roll the materials intermittently in the opposite directions.
What is claimed is:
1. In an apparatus for controlling the eccentricity of a first roll of a rolling mill having upper and lower rolls. including a. rolling pressure sensing means (10) for directly sensing eccentricity of the roll.
b. means including a first pulse generator (3) and a first counter (5) for sensing roll rotation, and
0. means including a first pulse generator (3) driven by the roll and a first arithmetic unit (20) operable in synchronism with the pulses generated by said first pulse generator for providing factor signals (B and C) of the eccentricity and phase ofthe roll; the improvement which comprises d. means including a second arithmetic unit (22) for converting the factor signals into optimum factor signals (8,, and C e. means including eccentricity computer means (27), sensor means (8) responsive to the direction of rotation of the roll, and third arithmetic means (9) responsive to the slip angle between the upper and lower rolls for deriving corrected eccentricity and phase signals from said optimum factor signals; and means (11, l2, l3) responsive to said corrected eccentricity and phase signals for controlling the gap between the upper and lower rolls to correct the eccentricity of the roll by correcting the variation in thickness between said rolls. thereby to eliminate the variation in thickness of the rolled product caused by eccentricity of the roll.
2. Apparatus as defined in claim 1, and further including gate means (21) connected between said first and second arithmetic units, and means (l8, 10) responsive to rolling pressure for isolating said first arithmetic unit from said second arithmetic unit in the absence of rolling pressure.
3. Apparatus as defined in claim 1, wherein said means for deriving the corrected eccentricity and phase signals further includes seeond pulse generator means (4) for generating pulses in accordance with the other roll of the rolling mill, second counter means (6) for counting the pulses of said second pulse generator means, said third arithmetic unit providing a signal which is one half of the angle eccentricity provided by signals from said first and second counters, and sine and cosine generator means (24) and weighing calculator means (26) connected between said third arithmetic unit and said eccentricity computer means.

Claims (3)

1. In an apparatus for controlling the eccentricity of a first roll of a rolling mill having upper and lower rolls, including a. rolling pressure sensing means (10) for directly sensing eccentricity of the roll, b. means including a first pulse generator (3) and a first counter (5) for sensing roll rotation, and c. means including a first pulse generator (3) driven by the roll and a first arithmetic unit (20) operable in synchronism with the pulses generated by said first pulse generator for providing factor signals (B and C) of the eccentricity and phase of the roll; the improvement which comprises d. means including a second arithmetic unit (22) for converting the factor signals into optimum factor signals (Bo and Co); e. means including eccentricity computer means (27), sensor means (8) responsive to the direction of rotation of the roll, and third arithmetic means (9) responsive to the slip angle between the upper and lower rolls for deriving corrected eccentricity and phase signals from said optimum factor signals; and f. means (11, 12, 13) responsive to said corrected eccentricity and phase signals for controlling the gap between the upper and lower rolls to correct the eccentricity of the roll by correcting the variation in thickness between said rolls, thereby to eliminate the variation in thickness of the rolled product caused by eccentricity of the roll.
2. Apparatus as defined in claim 1, and further including gate means (21) connected between said first and second arithmetic units, and means (18, 10) responsive to rolling pressure for isolating said first arithmetic unit from said second arithmetic unit in the absence of rolling pressure.
3. Apparatus as defined in claim 1, wherein said means for deriving the corrected eccentricity and phase signals further includes second pulse generator means (4) for generating pulses in accordance with the other roll of thE rolling mill, second counter means (6) for counting the pulses of said second pulse generator means, said third arithmetic unit providing a signal which is one half of the angle eccentricity provided by signals from said first and second counters, and sine and cosine generator means (24) and weighing calculator means (26) connected between said third arithmetic unit and said eccentricity computer means.
US483415A 1973-06-27 1974-06-26 System for controlling eccentricity of rolling mill Expired - Lifetime US3920968A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48071798A JPS5234030B2 (en) 1973-06-27 1973-06-27

Publications (1)

Publication Number Publication Date
US3920968A true US3920968A (en) 1975-11-18

Family

ID=13470927

Family Applications (1)

