US3909657A - Photon conditioning of gaseous discharge display panel including phosphor means emitting UV radiation - Google Patents
Photon conditioning of gaseous discharge display panel including phosphor means emitting UV radiation Download PDFInfo
- Publication number
- US3909657A US3909657A US286016A US28601672A US3909657A US 3909657 A US3909657 A US 3909657A US 286016 A US286016 A US 286016A US 28601672 A US28601672 A US 28601672A US 3909657 A US3909657 A US 3909657A
- Authority
- US
- United States
- Prior art keywords
- phosphor means
- radiation
- discharge
- gaseous
- phosphor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 230000005855 radiation Effects 0.000 title claims abstract description 61
- 230000003750 conditioning effect Effects 0.000 title claims abstract description 34
- 239000007789 gas Substances 0.000 claims description 54
- 238000003491 array Methods 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 15
- 239000003989 dielectric material Substances 0.000 claims description 13
- 230000005284 excitation Effects 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 8
- 229910052693 Europium Inorganic materials 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 230000001143 conditioned effect Effects 0.000 claims description 4
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 4
- 235000019352 zinc silicate Nutrition 0.000 claims description 4
- 239000004110 Zinc silicate Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- TUYGDFTVFXMZQB-UHFFFAOYSA-N nonastrontium;hexaborate Chemical group [Sr+2].[Sr+2].[Sr+2].[Sr+2].[Sr+2].[Sr+2].[Sr+2].[Sr+2].[Sr+2].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] TUYGDFTVFXMZQB-UHFFFAOYSA-N 0.000 claims description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- QWVYNEUUYROOSZ-UHFFFAOYSA-N trioxido(oxo)vanadium;yttrium(3+) Chemical compound [Y+3].[O-][V]([O-])([O-])=O QWVYNEUUYROOSZ-UHFFFAOYSA-N 0.000 claims description 3
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims description 3
- FGZBFIYFJUAETR-UHFFFAOYSA-N calcium;magnesium;silicate Chemical compound [Mg+2].[Ca+2].[O-][Si]([O-])([O-])[O-] FGZBFIYFJUAETR-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical group [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 claims 1
- 208000028659 discharge Diseases 0.000 description 75
- 210000004027 cell Anatomy 0.000 description 32
- 239000004020 conductor Substances 0.000 description 29
- 239000011521 glass Substances 0.000 description 10
- 239000011777 magnesium Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 230000006386 memory function Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- -1 zinc silicates Chemical class 0.000 description 2
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical class [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-VVKOMZTBSA-N Dideuterium Chemical compound [2H][2H] UFHFLCQGNIYNRP-VVKOMZTBSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XEHUYCFKGDBCDL-UHFFFAOYSA-N S(=O)(=O)(O)[Se]S(=O)(=O)O.[Zn] Chemical class S(=O)(=O)(O)[Se]S(=O)(=O)O.[Zn] XEHUYCFKGDBCDL-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- GNZXSJGLMFKMCU-UHFFFAOYSA-N [Mg+2].[O-][Ge](F)=O.[O-][Ge](F)=O Chemical compound [Mg+2].[O-][Ge](F)=O.[O-][Ge](F)=O GNZXSJGLMFKMCU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- KSUWPYXSYBTWFG-UHFFFAOYSA-N cadmium(2+);diborate Chemical class [Cd+2].[Cd+2].[Cd+2].[O-]B([O-])[O-].[O-]B([O-])[O-] KSUWPYXSYBTWFG-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- FJBFPHVGVWTDIP-UHFFFAOYSA-N dibromomethane Chemical compound BrCBr FJBFPHVGVWTDIP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical class [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002311 subsequent effect Effects 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- UQMZPFKLYHOJDL-UHFFFAOYSA-N zinc;cadmium(2+);disulfide Chemical class [S-2].[S-2].[Zn+2].[Cd+2] UQMZPFKLYHOJDL-UHFFFAOYSA-N 0.000 description 1
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
Definitions
- ABSTRACT There is disclosed the conditioning of a gaseous discharge phosphor color display device containing an ionizable gaseous medium and at least two different phosphors, each phosphor being excited by ultraviolet radiation emitted from the gaseous discharge or another source, one phosphor emitting light in the visible range for viewing of the display and another phosphor emitting radiation in the near UV non-visible range for the efficient photon conditioning of the gaseous medium without exciting the other phosphor.
