US3846670A - Multiple gaseous discharge display-memory panel having decreased operating voltages - Google Patents

Multiple gaseous discharge display-memory panel having decreased operating voltages Download PDF

Info

Publication number
US3846670A
US3846670A US00067604A US6760470A US3846670A US 3846670 A US3846670 A US 3846670A US 00067604 A US00067604 A US 00067604A US 6760470 A US6760470 A US 6760470A US 3846670 A US3846670 A US 3846670A
Authority
US
United States
Prior art keywords
dielectric
discharge
dielectric material
members
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00067604A
Inventor
R Schaufele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techneglas LLC
Original Assignee
Owens Illinois Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Illinois Inc filed Critical Owens Illinois Inc
Priority to US00067604A priority Critical patent/US3846670A/en
Priority to US05/463,322 priority patent/US3989982A/en
Application granted granted Critical
Publication of US3846670A publication Critical patent/US3846670A/en
Assigned to OWENS-ILLINOIS TELEVISION PRODUCTS INC. reassignment OWENS-ILLINOIS TELEVISION PRODUCTS INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: OWENS-ILLINOIS, INC., A CORP. OF OHIO
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • Holler there is disclosed a multiple gaseous discharge display/memory panel having an electrical memory and capable of producing a visual display, the panel being characterized by an ionizable gaseous medium in a gas chamber formed by a pair of opposed dielectric material charge storage members which are respectively backed by a series of parallel-like conductor (electrode) members, the conductor members behind each dielectric material member being transversely oriented with respect to the conductor members behind the opposing dielectric material member so as to define a plurality of discrete discharge volumes constituting a 1 discharge unit, the dielectric having at least one electron emissive substance applied to the surface thereof in an amount sufficient to decrease the operating voltages of the panel.
  • Typical electron emissive substances contemplated include Group 1A elements, Group 1A oxides, barium, GaAs, GaP, lnAs, lnSb, lnP, NiO, CsF, Csl, AgOCs, and AuOCs.
  • This invention relates to novel multiple gas discharge display/memory panels which'have an electrical memory and which are capable of producing a visual display or representation of data such as numerals, letters, television display, radar displays, binary words, etc. More particularly, this invention relates to novel gas discharge display/memory panels having substantially lower operating voltages. As used herein, voltage is defined as any voltage required for operation of the panel including firing and sustaining voltages as well as any other voltages for manipulation of the discharge.
  • Multiple gas discharge display and/or memory panels of the type with which the present invention is concerned are characterized by an ionizable gaseous medium, usually a mixture of at least two gases at an appropriate gas pressure, in a thin gas chamber or space between a pair of opposed dielectric charge storage members which are backed by conductor (electrode) members, the conductor members backing each dielectric member being transversely oriented to define a plurality of discrete discharge volumes and constituting a discharge unit.
  • the discharge unit are additionally defined by surrounding or confining physical structure as by cells or apertures in perforated glass plates and the like so as to be physically isolated relative to other units.
  • charges produced upon ionization of the gas of a selected discharge unit, when proper alternating operating potentials are applied to selected conductors thereof, are collected upon the surfaces of the dielectric at specifically defined locations and constitute an electrical field opposing the electrical field which created them so as to terminate the discharge for the remainder of the half cycle and aid in the initiation of a discharge on a succeeding opposite half cycle of applied voltage, such charges as are stored constituting an electrical memory.
  • the dielectric layers prevent the passage of any conductive current from the conductor members to the gaseous medium and also serve as collecting surfaces for ionized gaseous medium charges (electrons, ions) during the alternate half cycles of the AC. operating potentials, such charges collecting first on one elemental or discrete dielectric surface area and then on an opposing elemental or discrete dielectric surface area on alternate half cycles to constitute an electrical memory.
  • a continuous volume of ionizable gas isconfined between a pair of electron emmisive dielectric surfaces backed by conductor arrays forming matrix elemepts.
  • the cross conductor arrays may be orthogonally related (but any other configuration of conductor arrays may be used) to define a plurality of opposed pairs of charge storage areas on the surfaces of the dielectric bounding or confining the gas.
