US3914575A - Power supplying device for the operation of a gas discharge container - Google Patents
Power supplying device for the operation of a gas discharge container Download PDFInfo
- Publication number
- US3914575A US3914575A US439872A US43987274A US3914575A US 3914575 A US3914575 A US 3914575A US 439872 A US439872 A US 439872A US 43987274 A US43987274 A US 43987274A US 3914575 A US3914575 A US 3914575A
- Authority
- US
- United States
- Prior art keywords
- operating voltage
- discharge
- power supplying
- supplying device
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012544 monitoring process Methods 0.000 claims abstract description 7
- 238000012806 monitoring device Methods 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 23
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 241000237519 Bivalvia Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000020639 clam Nutrition 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32018—Glow discharge
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/145—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/155—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M7/162—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
- H02M7/1623—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
- H02M7/1626—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
Definitions
- the power supplying device further comprises a de- 315/111.1, 111.2,111.3,111.4, 111.5, vice monitoring the discharge and in response to 111.6, 111.7, 111.8, 111.9, 136, 127, 119; which the ignition control device further serves as a 323/123, 9, 20, 4; 321/40 quick-action switch interrupting the discharge during a number of periods.
- An inductance is located in the [56] References Cited primary circuit having such design that the increase of UNITED STATES PATENTS the operating voltage following every zero passage is 2 508 954 5/1950 Latour et al 32) X retarded.
- the present invention relates to a power supplying device for the operation of a gas discharge container for thetreatment of metallic workpieces, particularly for the operation of an ionitriding furnace, comprising a transformer and'rectifiers for the provision of theopcrating voltage from the alternating or three-phase current supply," with a continuously operating regulating devicefor the operating voltage, a monitoring device for the discharge process during the process, and with a quick-acting 'switch for'the brief interruption of operation when the monitoring device responds.
- the monitoring device there described is only one of the many known systems for monitoring the operating condition of gas and glow' discharge processes, and further types of such monitoring devices which have provided satisfactory and are disclosed for example in U.S. Pat. No. 3,579,029.
- the present current supplying device in which the alternating currentis rectified to provide the operating voltage constitutes a particularly simple and .inexpensive design 'which'employs the effect of the-brief interruptionof the discharge atevery zero' passage of the rectified operating voltage while avoiding the-aforementioned disadvantages.
- a a I The power supplying device according to the invention is characterized by the combination of:
- F IG. 1 shows a simplified circuit schema of the power supplying device supplying an ionitriding furnace
- FIG. 2 shows the diagram of the curve of the operating voltage plotted against time.
- a metallic underpressure container 10 with a gas inlet 11 and a gas outlet 12 accommodates the workpiece 13 which is e.g. to be ionitrided by means of a glow discharge in a nitrogenous atmosphere.
- the metallic workpiece 13 is connected, via a metallic coupling member 14, to the inner conductor of an insulated current lead-in 15 shown diagrammatically and of which the exterior connection 16 represents the negative pole of the power supplying device.
- the other pole 17 of the power supplying device is connected to the metallic container 10 and ground.
- the operating voltage U is applied between the connections 16 and 17 of which the variation in time is diagrammatically shown in FIG. 2.
- the voltage U is applied via the voltage divider formed by the resistances l8, 19 to the monitoring device 20. Also the voltage drop at the series resistance 21- in the supply line to the connection 17 is applied to the device 20.
- the function of this monitoring device requires no detailed explanation since it is described in detail in U.S. Pat. No. 3,579,029.
- a control unit 22 which determines, in accordance with the known phase shifting method, the switch on point of the thyratron or thyristor rectifiers 28, 29, 30, 31 during each half period. This point can be manually set by the regulator 23 diagrammatically indicated.
- the rectifiers 28, 29, 30, 31 constitute a full-wave rectification for the alternating voltage of the secondary side 27 of the transformer 26.
- This device which is known in itself functions as follows: As soon as the monitoring device 20 responds because of a major irregularity in the glow discharge on the workpiece 13, the control unit 22 receives a control impulse. Thereupon the control unit 22 causes the alternating voltage in the secondary circuit to remain interrupted after the zero passage next following during the time of a predetermined number of periods as mentioned before. The starting is effected again only by a second control impulse which is automatically supplied by the monitoring device 20 after a delay time which can there be adjusted.
- an inductance for example an iron choke coil 24, in the primary circuit 25 of the transformer 26, between the transformer and the power supply.
