US3914514A - Termination for resistor and method of making the same - Google Patents
Termination for resistor and method of making the same Download PDFInfo
- Publication number
- US3914514A US3914514A US38873473A US3914514A US 3914514 A US3914514 A US 3914514A US 38873473 A US38873473 A US 38873473A US 3914514 A US3914514 A US 3914514A
- Authority
- US
- United States
- Prior art keywords
- particles
- metal
- termination
- oxide
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/28—Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
- H01C17/281—Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
- H01C17/283—Precursor compositions therefor, e.g. pastes, inks, glass frits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- ABSTRACT A method of making a resistor termination comprising the steps of applying to the surface of a substrate and firing a mixture of glass frit and particles of a compound taken from the group consisting of ruthenium oxide, iridium oxide, and rhodium oxide and mixtures thereof, until the compound dissociates to form and sinter the metal.
- the mixture is fired at a temperature of at least 900C and preferably at 1,150C in a reducing or non-oxidizing atmosphere such as that provided by nitrogen.
- a glass film with metal particles therein strongly bonded to the substrate When cooled there is provided a glass film with metal particles therein strongly bonded to the substrate.
- the present invention relates to.a method of making a resistor termination and the termination produced thereby, and more particularly to a methodof making a conductive termination for a vitreous'en'amel resistor.
- Vitreous enamel resistors include 'a substrate having on a surface thereof, a film of glass and particlesof'a' metal borides, and nitrides, have been fired in .non-
- the glass solidifies to form the glass film with the conductive particles therein.
- the termination generally used for resistors of the type produced in a non-oxidizing atmosphere was a film of a metal, such as nickel or copper.
- a metal such as nickel or copper.
- the invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the composition possessing the features, properties, and the relation of constitutents which are exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
- FIGURE of the drawing is a sectional view of a resistor having the termination of the present invention.
- a resistor 10 which comprises a substrate 12 of an electrical insulating material, such as a ceramic, a termination film 14 on a surface of the substrate 12, and a resistance film 16 on the surface of the substrate and contacting the termination film 14.
- the resistance film 16 is a vitreous enamel resistance film which comprises a film of glass 2 having particles of a conductive material embedded therein and dispersedtherethroughout.
- the conductive material may be a'nyof the well known materials used in vitreous enamelresistors.
- the termination film 14 comprises a layer of glass having particles of either ruthenium, iridium, rhodium or mixtures thereof, embedded'in and dispersed therethroughout.
- the amount of the metal present in the termination film is preferably between 60% and 92% by volume or 79% to 99% by weight.
- the glass may be any glass having a suitable melting temperature, i.e., a melting temperature below that of the metal.
- the glasses most preferable are the borosilicate glasses, such as lead borosilicate, bismuth, cadmium, barium, calcium, or other alkaline earth borosilicates. If desired, up to 5% of the metal can be replaced by copper particles to improve the solderability of the termination film 14.
- the termination material comprises a mixture of a glass frit and particles of either ruthenium oxide, iridium oxide, rhodium oxide or mixtures of the oxides.
- the amount of the oxide included is dependent on the volume percent of the metal desired in I the termination film. The following table shows the amount of the oxide by weight percent needed to achieve 60% and 92% by volume of the metal .in the termination film. 1
- the glass frit and the metal oxide particles are thoroughly mixed together, such as by milling, in a suitable vehicle, such as butyl carbital acetate, a mixture of butyl carbitol acetate and toluol or any well known screening medium.
- a suitable vehicle such as butyl carbital acetate, a mixture of butyl carbitol acetate and toluol or any well known screening medium.
- the viscosity of the mixture is then adjusted for the desired manner of applying the material either by adding or removing some of the vehicle medium.
- copper is to be included in the termination film, it is included in the termination material either as copper particles or copper oxide particles.
- the termination material is then applied to the substrate 12 by any desired technique, such as brushing, dipping, spraying or screen stencil application.