  • the number of elemental discharge volumes will be the product H X C and the number of elemental or discrete areas will be twice the number of elemental discharge volumes.
  • the gas is one which produces light (if visual display is an objective) and a copious supply of charges ions and electrons) during discharge.
  • the gas pressure and the electric field are sufficient to laterally confine charges generated on discharge within elemental or discrete volumes of gas between opposed pairs of elemental or discrete dielectric areas within the perimeter of such areas, especially in a panel containing non-isolated units.
  • the space between the dielectric surfaces occupied by the gas is such as to permit photons generated on discharge in a selected discrete or elemental volume of gas to pass freely through the gas space and strike surface areas of dielectric remote from the selected discrete volumes, such remote, photon struck dielectric surface areas thereby emitting electrons so as to condition other and more remote elemental volumes for discharges at a uniform applied potential.
  • the allowable distance or spacing between the dielectric surfaces depends, inter alia, on the frequency of the alternating current supply, the distance typically being greater for lower frequencies.
  • V is the magnitude of the applied voltage at which a discharge is initiated in a discrete conditioned (as explained in the aforementioned Baker, et al patent) volume of gas defined by common areas of overlapping conductors and V, is the magnitude of the minimum applied periodic alternating voltage sufficient to sustain discharges once initiated.
  • V is the magnitude of the minimum applied periodic alternating voltage sufficient to sustain discharges once initiated.
  • Such stored charges result in an electrical field opposing the field produced by the applied potential that created them and hence operate to terminate ionization in the elemental gas volume between opposed or facing discrete points or areas of dielectric surface.
  • sustain a discharge means producing a sequence of momentary discharges, one discharge for each half cycle of applied alternating sustaining voltage, once the elemental gas volume has been fired, to maintain alternate storing of charges at pairs of opposed discrete areas on the dielectric surfaces.
  • FIGS. 1 4 and the description of these figures are from the above mentioned Baker et al., Pat. No. 3,499,167.
  • FIG. 1 is a partially cut-away plan view of a gaseous discharge display/memory panel embodying the invention as connected to a diagrammatically illustrated source of operating potentials;
  • FIG. 2 is a cross-sectional view (enlarged, but not to proportional scale since the thickness of the gas volume, dielectric members and conductor arrays have been enlarged for purposes of illustration) taken on lines 22 of FIG. 1;
  • FIG. 3 is an explanatory partial cross-sectional view similar to FIG. 2 (enlarged, but not to proportional scale);
  • FIG. 4 is an isometric view of a larger gaseous discharge display/memory panel incorporating the invention.
  • FIG. 5 is an explanatory partial cross-sectional view similar to FIG. 3 (enlarged, but not to proportional scale) illustrating the present invention.
  • the invention utilizes a pair of dielectric films or coatings and 11 separated by a thin layer or volume of a gaseous discharge medium 12, said medium 12 producing a copious supply of charges (ions and electrons) which are alternately collectable on the surfaces of the dielectric members at opposed or facing elemental or discrete areas X and Y defined by the conductor matrix or nongas-contacting sides of the dielectric members, each dielectric member presenting large open surface areas and a plurality of pairs of elemental X and Y areas. While the electrically operative structural members such as the dielectric members 10 and 11 and conductor matrixes 13 and 14 are all relatively thin (being exaggerated in thickness in the drawings) they are formed on and supported by rigid nonconductive support members 16 and 17 respectively.
  • nonconductive support members 16 and 17 pass light produced by discharge in the elemental gas volumes.
  • they are transparent glass members and these members essentially define the overall thickness and strength of the panel.
  • the thickness of gas layer 12 as determined by spacer 15 is under 10 mils and preferably about 5 to 6 mils
  • dielectric layers 10 and 11 over the conductors at the elemental or discrete X and Y areas
  • conductors 13 and 14 about 8,000 angstroms thick (tin oxide).
  • support members 16 and 17 are much thicker (particularly larger panels) so as to provide as much ruggedness as may be desired to compensate for stresses in the panel.
  • Support members 16 and 17 also serve as heat sinks for heat generated by discharges and thus minimize the effect of temperature on operation of the device. If it is desired that only the memory function be utilized, then none of the members need be transparent to light although for purposes described later herein it is preferred that one of the support members and members formed thereon be transparent to or pass ultraviolet radiation.