- This invention relates to gas discharge devices, especially multiple gas discharge display/memory devices which have an electrical memory and which are capable of producing a visual display or representation of data such as numerals, letters, radar displays, aircraft displays, binary words, educational displays, etc.
- Multiple gas discharge display and/or memory panels of one particular type with which the present invention is concerned are characterized by an ionizable gaseous medium, usually a mixture of at least two gases at an appropriate gas pressure, in a thin gas chamber or space between a pair of opposed dielectric charge storage members which are backed by conductor (electrode) members, the conductor members backing each dielectric member typically being appropriately oriented so as to define a plurality of discrete gas discharge units or cells.
- an ionizable gaseous medium usually a mixture of at least two gases at an appropriate gas pressure
- the discharge cells are additionally defined by surrounding or confining physical structure such as apertures in perforated glass plates and the like so as to be physically isolated relative to other cells.
- charges electrospray, ions
- the discharge cells are additionally defined by surrounding or confining physical structure such as apertures in perforated glass plates and the like so as to be physically isolated relative to other cells.
- charges electrospray, ions
- the confining physical structure charges (electrons, ions) produced upon ionization of the elemental gas volume of a selected discharge cell, when proper alternating operating potentials are applied to selected conductors thereof, are collected upon the surfaces of the dielectric at specifically defined locations and constitute an electrical field opposing the electrical field which created them so as to terminate the discharge for the remainder of the half cycle and aid in the initiation of a discharge on a succeeding opposite half cycle of applied voltage, such charges as are stored constituting an electrical memory.
- the dielectric layers prevent the passage of substantial conductive current from the conductor members to the gaseous medium and also serve as collecting surfaces for ionized gaseous medium charges (electrons, ions) during the alternate half cycles of the AC. operating potentials, such charges collecting first on one elemental or discrete dielectric surface area on alternate half cycles to constitute an electrical memory.
- a continuous volume of ionizable gas is confined between a pair of dielectric surfaces backed by conductor arrays typically forming matrix elements.
- the cross conductor arrays may be orthogonally related (but any other configuration of conductor arrays may be used) to define a plurality of opposed pairs of charge storage areas on the surfaces of the dielectric bounding or confining the gas.
- the number of elemental or discrete areas will be twice the number of such elemental discharge cells.
- the panel may comprise a so-called monolithic structure in which the conductor arrays are created on a single substrate and wherein two or more arrays are separated from each other and from the gaseous medium by at least one insulating member.
- the gas discharge takes place not between two opposing electrodes, but between two contiguous or adjacent electrodes on the same substrate; the gas being confined between the substrate and an outer retaining wall.
- a gas discharge device wherein some of the conductive or electrode members are in direct contact with the gaseous medium and the remaining electrode members are appropriately insulated from such gas, i.e., at least one insulated electrode.
- the conductor arrays may be shaped otherwise. Accordingly, while the preferred conductor arrangement is of the crossed grid type as discussed herein, it is likewise apparent that where a maximal variety of two dimensional display patterns is not necessary, as where specific standardized visual shapes (e.g., numerals, letters, words, etc.) are to be formed and image resolution is not critical, the conductors may be shaped accordingly, i.e., a segmented display.
- specific standardized visual shapes e.g., numerals, letters, words, etc.
- the gas is one which produces visible light or invisible radiation which stimulates a phosphor and a copious supply of charges (ions and electrons) during discharge.
- gases and gas mixtures have been utilized as the gaseous medium in a gas discharge device.
- gases include C0; C0 halogens; nitrogen; Nl-I oxygen; water vapor; hydrogen; hydrocarbons; P 0 boron fluoride, acid fumes; TiCl.,; Group VIII gases; air; H 0 vapors of sodium, mercury, thallium, cadmium, rubidium, and cesium; carbon disulfide, laughing gas; H 5; deoxygenated air; phosphorus vapors; C H CH naphthalene vapor; anthracene; freon; ethyl alcohol; methylene bromide; heavy hydrogen; electron attaching gases; sulfur hexafluoride; tritium; radioactive gases; and the rare or inert gases.
- the gaseous medium comprises at least one rare gas, more preferably at least two, selected from helium, neon, argon, krypton, or xe-
- the gas pressure and the electric field are sufficient to laterally confine charges generated ondischarge within elemental or discrete dielectric areas within the perimeter of such areas, especially in a panel containing non-isolated discharge cells.