- the coated film is then preferably dried, such as by heating at a low temperature, such as C for about 10 minutes.
- the film is heated at a higher temperature, about 400C or higher, to burn off the vehicle.
- the film is fired at a temperature at which the glass melts, generally at least 900C and preferably l,l50C, in an atmosphere, such as nitrogen, which allows dissociation of the metal oxide and sintering of the metal thus formed.
- the vitreous enamel resistance film 16 can be applied to the substrate in the manner well known in the art.
- the change in resistance shown in the Table is for the application of 50 watts per square for a period of 100 hours.
- the small change in resistance from the power loading and the low value of current noise for the resistors indicate good electrical continuity between the resistor and the termination film.
- a method of making a termination for refractory metal glaze resistors comprising the steps of:
- a termination film for an electrical refractory metal glaze resistor consisting of a glass film bonded to the surface of an insulating substrate, and particles of metal from the group consisting of ruthenium, iridium and rhodium, and mixtures thereof, embedded within and dispersed throughout the glass film, the metal particles being present in the amount of 60% to 92% by volume.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
- Conductive Materials (AREA)
- Details Of Resistors (AREA)
- Glass Compositions (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38873473 US3914514A (en) | 1973-08-16 | 1973-08-16 | Termination for resistor and method of making the same |
JP4922574A JPS5639001B2 (ja) | 1973-08-16 | 1974-05-01 | |
AU68763/74A AU488710B2 (en) | 1973-08-16 | 1974-05-09 | Termination for resistor and method of making same |
IT6850074A IT1014174B (it) | 1973-08-16 | 1974-05-13 | Terminale per resistori a strato sottile e procedimento per otte nerlo |
CA201,231A CA993969A (en) | 1973-08-16 | 1974-05-30 | Termination for resistor and method of making same |
FR7422322A FR2246037B1 (ja) | 1973-08-16 | 1974-06-26 | |
GB3366474A GB1465931A (en) | 1973-08-16 | 1974-07-30 | Electrical resistors |
DE19742438048 DE2438048C3 (de) | 1973-08-16 | 1974-08-07 | Verfahren zur Herstellung von lötbaren Anschlußschichten für elektrische Widerstände |
DK436774A DK139826B (da) | 1973-08-16 | 1974-08-15 | Loddebar elektrisk ledende terminalbelægning og fremgangsmåde til fremstilling af denne. |
GB4023475A GB1460320A (en) | 1973-08-16 | 1975-10-02 | Sodium specific glass compositions and electrodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38873473 US3914514A (en) | 1973-08-16 | 1973-08-16 | Termination for resistor and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US3914514A true US3914514A (en) | 1975-10-21 |
Family
ID=23535288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US38873473 Expired - Lifetime US3914514A (en) | 1973-08-16 | 1973-08-16 | Termination for resistor and method of making the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US3914514A (ja) |
JP (1) | JPS5639001B2 (ja) |
CA (1) | CA993969A (ja) |
DK (1) | DK139826B (ja) |
FR (1) | FR2246037B1 (ja) |
GB (2) | GB1465931A (ja) |
IT (1) | IT1014174B (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2650466A1 (de) * | 1975-11-24 | 1977-05-26 | Trw Inc | Elektrischer widerstand mit anschluessen und verfahren zur herstellung desselben |
US4065743A (en) * | 1975-03-21 | 1977-12-27 | Trw, Inc. | Resistor material, resistor made therefrom and method of making the same |