  • support members 16 and 17 are not critical.
  • the main function of support members l6 and 17 is to provide mechanical support and strength for the entire panel, particularly with respect to pressure differential acting on the panel and thermal shock. As noted earlier, they should have thermal expansion characteristics substantially matching the thermal expansion characteristics of dielectric layers 10 and 11. Ordinary one-fourth inch commercial grade soda lime plate glasses have been used for this purpose. Other glasses such as low expansion glasses or transparent devitrified glasses can be used provided they can withstand processing and have expansion characteristics substantially matching expansion characteristics of the dielectric coatings 10 and 11. For given pressure differentials and thickness of plates the stress and deflection of plates may be determined by following standard stress and strain formulas (see R. J. Roark, Formulas for Stress and Strain, McGraw-Hill, 1954).
  • Spacer 15 may be made of the same glass material as dielectric films l0 and 11 and may be an integral rib formed on one of the dielectric members and fused to the other members to form a bakeable hermetic seal enclosing and confining the ionizable gas volume 12. However, a separate final hermetic seal may be effected by a high strength devitrified glass sealant 15S.
  • Tubulation 18 is provided for exhausting the space between dielectric members 10 and 11 and filling that space with the volume of ionizable gas. For large panels small bead like solder glass spacers such as shown at 15B may be located between conductors intersections and fused to dielectric members 10 and 11 to aid in withstanding stress on the panel and maintain uniformity of thickness of gas volume 12.
  • Conductor arrays 13 and 14 may be formed on support members 16 and 17 by a number of well known processes, such as photoetching, vacuum deposition, stencil screening, etc. In the panel shown in FIG. 4, the center to center spacing of conductors in the respective arrays is about 30 mils.
  • Transparent or semitransparent conductive material such as tin oxide, gold or aluminum can be used to form the conductor arrays and should have a resistance less than 3000 ohms per line. It is important to select a conductor material that is not attacked during processing by the dielectric material.
  • conductor arrays 13 and 14 may be wires or filaments of copper, gold, silver or aluminum or any other conductive metal or material.
  • 1 mil wire filaments are commercially available and may be used in the invention.
  • formed in situ conductor arrays are preferred since they may be more easily and uniformly placed on and adhered to the support plates 16 and 17.
  • Dielectric layer members 10 and 11 are formed of an inorganic material and are preferably formed in situ as an adherent film or coating which is not chemically or physically effected during bake-out of the panel.
  • One such material is a solder glass such as Kimble SG-68 manufactured by and commercially available from the assignee of the present invention.
  • This glass has thermal expansion characteristics substantially matching the thermal expansion characteristics of certain soda-lime glasses, and can be used as the dielectric layer when the support members 16 and 17 are soda-lime glass plates.
  • Dielectric layers 10 and 11 must be smooth and have a dielectric strength of about 1000 v. and be electrically homogeneous on a microscopic scale (e.g., no cracks, bubbles, crystals, dirt, surface films, etc.).
  • the surfaces of dielectric layers and 11 should be good photoemitters of electrons in a baked out condition.
  • a supply of free electrons for conditioning gas 12 for the ionization process may be providedby inclusion of a radioactive material within the glass or gas space.
  • a preferred range of thickness of dielectric layers 10 and 11 overlying the conductor arrays 13 and 14 is between 1 and 2 mils.
  • at least one of dielectric layers 10 and 11 should pass light generated on discharge and be transparent or translucent and, preferably, both layers are optically transparent.
  • the preferred spacing between surfaces of the dielectric films is about 5 to 6 mils with conductor arrays 13 and 14 having center to center spacing of about 30 mils.
  • conductors 14-1 14-4 and support member 17 extend beyond the enclosed gas volume 12 and are exposed for the purpose of making electrical connection to interface and addressing circuitry 19.
  • the ends of conductors 13-1 13-4 on support member 16 extend beyond the enclosed gas volume l2 and are exposed for the purpose of making electrical connection to interface and addressing circuitry 19.
  • the interface and addressing circuitry or system 19 may be relatively inexpensive line scan systems or the somewhat more expensive high speed random access systems.