- the gas pressure and the electric field are sufficient to laterally confine charges generated ondischarge within elemental or discrete dielectric areas within the perimeter of such areas, especially in a panel containing non-isolated discharge cells.
- the space between the dielectric surfaces occupied by the gas is such as to permit photons generated on discharge in a selected discrete or elemental volume of gas to pass freely through the gas space and strike surface areas of dielectric remote from the selected discrete volumes, such remote, photon struck dielectric surface areas thereby emitting electrons so as to condition at least one elemental volume other than the elemental volume in which the photons originated.
- the allowable distance or spacing between the dielectric surfaces depends, inter alia, on the frequency of the alternating current supply, the distance typically being greater for lower frequencies.
- V is the half amplitude of the smallest sustaining voltage signal which results in a discharge every half cycle, but at which the cell is not bi-stable and, V is the half amplitude of the minimum applied voltage sufficient to sustain discharges once initiated.
- the basic electrical phenomenon utilized in this invention is the generation of charges (ions and electrons) alternately storable at pairs of opposed or facing discrete points or areas on a pair of dielectric surfaces backed by conductors con nected to a source of operating potential.
- Such stored charges result in an electrical field opposing the field produced by the applied potential that created them and hence operate to terminate ionization in the elemental gas volume between opposed or facing discrete points or areas of dielectric surface.
- sustain a discharge means producing a sequence of momentary discharges, at least one discharge for each half cycle of applied alternating sustaining voltage, once the elemental gas volume has been fired, to maintain alternate storing of charges at pairs of opposed discrete areas on the dielectric surfaces.
- a cell is in the on state when a quantity of charge is stored in the cell such that on each half cycle of the sustaining voltage, a gaseous discharge is produced.
- sustaining voltage In addition to the sustaining voltage, other voltages may be utilized to operate the panel, such as firing, addressing, and writing voltages.
- a firing voltage is any voltage, regardless of source-required to discharge a cell. Such voltage may be completely external in origin or may be comprised of internal cell wall voltage in combination with externally originated voltages.
- An addressing voltage is a voltage produced on the panel X-Y electrode coordinates such that at the selected cell or cells, the total voltage applied across the cell is equal to or greater than the firing voltage whereby the cell is discharged.
- a writing voltage is an addressing voltage of sufficient magnitude to make it probable that on subse quent sustaining voltage half cycles, the cell will be in the on state".
- One such means of panel conditioning comprises a so-called electronic process whereby an electronic conditioning signal or pulse is periodically applied to all of the panel discharge cells, as disclosed for. example in British patent specification No. 1,161,832, page 8, lines 56 to 76. Reference is also made to US. Patent No. 3,559,190 and The Device Characteristics of the Plasma Display Element by Johnson, et al., IEEE Transactions On Electron Devices, September, 1971.
- electronic conditioning is self-conditioning and is only effective after a discharge cell has been previously conditioned; that is, electronic conditioning involves periodically discharging a cell and is therefore a way of maintaining the presence of free electrons. Accordingly, one cannot wait too long between the peri-v odically applied conditioning pulses since there must be at least one free electron present in order to discharge and condition a cell.
- Another conditioning method comprises the use of external radiation, such as flooding part or all of the gaseous medium of the panel with ultraviolet radiation.
- This external conditioning method has the obvious disadvantage that it is not always convenient or possible to provide external radiation to a panel, especially if the panel is in a remote position.
- an external UV source requires auxiliary equipment. Accordingly, the. use of internal conditioning is generally preferred.
- One internal conditioning means comprises using .internal radiation, such as by the inclusion of .a radioactive material.
- Another means of internal conditioning comprises using one or more so-called pilot discharge cells. in the on state for the generation of photons.
- This is particularly effective in a so-called open cell construction (as described in the Baker, et al. patent) wherein the space between the dielectric surfaces occupied by the gas is such as to permit photons generated on discharge in a selected discrete or elemental volume of gas (discharge. cell) to pass freely through the panel gas space so as to condition other and more remote elemental volumes of other discharge units.
- the pilot cells one may use other sources of photons internal to the panel.
- Internal photon conditioning may be unreliable when a given discharge unit to be addressed is remote in distance relative to the conditioning source, e.g., the pilot cell. Accordingly, a multiplicity of pilot cells may be required for the conditioning of a panelhaving a large geometric area.
- the panel matrix border (perimeter) is comprised of a plurality of such pilot cells.