Application Number Title Priority Date Filing Date
US483415A Expired - Lifetime US3920968A (en) 1973-06-27 1974-06-26 System for controlling eccentricity of rolling mill

Country Status (4)

Country Link
US (1) US3920968A (en)
JP (1) JPS5234030B2 (en)
DE (1) DE2430089C3 (en)
GB (1) GB1479668A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299104A (en) * 1979-02-28 1981-11-10 Mitsubishi Jukogyo Kabushiki Kaisha Method of controlling roll eccentricity of rolling mill and apparatus for performing the same method
US4521859A (en) * 1982-10-27 1985-06-04 General Electric Company Method of improved gage control in metal rolling mills
US4545228A (en) * 1982-11-15 1985-10-08 Hitachi, Ltd. Roll eccentricity control system for a rolling apparatus
US4910985A (en) * 1986-07-09 1990-03-27 Alcan International Limited Method and apparatus for the detection and correction of roll eccentricity in rolling mills
US5647238A (en) * 1994-03-29 1997-07-15 Siemens Aktiengesellschaft Method for suppressing the influence of roll eccentricities on a control for a rolling-stock thickness in a roll stand
US20100005844A1 (en) * 2007-01-23 2010-01-14 Hans-Joachim Felkl Controlling arrangement for a rolling stand and items corresponding thereto
US20100269556A1 (en) * 2007-06-11 2010-10-28 Arcelormittal France Method of rolling a metal strip with adjustment of the lateral position of a strip and suitable rolling mill

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327732B2 (en) * 1971-12-16 1978-08-10
US3859117A (en) * 1972-03-07 1975-01-07 Michael Erchak Coated glass container
JPS5312932B2 (en) * 1972-07-06 1978-05-06
US3889030A (en) * 1972-08-22 1975-06-10 Dart Ind Inc Method of coating glass article and improved coated glassware product
JPS5319011B2 (en) * 1972-11-25 1978-06-19
JPS5323849B2 (en) * 1973-02-13 1978-07-17
JPS49314A (en) * 1973-03-07 1974-01-05
JPS5411813B2 (en) * 1974-03-28 1979-05-17
JPS5272716A (en) * 1975-12-16 1977-06-17 Azekami Garasu Kougiyou Kk Nonnfogging glass
JPS5328545A (en) * 1976-08-31 1978-03-16 Ishikawajima Harima Heavy Ind Controlling of roll eccentric affection
US4126027A (en) * 1977-06-03 1978-11-21 Westinghouse Electric Corp. Method and apparatus for eccentricity correction in a rolling mill
JPS56119613A (en) * 1980-02-22 1981-09-19 Toshiba Corp Thickness detector for run-out side of rolling mill
JPS58151350A (en) * 1982-03-04 1983-09-08 Central Glass Co Ltd Scattering preventing glass body
AU576330B2 (en) * 1983-09-08 1988-08-25 John Lysaght (Australia) Limited Rolling mill strip thickness controller
CN113083907B (en) * 2021-03-29 2022-07-19 广西北港不锈钢有限公司 Method for calculating eccentric rolling line of stainless steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100410A (en) * 1959-06-27 1963-08-13 Westinghouse Canada Ltd Control systems
US3194035A (en) * 1961-05-08 1965-07-13 Davy And United Instr Ltd System for eliminating cyclic variations in rolling mill gauge errors
US3478551A (en) * 1966-05-06 1969-11-18 Davy & United Instr Ltd Control systems
US3543549A (en) * 1967-11-21 1970-12-01 Davy & United Eng Co Ltd Rolling mill control for compensating for the eccentricity of the rolls
US3580022A (en) * 1968-11-12 1971-05-25 Youngstown Sheet And Tube Co Rolling mill including gauge control
US3709009A (en) * 1970-03-20 1973-01-09 Ishikawajima Harima Heavy Ind Method for detecting eccentricity and phase angle of working or backing roll in rolling mill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3100410A (en) * 1959-06-27 1963-08-13 Westinghouse Canada Ltd Control systems
US3194035A (en) * 1961-05-08 1965-07-13 Davy And United Instr Ltd System for eliminating cyclic variations in rolling mill gauge errors
US3478551A (en) * 1966-05-06 1969-11-18 Davy & United Instr Ltd Control systems
US3543549A (en) * 1967-11-21 1970-12-01 Davy & United Eng Co Ltd Rolling mill control for compensating for the eccentricity of the rolls
US3580022A (en) * 1968-11-12 1971-05-25 Youngstown Sheet And Tube Co Rolling mill including gauge control
US3709009A (en) * 1970-03-20 1973-01-09 Ishikawajima Harima Heavy Ind Method for detecting eccentricity and phase angle of working or backing roll in rolling mill