US4087778A (en) * | 1976-04-05 | 1978-05-02 | Trw Inc. | Termination for electrical resistor and method of making the same |
US4139832A (en) * | 1976-03-19 | 1979-02-13 | Hitachi, Ltd. | Glass-coated thick film resistor |
US4146759A (en) * | 1976-08-12 | 1979-03-27 | Nissan Motor Company, Limited | Ignition distributor |
US4155064A (en) * | 1976-08-27 | 1979-05-15 | Allen-Bradley Company | Electrical resistor element |
US4164067A (en) * | 1976-08-27 | 1979-08-14 | Allen-Bradley Company | Method of manufacturing electrical resistor element |
FR2431183A1 (fr) * | 1978-07-15 | 1980-02-08 | Sony Corp | Canon a electrons de tube de television ainsi qu'element de resistance pour ce canon a electrons |
US4213113A (en) * | 1978-09-08 | 1980-07-15 | Allen-Bradley Company | Electrical resistor element and method of manufacturing the same |
US4286251A (en) * | 1979-03-05 | 1981-08-25 | Trw, Inc. | Vitreous enamel resistor and method of making the same |
US4293838A (en) * | 1979-01-29 | 1981-10-06 | Trw, Inc. | Resistance material, resistor and method of making the same |
WO1982000233A1 (en) * | 1980-07-03 | 1982-01-21 | Western Electric Co | Thick film resistor circuits |
US4415486A (en) * | 1981-06-11 | 1983-11-15 | U.S. Philips Corporation | Resistive paste for a resistor body |
US4527050A (en) * | 1981-07-08 | 1985-07-02 | E.G.O. Elektro-Gerate Blanc Und Fischer | Hotplate |
US4622240A (en) * | 1985-11-12 | 1986-11-11 | Air Products And Chemicals, Inc. | Process for manufacturing thick-film electrical components |
US4651126A (en) * | 1985-05-02 | 1987-03-17 | Shailendra Kumar | Electrical resistor material, resistor made therefrom and method of making the same |
US4835038A (en) * | 1985-06-29 | 1989-05-30 | Kabushiki Kaisha Toshiba | Substrate coated with multiple thick films |
EP0364095A2 (en) * | 1988-10-11 | 1990-04-18 | DELCO ELECTRONICS CORPORATION (a Delaware corp.) | Post-termination process for thick-film resistors of printed-circuit boards |
US5185182A (en) * | 1990-12-10 | 1993-02-09 | Ford Motor Company | Method for inhibiting significant oxidation of a film on a substance during heating |
US8623776B2 (en) | 2008-02-26 | 2014-01-07 | Corning Incorporated | Silicate glasses having low seed concentration |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3304199A (en) * | 1963-11-12 | 1967-02-14 | Cts Corp | Electrical resistance element |
US3484284A (en) * | 1967-08-15 | 1969-12-16 | Corning Glass Works | Electroconductive composition and method |
US3573229A (en) * | 1968-01-30 | 1971-03-30 | Alloys Unlimited Inc | Cermet resistor composition and method of making same |
US3620840A (en) * | 1968-12-13 | 1971-11-16 | Methode Dev Co | Resistance material and resistance elements made therefrom |
US3640764A (en) * | 1968-09-26 | 1972-02-08 | Minnesota Mining & Mfg | Integral heating elements |
US3679607A (en) * | 1966-10-24 | 1972-07-25 | Int Nickel Co | Oxide resistor materials |
US3741780A (en) * | 1970-11-04 | 1973-06-26 | Du Pont | Metallizing compositions containing bismuthate glass-ceramic conductor binder |
US3776769A (en) * | 1970-08-27 | 1973-12-04 | Atomic Energy Authority Uk | Metallising pastes |
-
1973
- 1973-08-16 US US38873473 patent/US3914514A/en not_active Expired - Lifetime
-
1974
- 1974-05-01 JP JP4922574A patent/JPS5639001B2/ja not_active Expired
- 1974-05-13 IT IT6850074A patent/IT1014174B/it active
- 1974-05-30 CA CA201,231A patent/CA993969A/en not_active Expired
- 1974-06-26 FR FR7422322A patent/FR2246037B1/fr not_active Expired
- 1974-07-30 GB GB3366474A patent/GB1465931A/en not_active Expired