- phosphors may be appropriately positioned within the device so as to be excited by radiation from the gas discharge of the device.
- phosphors can be positioned on or be embedded in one or more charge storage dielectric surfaces, such as disclosed in copending US. patent appli-.
- the presence of the phosphors within the device can be utilized to provide color display, the color being the result of radiation emitted by an excited phosphor alone or in combination with radiation emitted by the gas discharge, such as disclosed in copending U.S. patent application Ser. No. 199,802, filed Nov. 17, 1971 by Felix H. Brown and Maclin S. Hall and assigned to the same assignee as the instant application.
- the photon conditioning of a gaseous discharge phosphor color display device which comprises providing within the device at least two different phosphors, each phosphor being excited by ultraviolet radiation emitted from the gaseous discharge or another source, one phosphor emitting light in the visible range for viewing of the display and another phosphor emitting radiation in the near UV non-visible range for the efficient photon conditioning of the gaseous medium without exciting the other phosphor.
- a gaseous display/memory device of the Baker, et al. type at least one phosphor which absorbs radiation in the vacuum UV range and emits radiation in the near UV range and at least one other phosphor which is excited by vacuum UV range, but is not excited by radiation in the near UV range and emits radiation in the visible range.
- the phosphor is photoluminescent.
- the term photoluminescent phosphor includes quite generally all solid and liquid, inorganic and organic materials capable of converting an imput of absorbed photons into an output of photons of different energy, the output comprising visible light of a brightness and intensity sufficient for visual display.
- Typical photoluminescent phosphors contemplated include, not by way of limitation, both activated and non-activated compounds, e.g., the sulfides such as zone sulfides, zinc-cadmium sulfides, zinc-sulfoselenides; the silicates such as zinc silicates, zinc beryllo-silicates, Mg silicates; the tungstates such as calcium tungstates, magnesium tungstates; the phosphates, borates, and arsenates such as calcium phosphates, cadmium borates, zinc borates, magnesium arsenates; and the oxides and halides such as self-activated zinc oxide, magnesium fluorides, magnesium fluorogermanate.
- Typical activators include, not by way of limitation, Mn, Eu, Ce, Pb, Mg, etc.
- One preferred phosphor which absorbs radiation in the vacuum UV-range and emits radiation in the near UV range is Sylvania Phosphor Type 2061 which comprises strontium hexaborate activated by lead. It is excited (absorbs) by a wavelength of about 240 to 280 nanometers (peak of 273) and has an emission spectrum of about 280 to 320 nanometers (peak of 291
- Another such phosphor is P16 as defined by JEDEC Electrode Tube Council, Publication No. 16A of January, 1966, revised February, 1969. This phosphor comprises a Ca-Mg silicate activated by cerium.
- Examples of phosphors which absorb radiation in the vacuum UV range but not in the near UV range and emit radiation in the visible range include zinc silicate activated with Mn; calcium tungstate activated with Pb; and yttrium vanadate or oxide activated with Eu.
- FIG. 1 is a partially cut-away plan view of a gaseous discharge display/memory panel as connected to a diagrammatically illustrated source of operating potentials.
- FIG. 2 is a cross-sectional view (enlarged, but not to proportional scale since the thickness of the gas volume, dielectric members and conductor arrays have been enlarged for purposes of illustration) taken on lines 2 2 of FIG. 1.
- FIG. 3 is an explanatory partial cross-sectional view similar to FIG. 2 (enlarged, but not to proportional scale).
- FIG. 4 is an isometric view of a gaseous discharge display/memory panel. I i
- the invention utilizes a pair of dielectric films 10 and 1 l separated by a thin layer or volume of a gaseous discharge medium 12, the medium 12 producing a copious supply of charges (ions and electrons) which are alternately collectible on the surfaces of the dielectric members at opposed or facing elemental or discrete areas X and Y defined by the conductor matrix on nongas-contacting sides of thedielectric members, each dielectric member presenting large open surface areas and a plurality of pairs of elemental X and Y areas. While the electrically operative structural members such as the dielectric members 10 and 11 and conductor matrixes l3 and 14 are all relatively thin (being exaggerated in thickness in the drawings) they are formed on and supported by rigid nonconductive support members 16 and 17 respectively.
- nonconductive support members 16 and 17 pass light produced by discharge in the elemental gas volumes.
- they are transparent glass members and these members essentially define the'overall thickness and strength of the panel.