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299104A (en) * 1979-02-28 1981-11-10 Mitsubishi Jukogyo Kabushiki Kaisha Method of controlling roll eccentricity of rolling mill and apparatus for performing the same method
US4521859A (en) * 1982-10-27 1985-06-04 General Electric Company Method of improved gage control in metal rolling mills
US4545228A (en) * 1982-11-15 1985-10-08 Hitachi, Ltd. Roll eccentricity control system for a rolling apparatus
US4910985A (en) * 1986-07-09 1990-03-27 Alcan International Limited Method and apparatus for the detection and correction of roll eccentricity in rolling mills
US5647238A (en) * 1994-03-29 1997-07-15 Siemens Aktiengesellschaft Method for suppressing the influence of roll eccentricities on a control for a rolling-stock thickness in a roll stand
US20100005844A1 (en) * 2007-01-23 2010-01-14 Hans-Joachim Felkl Controlling arrangement for a rolling stand and items corresponding thereto
US8408032B2 (en) 2007-01-23 2013-04-02 Siemens Aktiengesellschaft Controlling arrangement for a rolling stand and items corresponding thereto
US20100269556A1 (en) * 2007-06-11 2010-10-28 Arcelormittal France Method of rolling a metal strip with adjustment of the lateral position of a strip and suitable rolling mill
US8919162B2 (en) * 2007-06-11 2014-12-30 Arcelormittal France Method of rolling a metal strip with adjustment of the lateral position of a strip and suitable rolling mill

Also Published As

Publication number Publication date
JPS5020964A (en) 1975-03-05
DE2430089C3 (en) 1978-05-03
DE2430089A1 (en) 1975-01-09
JPS5234030B2 (en) 1977-09-01
DE2430089B2 (en) 1977-09-08
GB1479668A (en) 1977-07-13

Similar Documents

Publication Publication Date Title
US3920968A (en) System for controlling eccentricity of rolling mill
US4126027A (en) Method and apparatus for eccentricity correction in a rolling mill
US4030326A (en) Gage control apparatus and method for tandem rolling mills
US3709009A (en) Method for detecting eccentricity and phase angle of working or backing roll in rolling mill
US4545228A (en) Roll eccentricity control system for a rolling apparatus
KR900003970B1 (en) Method of controlling elimination of roll eccentricity in rolling mill and device for carrying out the method
US3881335A (en) Roll eccentricity correction system and method
US5181408A (en) Method of measuring and compensating roll eccentricity of a rolling mill
US3961509A (en) Roll gap control
US4521859A (en) Method of improved gage control in metal rolling mills
US3882705A (en) Roll eccentricity correction system and method
GB1270670A (en) Rolling sheet or strip from particulate material
US5540072A (en) Eccentric roller control apparatus
US3626247A (en) Angular velocity measurement apparatus
GB1425826A (en) Eccentricity correction means
GB853433A (en) Improvements in or relating to apparatus and method for controlling the thickness ofa workpiece
JPH0156842B2 (en)
SU1124883A3 (en) Arrangement for controlling geometrical dimensions of rolled product on continuous rolling mill
JPH0260401B2 (en)
JPS6149722A (en) Plate thickness controlling method of steel strip
JPH0530522B2 (en)
JP3369611B2 (en) Thickness control method in rolling
JPH0745050B2 (en) Roll eccentricity compensation device for rolling mill
KR0158582B1 (en) Thickness deviation control device for hot stripe during short period
SU1722638A1 (en) Apparatus for controlling strip tension between the rolling mill stands