  • a lower amplitude of operating potentials helps to reduce problems associated with the interface circuitry between the addressing system and the display/memory panel, per se.
  • tolerances and operating characteristics of the panel with which the interfacing circuitry cooperate are made less rigid.
  • FIG. 3 illustrates the condition of one elemental gas volume 30 having an elemental cross-sectional area and volume which is quite small relative to the entire volume and cross-sectional area of gas 12.
  • the cross-sectional area of volume 30 is defined by the overlapping common elemental areas of the conductor arrays and the volume is equal to the product of the distance between the dielectric surfaces and the elemental area. It is apparent that if the conductor arrays are uniform and linear and are orthogonally (at right angles to each other) related each of elemental areas X and Y will be squares and if conductors of one conductor array are wider than conductors of the other conductor array, said areas will be rectangles.
  • the areas will be diamond shaped so that the cross-sectional shape of each volume is determined solely in the first instance by the shape of the common area of overlap between conductors in the conductor arrays 13 and 14.
  • the dotted lines 30' are imaginary lines to show a boundary of one elemental volume about the center of which each elemental discharge takes place.
  • the cross-sectional area of the discharge in a gas is affected by, inter alia, the pressure of the gas, such that, if desired, the discharge may even be constricted to within an area smaller than the area of conductor overlap.
  • the light production may be confined or resolved substantially to the area of the elemental cross-sectional area defined by conductor overlap.
  • charges (ions and electrons) produced on discharge are laterally confined so as to not matarially affect operation of adjacent elemental discharge volumes.
  • a conditioning discharge about the center of elemental volume has been initiated by application to conductor 13-] and conductor 14-1 firing potential V, as derived from a source of variable phase, for example, and source 36 of sustaining potential V (which may be a sine wave, for example).
  • the potential V is added to the sustaining potential V, as sustaining potential V, increases in magnitude to initiate the conditioning discharge about the center of elemental volume 30 shown in FIG. 3.
  • the phase of the source 35 of potential V has been adjusted into adding relation to the alternating voltage from the source 36 of sustaining voltage V to provide a voltage V,', when switch 33 has been closed, to conductors 13-1 and 14-1 defining elementary gas volume 30 sufficient (in time and/or magnitude) to produce a light generating discharge centered about discrete elemental gas volume 30.
  • conductor 13-1 is positive, electrons 32 have collected on and are moving to an elemental area of dielectric member l0 substantially corresponding to the area of elemental gas volume 30 and the less mobile positive ions 31 are beginning to collect on the opposed elemental area of dielectric member 11 since it is negative.
  • these charges build up they constitute a back voltage opposed to the voltage applied to conductors 13-1 and 14-1 and serve to terminate the discharge in elemental gas volume 30 for the remainder of a half cycle.
  • Electrons 38 are, in effect, free electrons in gas medium 12 and condition each other discrete elemental gas volume for operation at a lower firing potential V; which is lower in magnitude than the firing potential V, for the initial discharge about the center of elemental volume 30 and this voltage is substantially uniform for each other elemental gas volume.
  • the entire gas volume can be conditioned for operation at uniform firing potentials by use of external or internal radiation so that there will be no need for a separate source of higher potential for initiating an initial discharge.
  • all discharge volumes can be operated at uniform potentials from addressing and interface circuit 19.
  • switch 33 may be opened so that only the sustaining voltage V from source 36 is applied to conductors 13-1 and 14-1. Due to the storage of charges (e.g., the memory) at the opposed elemental areas X and Y, the elemental gas volume 30 will discharge again at or near the peak of negative half cycles of sustaining voltage V to again produce a momentary pulse of light. At this time, due to reversal of field direction, electrons 32 will collect on and be stored on elemental surface area Y of dielectric member 11 and positive ions 31 will collect and be stored on elemental surface area X of dielectric member 10.
  • charges e.g., the memory
  • a uniform magnitude or potential V from source 60 is selectively added by one or both of switches 34-2 or 34-3 to the sustaining voltage V shown as 36, to fire one or both of these elemental discharge volumes. Due to the presence of free electrons produced as a result of the discharge centered about elemental volume 30, each of these remote discrete elemental volumes have been conditioned for operation at uniform firing potential V,.