- the thickness of gas layer 12 as determined by spacer 15 is usually under 10 mils and preferably about 3 to 6 mils
- dielectric layers 10 and 11 over the conductors at the elemental or discrete X and Y areas
- conductors 13 and 14 about 8,000 angstroms thick.
- support members 16 and 17 are much thicker (particularly in larger panels) so as to provide as much ruggedness as may be desired to compensate for stresses inthe panel.
- Support members 16 and 17 also serve as heat sinks for heat generated by discharges andthus minimize the effect of temperature on operation of the device. If it is desired that only the memory function'be utilized, then none of the members need be transparent to light.
- support members 16 and 17 are not critical.
- the main function of support members 16 and 17 is to provide mechanical support and strength for the entire panel, particularly with respect to pressure differential acting on the panel and thermal shock. As noted earlier, they should have thermal expansion characteristics substantially matching the thermal expansion chacteristics of dielectric layers 10 and 11. Ordinary A inch commercial grade soda lime plate glasseshave been used for this purpose. Other glasses such as low expansion glasses or transparent devitrified glasses can be used provided they can withstand processing and have expansion characteristics substantially matching expansion characteristics of the dielectric coatings 10 and 11. For given pressure differentials and thickness of plates, the stress and deflection of plates may be determined by following standard stress and strain formulas (see R.'J. Roark, Formulas for Stress and Strain, McGraw-Hill, 1954),
- Spacer may be made of the same glass material as dielectric films 10 and 11 and may be an integral rib formed on one of the dielectric members and fixed to the other members to form a bakeable hermetic seal enclosing and confining the ionizable gas volume 12.
- a separate final hermetic seal may be effected by a high strength devitrified glass sealant 15S.
- Tubulation 18 is provided for exhausting the space between'dielectric members 10 and 11 and filling that space with the volume of ionizable gas.
- small beadlike solder glass spacers such as shown at 15B may be located between conductor intersections and fused to dielectric member 10 and 11 to aid in withstanding stress on the panel and maintain uniformity of thickness of gas volume 12.
- Conductor arrays 13 and 14 may be formed on support members 16 and 17 by a number of well-known processes, such as photoetching, vacuum deposition, stencil screening, etc. In the panel shown in FIG. 4, the center-to-center spacing of conductors in the respective arrays is about 17 mils.
- Transparent or semitransparent conductive materials such as tin oxide, gold or aluminum can be used to form the conductor arrays and should have a resistance less than 3000 ohms per line.
- Narrow opaque electrodes may alternately be used so that discharge light passes around the edges of the electrodes to the viewer. It is important to select a conductor material that is not attacked during processing by the dielectric material.
- conductor arrays 13 and 14 may be wires or filaments of copper, gold, silver or aluminum or any other conductive metal or material.
- 1 mil wire filaments are commercially available and maybe used in the invention.
- formed in situ conductor arrays are preferred since they may be more easily and uniformly placed on and adhered to the support plates 16 and 17.
- Dielectric layer members 10 and 11 are formed of an inorganic material and are preferably formed in situ as an adherent film or coating which is not chemically or physically effected during bake-out of the panel.
- One such material is a solder glass such as Kimble SG-68 manufactured by and commercially available from the assignee of the present invention.
- This glass has thermal expansion characteristics substantially matching the thermal expansion characteristics of certain soda-lime glasses, and can be used as the dielectric layer when the support members 16 and 17 are soda-lime glass plates.
- Dielectric layers 10 and 11 must be smooth and have a dielectric, strength of about 1000 v. and be electrically homogeneous on a microscopic scale (e.g., no cracks, bubbles, crystals, dirt, surface films, etc.).
- the surfaces of dielectric layers 10 and 11 should be good photoemitters of electrons in a baked out condition.
- dielectric layers 10 and 11 may be overcoated with materials designed to produce good electron emission; as in U.S. Pat. No. 3,634,719, issued to Roger B Ernsthausen.
- at least one of dielectric layers 10 and 11 should pass light generated on discharge and be transparent or translucent, and preferably, both layers are optically transparent.
- the preferred spacing between surfaces of the dielectric films is about 3 to 6 mils with conductor arrays 13 and 14 having center-to-center spacing of about 17 mils.
- conductors 14-1 14-4 and support member 17 extend beyond the enclosed gas volume 12 and are exposed for the purpose of making electrical connection to interface and addressing circuitry 19.