- Filtering or suppression means for suppressing high-frequency interference by the rectifiers 28, 29, 30, 31 may be used in addition. The action of the inductance 24 will be described below,
- the power supplying device according to FIG. 1 described above would be entirely suitable, also without the iron choke coil, for the perfect operation of a glow and gas discharge process of the type described since the monitoring device' 20, the control unit 22 and the adjustable rectifiers 28, 29, 30, 31 ensure that, when disturbances in the discharge process occur, the operating voltage U remains off after the next zero passage during the time of a predetermined number of half-waves until the rectifiers 28, 29, 30, 31 ignite again depending on the adjusting of the monitoring device 20.
- the number of arising disturbances is so high, particularly during the starting process at the beginning of the ionitriding operation, that this process may extend over many hours owing to the frequency disconnections.
- the utilization of the ionitriding furnace involved is undesirably reduced by the greatly extended starting period, which necessitates the installation of additional ionitriding facilities where an ionitriding operation has a predetermined capacity.
- the present power supplying device with the control unit 22 and the inductance 24 provided in the primary circuit removes this undesirably high extension of the starting process without involving defects in the workpieces treated.
- the discharge process is discontinued at point 33 before the zero passage of the operating voltage U, after the discharge ignition voltage U is negatively exceeded.
- This discharge process will normally start again as the operating voltage U increases after reaching the ignition voltage U of the discharge at point 34.
- the period t, of discharge interruption at the zero passage of the operating voltage U normally lasts only a millisecond or less and is too brief to enable defects on the workpiece surfaces to decay so that, when the operating voltage U has passed the point 34, such defects remain active and will result in the response of the monitoring device 20 and thus in said predetermined number of periods of disconnection of the discharge container 10.
- inductance 24 in the primary circuit 25 makes it possible that the increase of the operating voltage U after the zero passage occurs later.
- an inductance causes a change of the phase position of the voltage, in the present embodiment of the voltage applied to the rectifiers 28 to 31, which effects a retardation of the reincrease of the operating voltage U,,.
- the ignition of the discharge occurs now only at point 35, so that a discharge interruption time is results instead of the smaller interruption time t, if no such an inductance is provided.
- the discharge interruption time 1 may be adjusted to the degree of purity of the workpiece surface by means of a suitable design of the inductance in combination with the monitoring device 20 and the control unit 22.
- a starting process of up to 5 hours isfrequently observed.
- an inductance 24 is included in the primary circuit which is in this embodiment an iron choke coil having 3, 2 mHy and 20 kVA power dissipation, the starting process for the same type of workpieces may be reduced to about k to 2 hours.
- the saving of 2 to 3 hours starting time constitutes a substantial improvement of the efficiency of the nitriding furnace involved since the amount of products to be nitrided is increased by about 25 to 40 per cent if the facility is operated continuously.
- the interruption time t is adjusted during the starting process in accordance with the power requirements for heating the workpieces and kept not lower than about 6 or 7 ms. With increasing degrees of purity I, may then be reduced until about t, 2 ms is reached in normal operating condition. This value should not be negatively exceeded.