- 1974-08-15 DK DK436774A patent/DK139826B/da not_active IP Right Cessation
-
1975
- 1975-10-02 GB GB4023475A patent/GB1460320A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3304199A (en) * | 1963-11-12 | 1967-02-14 | Cts Corp | Electrical resistance element |
US3679607A (en) * | 1966-10-24 | 1972-07-25 | Int Nickel Co | Oxide resistor materials |
US3484284A (en) * | 1967-08-15 | 1969-12-16 | Corning Glass Works | Electroconductive composition and method |
US3573229A (en) * | 1968-01-30 | 1971-03-30 | Alloys Unlimited Inc | Cermet resistor composition and method of making same |
US3640764A (en) * | 1968-09-26 | 1972-02-08 | Minnesota Mining & Mfg | Integral heating elements |
US3620840A (en) * | 1968-12-13 | 1971-11-16 | Methode Dev Co | Resistance material and resistance elements made therefrom |
US3776769A (en) * | 1970-08-27 | 1973-12-04 | Atomic Energy Authority Uk | Metallising pastes |
US3741780A (en) * | 1970-11-04 | 1973-06-26 | Du Pont | Metallizing compositions containing bismuthate glass-ceramic conductor binder |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065743A (en) * | 1975-03-21 | 1977-12-27 | Trw, Inc. | Resistor material, resistor made therefrom and method of making the same |
DE2650466A1 (de) * | 1975-11-24 | 1977-05-26 | Trw Inc | Elektrischer widerstand mit anschluessen und verfahren zur herstellung desselben |
FR2332600A1 (fr) * | 1975-11-24 | 1977-06-17 | Trw Inc | Resistance electrique a terminaison en couche mince et son procede de realisation |
US4139832A (en) * | 1976-03-19 | 1979-02-13 | Hitachi, Ltd. | Glass-coated thick film resistor |
US4087778A (en) * | 1976-04-05 | 1978-05-02 | Trw Inc. | Termination for electrical resistor and method of making the same |
US4146759A (en) * | 1976-08-12 | 1979-03-27 | Nissan Motor Company, Limited | Ignition distributor |
US4155064A (en) * | 1976-08-27 | 1979-05-15 | Allen-Bradley Company | Electrical resistor element |
US4164067A (en) * | 1976-08-27 | 1979-08-14 | Allen-Bradley Company | Method of manufacturing electrical resistor element |
FR2431183A1 (fr) * | 1978-07-15 | 1980-02-08 | Sony Corp | Canon a electrons de tube de television ainsi qu'element de resistance pour ce canon a electrons |
US4213113A (en) * | 1978-09-08 | 1980-07-15 | Allen-Bradley Company | Electrical resistor element and method of manufacturing the same |
US4293838A (en) * | 1979-01-29 | 1981-10-06 | Trw, Inc. | Resistance material, resistor and method of making the same |
US4286251A (en) * | 1979-03-05 | 1981-08-25 | Trw, Inc. | Vitreous enamel resistor and method of making the same |
WO1982000233A1 (en) * | 1980-07-03 | 1982-01-21 | Western Electric Co | Thick film resistor circuits |
US4316920A (en) * | 1980-07-03 | 1982-02-23 | Bell Telephone Laboratories, Incorporated | Thick film resistor circuits |
US4415486A (en) * | 1981-06-11 | 1983-11-15 | U.S. Philips Corporation | Resistive paste for a resistor body |
US4527050A (en) * | 1981-07-08 | 1985-07-02 | E.G.O. Elektro-Gerate Blanc Und Fischer | Hotplate |
US4651126A (en) * | 1985-05-02 | 1987-03-17 | Shailendra Kumar | Electrical resistor material, resistor made therefrom and method of making the same |
US4835038A (en) * | 1985-06-29 | 1989-05-30 | Kabushiki Kaisha Toshiba | Substrate coated with multiple thick films |
US4622240A (en) * | 1985-11-12 | 1986-11-11 | Air Products And Chemicals, Inc. | Process for manufacturing thick-film electrical components |
US5164698A (en) * | 1988-10-11 | 1992-11-17 | Delco Electronics Corporation | Post-termination apparatus and process for thick film resistors of printed circuit boards |