- the ends of conductors 13-1 13-4 on support member 16 extend beyond the enclosed gas volume l2 and are exposed for the purpose of making electrical connection to interface and addressing circuitry 19.
- the interface and addressing circuitry or system 19 may be relatively inexpensive line scan systems or the somewhat more expensive high speed random access sytems. In either case, it is to be noted that a lower amplitude of operating potentials helps to reduce problems associated with the interface circuitry between the addressing system and the display/memory panel, per se. Thus, by providing a panel having greater uniformity in the discharge characteristics throughout the panel, tolerances and operating characteristics of the panel with which the interfacing circuitry cooperate, are made less rigid.
- a multiple gaseous discharge display device characterized by an ionizable gaseous medium in a gas chamber formed by a sealed envelope and a pair of spaced arrays of electrode members, the envelope comprising a dielectric material and including at least a transparent portion for viewing the display, the electrode members of one array being transversely oriented with respect to the electrode members of the other array so as to define a plurality of discharge units, said discharge units being in open photonic communication,
- gaseous medium being capable of being placed radiation in the near UV non-visible range upon excita-.
- UV non-visible range emitted by said first recited phosphor means UV non-visible range emitted by said first recited phosphor means.
- both said first recited phosphor means and said second phosphor means are excitable by radiation in the vacuum UV range emitted by a gaseous discharge within said chamber.
- a multiple gaseous discharge display/memory device characterized by an ionizable gaseous medium in a gas chamber formed by a pair of opposed dielectric material charge storage members, each backed by an array of electrode members, the electrode members of one array being transversely oriented with respect to the electrode members of the other array so as to define a plurality of discharge units, said discharge units being in open photonic communication, and said dielectric material charge storage members being adapted to emit electrons when struck by photons to condition said gaseous.
- said device further comprises at least first and second phosphor means, each said phosphor means being excitable by radiation emitted by a gaseous discharge within said chamber, said first phosphor means emitting radiation in the near UV non-visible range upon excitation for efficient photon conditioning of said gaseous medium, and said second pl sphor means emitting light in the visible range upon excitation for viewing of the display and not being excitable by said radiation in the near UV non-visible range emitted by said first phosphor means.
- both said phosphor means are excitable by radiation in the vacuum UV range emitted by a gaseous discharge within said chamber.
- said first phosphor means which emits in the near UV range is selected from strontium hexaborate activated by lead and calcium-magnesium silicate activated by cerium.
- said second phosphor means which emits radiation in the visible range is selected from zinc silicate activated with manganese, calcium tungstate activated with lead, yttrium vanadate activated with europium and yttrium oxide activated with europium.
- the gaseous medium consists essentially of at least one rare gas selected from Ne, Ar, Kr, and Xe.
- a multiple gaseous discharge display devices characterized by an ionizable gaseous medium in a gas chamber formed by a sealed envelope and a pair of spaced arrays of electrode members, the envelope comprising a dielectric material and including at least a transparent portion for viewing the display, the electrode members of one array being transversely oriented with respect to the electrode members of the other array so as to define a plurality of discharge units, said discharge units being in open photonic communication, and the gaseous medium being capable of being placed in a conditioned state by ions generated by photons, the improvement wherein the photon conditioning of the ionizable gaseous medium is improved by providing at least first and second phosphor means within said chamber and selectively exciting each said phosphor means by radiation emitted from at least one gaseous discharge within said chamber to cause said first phosphor means to emit radiation in the near UV non-visible range to efficiently photonically condition the gaseous medium and to cause said second phosphor means to emit light in the visible range for viewing of the display