- a power supplying device for the operation of a gas discharge container particularly an ionitriding container, containing metallic workpieces to be treated, said device being supplied from an alternating-current power source, comprising a transformer, the primary circuit of which is connected to said power source, a rectifying device comprising controlled rectifiers, the input of said rectifying device being connected to the secondary circuit of said transformer, the output of said rectifying means providing direct operating voltage between said workpieces and the housing of said container, a monitoring device connected between said workpieces and said container for monitoring said operating voltage and the operating current, the output of said monitoring device being connected to the input of a regulating and switching device for said operating voltage, the output of said regulating and switching device being connected with said rectifying device in combination, the improvement comprising:
- said rectifying device comprising a fullwave bridge having four controlled rectifier elements
- the inductance is an iron choke coil.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Arc Welding Control (AREA)
- Discharge Heating (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Generation Of Surge Voltage And Current (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH235773A CH561285A5 (en)) | 1973-02-19 | 1973-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3914575A true US3914575A (en) | 1975-10-21 |
Family
ID=4231899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US439872A Expired - Lifetime US3914575A (en) | 1973-02-19 | 1974-02-06 | Power supplying device for the operation of a gas discharge container |
Country Status (17)
Country | Link |
---|---|
US (1) | US3914575A (en)) |
JP (1) | JPS49113242A (en)) |
AT (1) | AT335014B (en)) |
BE (1) | BE810982A (en)) |
BR (1) | BR7401198D0 (en)) |
CA (1) | CA1002613A (en)) |
CH (1) | CH561285A5 (en)) |
DD (1) | DD107192A1 (en)) |
DE (1) | DE2346053A1 (en)) |
ES (1) | ES423369A1 (en)) |
FR (1) | FR2218687B1 (en)) |
GB (1) | GB1463557A (en)) |
IT (1) | IT1006250B (en)) |
LU (1) | LU69416A1 (en)) |
NL (1) | NL7402226A (en)) |
PL (1) | PL90222B1 (en)) |
RO (1) | RO68758A (en)) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2657078A1 (de) * | 1975-12-29 | 1977-07-07 | Kawasaki Heavy Ind Ltd | Einrichtung zur ionennitrierung |
US4035603A (en) * | 1976-03-31 | 1977-07-12 | Union Carbide Corporation | Fault detector system for starting plasma arc working apparatus |
US4330700A (en) * | 1980-03-25 | 1982-05-18 | Peter Jagieniak | Plasmaburner with contact protection |
FR2497038A1 (fr) * | 1980-12-19 | 1982-06-25 | Frager Jean | Generateur de courant asservi en puissance, notamment pour processus de decharge dans une atmosphere rarefiee |
DE3123214A1 (de) * | 1981-06-05 | 1983-01-05 | Evgenij Leizerovič Agres | Verfahren und einrichtung zum steuern einer chemischthermischen behandlung von werkstuecken in einer glimmentladung |
US4476373A (en) * | 1978-10-06 | 1984-10-09 | Wellman Thermal Systems Corporation | Control system and method of controlling ion nitriding apparatus |
US4853046A (en) * | 1987-09-04 | 1989-08-01 | Surface Combustion, Inc. | Ion carburizing |
US5127967A (en) * | 1987-09-04 | 1992-07-07 | Surface Combustion, Inc. | Ion carburizing |
US5241152A (en) * | 1990-03-23 | 1993-08-31 | Anderson Glen L | Circuit for detecting and diverting an electrical arc in a glow discharge apparatus |
US20080203087A1 (en) * | 2005-10-14 | 2008-08-28 | E.G.O. Elektro-Geraetebau Gmbh | Method for operating an induction heating device |
US20090078686A1 (en) * | 2007-09-25 | 2009-03-26 | Rayzr, Llc | Plasma arc ignition using a unipolar pulse |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4103324A (en) * | 1976-12-22 | 1978-07-25 | Airco, Inc. | Saturable reactor-type power supply |
BG29362A1 (en) * | 1979-03-11 | 1980-11-14 | Minchev | Apparatus for chemical- thermal processing of matal articles in the condition of electrical smouldering charge |
FR2471079A1 (fr) * | 1979-11-28 | 1981-06-12 | Frager Jean | Generateur de courant a haute puissance auto-stabilisee, notamment pour l'alimentation de processus faisant intervenir une decharge dans une atmosphere gazeuse rarefiee |
DE3316742C2 (de) * | 1983-05-07 | 1985-05-30 | Horst Dipl.-Ing. Linn (FH), 8459 Hirschbach | Verfahren und Vorrichtung zur Behandlung von Oberflächen und oberflächennahen Schichten von Werkstücken, insbesondere für zahntechnische und medizinische Zwecke, aus elektrisch leitendem Material |