EP0364095A3 (en) * | 1988-10-11 | 1990-11-07 | DELCO ELECTRONICS CORPORATION (a Delaware corp.) | Post-termination process for thick-film resistors of printed-circuit boards |
EP0364095A2 (en) * | 1988-10-11 | 1990-04-18 | DELCO ELECTRONICS CORPORATION (a Delaware corp.) | Post-termination process for thick-film resistors of printed-circuit boards |
US5169679A (en) * | 1988-10-11 | 1992-12-08 | Delco Electronics Corporation | Post-termination apparatus and process for thick film resistors of printed circuit boards |
US5185182A (en) * | 1990-12-10 | 1993-02-09 | Ford Motor Company | Method for inhibiting significant oxidation of a film on a substance during heating |
US8623776B2 (en) | 2008-02-26 | 2014-01-07 | Corning Incorporated | Silicate glasses having low seed concentration |
US9073779B2 (en) | 2008-02-26 | 2015-07-07 | Corning Incorporated | Fining agents for silicate glasses |
US10040715B2 (en) | 2008-02-26 | 2018-08-07 | Corning Incorporated | Silicate glasses having low seed concentration |
US10626042B2 (en) | 2008-02-26 | 2020-04-21 | Corning Incorporated | Fining agents for silicate glasses |
Also Published As
Publication number | Publication date |
---|---|
JPS5053896A (ja) | 1975-05-13 |
GB1460320A (en) | 1977-01-06 |
FR2246037A1 (ja) | 1975-04-25 |
DE2438048B2 (de) | 1977-06-16 |
IT1014174B (it) | 1977-04-20 |
GB1465931A (en) | 1977-03-02 |
JPS5639001B2 (ja) | 1981-09-10 |
DK436774A (ja) | 1975-04-28 |
DE2438048A1 (de) | 1975-02-27 |
CA993969A (en) | 1976-07-27 |
DK139826B (da) | 1979-04-23 |
FR2246037B1 (ja) | 1978-10-27 |
DK139826C (ja) | 1979-10-01 |
AU6876374A (en) | 1975-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3914514A (en) | Termination for resistor and method of making the same | |
US4286251A (en) | Vitreous enamel resistor and method of making the same | |
US4065743A (en) | Resistor material, resistor made therefrom and method of making the same | |
US3052573A (en) | Resistor and resistor composition | |
US4215020A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
KR890001785B1 (ko) | 저항값을 갖는 개량된 저항체 잉크 | |
US3794518A (en) | Electrical resistance material and method of making the same | |
US4060663A (en) | Electrical resistor glaze composition and resistor | |
US3537892A (en) | Metallizing composition conductor and method | |
US4316942A (en) | Thick film copper conductor circuits | |
US4168344A (en) | Vitreous enamel material for electrical resistors and method of making such resistors | |
US3776772A (en) | Electrical resistance composition and resistance element | |
US4057777A (en) | Termination for electrical resistor and method of making same | |
US3503801A (en) | Vitreous enamel resistance material and resistor made therefrom | |
US4397915A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4322477A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US2837487A (en) | Resistor enamel and resistor made therefrom | |
EP0047071B1 (en) | Thick film conductor employing nickel oxide | |
US4299887A (en) | Temperature sensitive electrical element, and method and material for making the same | |
US4378409A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4293838A (en) | Resistance material, resistor and method of making the same | |
US3180841A (en) | Resistance material and resistor made therefrom | |
RU2086027C1 (ru) | Способ изготовления толстопленочных резисторов | |
US4205298A (en) | Resistor material, resistor made therefrom and method of making the same | |
US4137519A (en) | Resistor material, resistor made therefrom and method of making the same |