- a multiple gaseous discharge display/memory device characterized by an ionizable gaseous medium in a gas chamber formed by a pair of opposed dielectric material charge storage members, each baked by an array of electrode members, the electrode members of one array being transversely oriented with respect to the electrode members of the other array so as to define a plurality of discharge units, said discharge units being in open photonic communication, and said dielectric material charge storage members being adapted to emit electrons when struck by photons to condition said gaseous medium
- the photon conditioning of the ionizable gaseous medium is improved by providing at least first and second phosphor means within said chamber and selectively exciting each said phosphor means by radiation emitted from at least one gaseous discharge within said chamber to cause said first phosphor means to emit radiation in the near UV non-visible range for efficiently photonically condition said gaseous medium and to cause said second phosphor means to emit light in the visible range for viewing of the display, said second phosphor means not being excit
- a dielectric body for a gaseous discharge display/memory device said dielectric body containing at least first and second phosphor means, each said phosphor means being sensitive to and excitable by radiation emitted by a gaseous discharge, said first phosphor means emitting radiation in the near UV non-visible range upon excitation for efficient photon conditioning of a gaseous medium and said second phosphor means emitting light in the visible range upon excitation for viewing of a display and not being excitable by said radiation in the near UV nonvisible range emitted by said first phosphor means.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Gas-Filled Discharge Tubes (AREA)
- Luminescent Compositions (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US286016A US3909657A (en) | 1972-09-05 | 1972-09-05 | Photon conditioning of gaseous discharge display panel including phosphor means emitting UV radiation |
| JP48075200A JPS4965781A (en:Method) | 1972-09-05 | 1973-07-03 | |
| IT51552/73A IT989940B (it) | 1972-09-05 | 1973-07-19 | Perfezionamento nei pannelli di presentazione memoria a scarica in gas |
| DE19732343244 DE2343244A1 (de) | 1972-09-05 | 1973-08-28 | Mehrfach-gasentladungs-anzeigevorrichtung |
| GB4145673A GB1411329A (en) | 1972-09-05 | 1973-09-04 | Gaseous discharge display devices |
| CA180,277A CA988986A (en) | 1972-09-05 | 1973-09-04 | Photon conditioning of gaseous discharge display device |
| FR7331900A FR2198252B1 (en:Method) | 1972-09-05 | 1973-09-04 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US286016A US3909657A (en) | 1972-09-05 | 1972-09-05 | Photon conditioning of gaseous discharge display panel including phosphor means emitting UV radiation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3909657A true US3909657A (en) | 1975-09-30 |
Family
ID=23096685
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US286016A Expired - Lifetime US3909657A (en) | 1972-09-05 | 1972-09-05 | Photon conditioning of gaseous discharge display panel including phosphor means emitting UV radiation |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3909657A (en:Method) |
| JP (1) | JPS4965781A (en:Method) |
| CA (1) | CA988986A (en:Method) |
| DE (1) | DE2343244A1 (en:Method) |
| FR (1) | FR2198252B1 (en:Method) |
| GB (1) | GB1411329A (en:Method) |
| IT (1) | IT989940B (en:Method) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4070598A (en) * | 1976-11-08 | 1978-01-24 | General Electric Company | Fluorescent lamp with second phosphor layer |
| US6398970B1 (en) * | 1999-04-28 | 2002-06-04 | U.S. Philips Corporation | Device for disinfecting water comprising a UV-C gas discharge lamp |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5919412B2 (ja) * | 1978-01-30 | 1984-05-07 | 三菱電機株式会社 | けい光ランプ |
| JPH0766742B2 (ja) * | 1990-04-25 | 1995-07-19 | 岡谷電機産業株式会社 | ガス放電表示パネル |
| JP2001228823A (ja) * | 1999-12-07 | 2001-08-24 | Pioneer Electronic Corp | プラズマディスプレイ装置 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3499167A (en) * | 1967-11-24 | 1970-03-03 | Owens Illinois Inc | Gas discharge display memory device and method of operating |
| US3513327A (en) * | 1968-01-19 | 1970-05-19 | Owens Illinois Inc | Low impedance pulse generator |
| US3551721A (en) * | 1967-09-11 | 1970-12-29 | Burroughs Corp | Gas-filled display device having capacitive envelope |
| US3559190A (en) * | 1966-01-18 | 1971-01-26 | Univ Illinois | Gaseous display and memory apparatus |
| US3671938A (en) * | 1969-05-02 | 1972-06-20 | Bell Telephone Labor Inc | Gaseous display device |
| US3725713A (en) * | 1972-01-10 | 1973-04-03 | Burroughs Corp | Multi-position gaseous discharge display panel |