DE3330702A1 (de) * | 1983-08-25 | 1985-03-07 | Vsesojuznyj naučno-issledovatel'skij, proektno-konstruktorskij i technologičeskij institut elektrotermiČeskogo oborudovanija, Moskva | Verfahren zur chemisch-thermischen behandlung von erzeugnissen mit hilfe einer glimmentladung und anlage zu deren durchfuehrung |
DE3514690A1 (de) * | 1985-04-24 | 1986-10-30 | Aeg-Elotherm Gmbh, 5630 Remscheid | Gleichspannungsquelle fuer anlagen zur oberflaechenbearbeitung von werkstuecken, insbesondere fuer eine ionitrierhaertanlage |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2508954A (en) * | 1943-02-03 | 1950-05-23 | Merlin Gerin | Electric discharge device with auxiliary electrode |
US3189747A (en) * | 1962-06-05 | 1965-06-15 | Hunt Electronics Company | Circuit for controlling thyratron type devices either individually or as a group |
US3205426A (en) * | 1962-06-27 | 1965-09-07 | Bell Telephone Labor Inc | Regulated power supply |
US3270272A (en) * | 1961-06-24 | 1966-08-30 | Kokusai Denshin Denwa Co Ltd | Rectifying apparatus for producing constant voltage |
US3579029A (en) * | 1966-11-08 | 1971-05-18 | Berghaus Elektrophysik Anst | Monitoring circuit for a high-intensity glow discharge for metallurgical processes |
US3582755A (en) * | 1968-10-09 | 1971-06-01 | Asea Ab | Control system for converters |
US3593105A (en) * | 1969-09-03 | 1971-07-13 | Allis Louis Co | Phase sequence insensitive firing circuit |
US3737763A (en) * | 1972-04-13 | 1973-06-05 | Gen Electric | Voltage distortion detection and control for hvdc converter |
US3746966A (en) * | 1971-02-02 | 1973-07-17 | Asea Ab | Current converter control system |
US3781508A (en) * | 1970-09-18 | 1973-12-25 | Messer Griesheim Gmbh | Apparatus for plasma welding |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1255321A (en) * | 1968-03-11 | 1971-12-01 | Lucas Industries Ltd | Surface diffusion processes using electrical glow discharges |
-
1973
- 1973-02-19 CH CH235773A patent/CH561285A5/xx not_active IP Right Cessation
- 1973-07-04 JP JP48074919A patent/JPS49113242A/ja active Pending
- 1973-09-13 DE DE19732346053 patent/DE2346053A1/de active Pending
- 1973-10-08 DD DD173915A patent/DD107192A1/xx unknown
-
1974
- 1974-02-01 GB GB489974A patent/GB1463557A/en not_active Expired
- 1974-02-04 IT IT20139/74A patent/IT1006250B/it active
- 1974-02-06 US US439872A patent/US3914575A/en not_active Expired - Lifetime
- 1974-02-07 FR FR7404189A patent/FR2218687B1/fr not_active Expired
- 1974-02-13 BE BE140868A patent/BE810982A/xx unknown
- 1974-02-16 RO RO7477707A patent/RO68758A/ro unknown
- 1974-02-18 AT AT126874A patent/AT335014B/de not_active IP Right Cessation
- 1974-02-18 LU LU69416A patent/LU69416A1/xx unknown
- 1974-02-18 ES ES423369A patent/ES423369A1/es not_active Expired
- 1974-02-18 CA CA192,769A patent/CA1002613A/en not_active Expired
- 1974-02-19 PL PL1974168939A patent/PL90222B1/pl unknown
- 1974-02-19 NL NL7402226A patent/NL7402226A/xx unknown
- 1974-02-19 BR BR1198/74A patent/BR7401198D0/pt unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2508954A (en) * | 1943-02-03 | 1950-05-23 | Merlin Gerin | Electric discharge device with auxiliary electrode |
US3270272A (en) * | 1961-06-24 | 1966-08-30 | Kokusai Denshin Denwa Co Ltd | Rectifying apparatus for producing constant voltage |
US3189747A (en) * | 1962-06-05 | 1965-06-15 | Hunt Electronics Company | Circuit for controlling thyratron type devices either individually or as a group |
US3205426A (en) * | 1962-06-27 | 1965-09-07 | Bell Telephone Labor Inc | Regulated power supply |
US3579029A (en) * | 1966-11-08 | 1971-05-18 | Berghaus Elektrophysik Anst | Monitoring circuit for a high-intensity glow discharge for metallurgical processes |
US3582755A (en) * | 1968-10-09 | 1971-06-01 | Asea Ab | Control system for converters |
US3593105A (en) * | 1969-09-03 | 1971-07-13 | Allis Louis Co | Phase sequence insensitive firing circuit |
US3781508A (en) * | 1970-09-18 | 1973-12-25 | Messer Griesheim Gmbh | Apparatus for plasma welding |
US3746966A (en) * | 1971-02-02 | 1973-07-17 | Asea Ab | Current converter control system |
US3737763A (en) * | 1972-04-13 | 1973-06-05 | Gen Electric | Voltage distortion detection and control for hvdc converter |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2657078A1 (de) * | 1975-12-29 | 1977-07-07 | Kawasaki Heavy Ind Ltd | Einrichtung zur ionennitrierung |
US4035603A (en) * | 1976-03-31 | 1977-07-12 | Union Carbide Corporation | Fault detector system for starting plasma arc working apparatus |