| US3743879A (en) * | 1970-12-31 | 1973-07-03 | Burroughs Corp | Cold cathode display panel having a multiplicity of gas cells |
-
1972
- 1972-09-05 US US286016A patent/US3909657A/en not_active Expired - Lifetime
-
1973
- 1973-07-03 JP JP48075200A patent/JPS4965781A/ja active Pending
- 1973-07-19 IT IT51552/73A patent/IT989940B/it active
- 1973-08-28 DE DE19732343244 patent/DE2343244A1/de active Pending
- 1973-09-04 CA CA180,277A patent/CA988986A/en not_active Expired
- 1973-09-04 FR FR7331900A patent/FR2198252B1/fr not_active Expired
- 1973-09-04 GB GB4145673A patent/GB1411329A/en not_active Expired
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3559190A (en) * | 1966-01-18 | 1971-01-26 | Univ Illinois | Gaseous display and memory apparatus |
| US3551721A (en) * | 1967-09-11 | 1970-12-29 | Burroughs Corp | Gas-filled display device having capacitive envelope |
| US3499167A (en) * | 1967-11-24 | 1970-03-03 | Owens Illinois Inc | Gas discharge display memory device and method of operating |
| US3513327A (en) * | 1968-01-19 | 1970-05-19 | Owens Illinois Inc | Low impedance pulse generator |
| US3671938A (en) * | 1969-05-02 | 1972-06-20 | Bell Telephone Labor Inc | Gaseous display device |
| US3743879A (en) * | 1970-12-31 | 1973-07-03 | Burroughs Corp | Cold cathode display panel having a multiplicity of gas cells |
| US3725713A (en) * | 1972-01-10 | 1973-04-03 | Burroughs Corp | Multi-position gaseous discharge display panel |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4070598A (en) * | 1976-11-08 | 1978-01-24 | General Electric Company | Fluorescent lamp with second phosphor layer |
| US6398970B1 (en) * | 1999-04-28 | 2002-06-04 | U.S. Philips Corporation | Device for disinfecting water comprising a UV-C gas discharge lamp |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2343244A1 (de) | 1974-03-14 |
| GB1411329A (en) | 1975-10-22 |
| FR2198252B1 (en:Method) | 1977-09-09 |
| CA988986A (en) | 1976-05-11 |
| FR2198252A1 (en:Method) | 1974-03-29 |
| JPS4965781A (en:Method) | 1974-06-26 |
| IT989940B (it) | 1975-06-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4048533A (en) | Phosphor overcoat | |
| US4494038A (en) | Gas discharge device | |
| US4126807A (en) | Gas discharge display device containing source of lanthanum series material in dielectric layer of envelope structure | |
| US3886393A (en) | Gas mixture for gas discharge device | |
| US3916245A (en) | Multiple gaseous discharge display/memory panel comprising rare gas medium and photoluminescent phosphor | |
| US4109176A (en) | Insulating dielectric for gas discharge device | |
| US3904915A (en) | Gas mixture for gas discharge device | |
| US4723093A (en) | Gas discharge device | |
| US3896327A (en) | Monolithic gas discharge display device | |
| US3863089A (en) | Gas discharge display and memory panel with magnesium oxide coatings | |
| US3786474A (en) | Conditioning and writing of multiple gas discharge panel | |
| US3925697A (en) | Helium-xenon gas mixture for gas discharge device | |
| US3846171A (en) | Gaseous discharge device | |
| US3909657A (en) | Photon conditioning of gaseous discharge display panel including phosphor means emitting UV radiation | |
| US4081712A (en) | Addition of helium to gaseous medium of gas discharge device | |
| US3846670A (en) | Multiple gaseous discharge display-memory panel having decreased operating voltages | |
| US3823394A (en) | Selective control of discharge position in gas discharge display/memory device | |
| US3903445A (en) | Display/memory panel having increased memory margin | |
| US4114064A (en) | Multiple gaseous discharge display/memory panel having improved voltage characteristics | |
| US3878422A (en) | Display of time-dependent vector information | |
| US3919577A (en) | Multiple gaseous discharge display/memory panel having thin film dielectric charge storage member | |
| US3942161A (en) | Selective control of discharge position in gas discharge display/memory device | |
| US4028578A (en) | Gas discharge dielectric containing a source of boron, gallium, indium, or thallium | |
| US3976823A (en) | Stress-balanced coating composite for dielectric surface of gas discharge device | |
| US3943394A (en) | Gaseous discharge display/memory panel with dielectric layer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: OWENS-ILLINOIS GLASS CONTAINER INC., ONE SEAGATE, Free format text: ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004869/0922 Effective date: 19870323 Owner name: OWENS-ILLINOIS GLASS CONTAINER INC.,OHIO Free format text: ASSIGNS AS OF APRIL 15, 1987 THE ENTIRE INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC.;REEL/FRAME:004869/0922 Effective date: 19870323 |