US4476373A (en) * | 1978-10-06 | 1984-10-09 | Wellman Thermal Systems Corporation | Control system and method of controlling ion nitriding apparatus |
US4330700A (en) * | 1980-03-25 | 1982-05-18 | Peter Jagieniak | Plasmaburner with contact protection |
US4446560A (en) * | 1980-12-19 | 1984-05-01 | Jean Frager | High power electric generator, especially adapted for powering processes involving discharge in a rarified atmosphere |
DE3151241A1 (de) * | 1980-12-19 | 1982-08-05 | Frager Jean | Leistungsgesteuerter stromgenerator |
FR2497038A1 (fr) * | 1980-12-19 | 1982-06-25 | Frager Jean | Generateur de courant asservi en puissance, notamment pour processus de decharge dans une atmosphere rarefiee |
DE3123214A1 (de) * | 1981-06-05 | 1983-01-05 | Evgenij Leizerovič Agres | Verfahren und einrichtung zum steuern einer chemischthermischen behandlung von werkstuecken in einer glimmentladung |
US4853046A (en) * | 1987-09-04 | 1989-08-01 | Surface Combustion, Inc. | Ion carburizing |
US5127967A (en) * | 1987-09-04 | 1992-07-07 | Surface Combustion, Inc. | Ion carburizing |
US5241152A (en) * | 1990-03-23 | 1993-08-31 | Anderson Glen L | Circuit for detecting and diverting an electrical arc in a glow discharge apparatus |
US20080203087A1 (en) * | 2005-10-14 | 2008-08-28 | E.G.O. Elektro-Geraetebau Gmbh | Method for operating an induction heating device |
US8415594B2 (en) * | 2005-10-14 | 2013-04-09 | E.G.O. Elektro-Geraetebau Gmbh | Method for operating an induction heating device |
US20090078686A1 (en) * | 2007-09-25 | 2009-03-26 | Rayzr, Llc | Plasma arc ignition using a unipolar pulse |
US7982159B2 (en) | 2007-09-25 | 2011-07-19 | Kaliburn, Inc. | Plasma arc ignition using a unipolar pulse |
Also Published As
Publication number | Publication date |
---|---|
GB1463557A (en) | 1977-02-02 |
JPS49113242A (en)) | 1974-10-29 |
NL7402226A (en)) | 1974-08-21 |
IT1006250B (it) | 1976-09-30 |
AT335014B (de) | 1977-02-25 |
BE810982A (fr) | 1974-05-29 |
FR2218687B1 (en)) | 1977-06-10 |
PL90222B1 (en)) | 1977-01-31 |
ATA126874A (de) | 1976-06-15 |
ES423369A1 (es) | 1976-06-01 |
BR7401198D0 (pt) | 1974-10-29 |
RO68758A (ro) | 1981-09-24 |
CH561285A5 (en)) | 1975-04-30 |
CA1002613A (en) | 1976-12-28 |
DE2346053A1 (de) | 1974-09-05 |
DD107192A1 (en)) | 1974-07-12 |
LU69416A1 (en)) | 1974-05-29 |
FR2218687A1 (en)) | 1974-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3914575A (en) | Power supplying device for the operation of a gas discharge container | |
US3018409A (en) | Control of glow discharge processes | |
US3566243A (en) | High frequency power supply | |
US4792730A (en) | Circuit for interrupting arc discharge in a gas-discharge vessel | |
US4241285A (en) | Power supply for SMAW welding and stud welding | |
US2303453A (en) | Welding timer | |
US2632862A (en) | Regulating system | |
US3847584A (en) | Automatic variable phase shift control for welding glass sheets | |
US4394720A (en) | Auto-stabilized high power electric generator especially adapted for powering processes involving discharge in a rarefied gaseous atmosphere | |
US5218182A (en) | Constant current welding power supply with auxilary power source to maintain minimum output current levels | |
US4282569A (en) | Constant current welding power supply with an upslope starting current | |
US3665149A (en) | Direct-current arc welder | |
US2924750A (en) | Saturable core control means | |
US3181029A (en) | Process of and apparatus for the stabilization of high-frequency gas and glow discharges | |
US4325008A (en) | Clamp assisted cycle control regulating system | |
US2293079A (en) | Electric welding apparatus and method | |
US6226313B1 (en) | Power source circuit and its control for three-phase electric arc furnace to reduce flicker | |
US3129357A (en) | Voltage generator for electrolytic erosion processes | |
US4398080A (en) | Arc welding power source | |
US3459919A (en) | Multiarc torch energizing method and apparatus | |
US2250961A (en) | Electric valve circuits | |
US4048467A (en) | Apparatus for generating and regulating welding currents | |
US5124521A (en) | Method and apparatus for controlling welding current in resistance welding | |
US2921178A (en) | Method and apparatus for the performance of technical processes by means of electric glow discharges | |
GB2039167A (en) | Power source for arc welding |