  • the sustaining voltage may be removed.
  • the volumes be selectively turned of by application to selected on elemental volumes a voltage which can neutralize the charges stored at the pairs of opposed elemental areas.
  • the plates 16-17 need not be flat but may be curved, curvature of facing surfaces of each plate being complementary to each other. While the preferred conductor arrangement is of the crossed grid type as shown herein, it is likewise apparent that where an infinite variety of two dimensional display patterns are not necessary, as where specific standardized visual shapes (e.g., numerals, letters, words, etc.) are to be formed and image resolution is not critical, the conductors may be shaped accordingly.
  • the device shown in FIG. 4 is a panel having a large number of elemental volumes similar to elemental volume 30 (FIG. 3). In this case more room is provided to make electrical connection to the conductor arrays 13' and 14, respectively, by extending the surfaces of support members 16' and 17 beyond seal 15S, alternate conductors being extended on alternate sides. Conductor arrays 13' and 14 as well as support members 16' and 17' are transparent. The dielectric coatings are not shown in FIG. 4 but are likewise transparent so that the panel may be viewed from either side.
  • the operating voltage of a gaseous discharge panel may be significantly decreased by the application of at least one electron emissive substance to the surface of the dielectric material. More particularly, at least one electron emissive substance is applied to each dielectric charge storage surface of a gaseous discharage panel in an amount sufficient to provide substantially lower gaseous discharge panel operating voltages.
  • electron emissive refers to the processes of photoemission, secondary electron emission of ion and/or electron bombardment, and thermionic electron emission.
  • At least one electron emissive substance selected from Group IA elements (lithium, sodium, potassium, rubidium,- cesium, and francium); oxides of Group IA; barium; GaAs; GaP; InAs; InSb; InP; NiO; CsF; Csl; AgOCs; and AuOCs.
  • an electron emissive combination comprising at least one member selected from GaAs, GaP, InAs, InSb, or In? and one member selected from Cs or C820.
  • the selected electron emissive substance (or a source thereof) is applied to each dielectric surface by any convenient means including not by way of limitation vapor deposition; vacuum deposition; chemical vapor deposition; wet spraying upon the surface a mixture or solution of the substance (or source thereof) suspended or dissolved in a liquid followed by evaporation of the liquid; dry spraying of the substance upon the surface; electron beam evaporation; plasma flame and/or are spraying and/or deposition; sputtering target techniques; application of the substance as a molten melt followed by cooling in an inert or oxidizing environment.
  • the selected electron emissive substance is applied to each dielectric surface as a very thin film or layer, the thickness of such film or layer being sufficient to provide substantially decreased panel operating voltages, usually at least about 100 angstrom units, typically at least about 1000 angstrom units.
  • film or layer are inclusive of all similar terms such as deposit, coating, finish, spread, covering, etc.
  • the thin film or layer applied to the surface of each dielectric 10, 11 is shown in FIG. 5.
  • the electron emissive substance is selected from Group IA alkali metals (as defined hereinbefore) and oxides of Group IA.
  • the Group IA metal or oxide thereof is applied to the dielectric surface by any convenient means (as defined hereinbefore), especially a molten melt technique.
  • the Group IA oxide may be formed in situ on the surface of the dielectric, e.g., by applying a Group IA alkali metal to the surface followed by oxidation.
  • One such in situ process comprises applying a Group IA melt to the dielectric followed by cooling in an oxygen rich environment.
  • Another in situ process comprises applying an oxidizable source of the Group IA metal to the surface.
  • Typical of such sources include minerals and/or compounds containing one or more Group IA metals, especially those inorganic or organic compounds which can be readily heat decomposed or pyrolyzed.
  • Group IA oxides may be directly used.
  • the dielectric material is typically applied to and cured on the surface of a supporting glass substrate or base to which the electrode or conductor elements have been previously applied.
  • the glass substrate may be of any suitable composition such as a soda lime glass composition. Two glass substrates containing electrodes and cured dielectric are then appropriately heat sealed together so as to form a panel.
  • the selected electron emissive substance is applied to the surface of the cured dielectric before the panel heat sealing cycle.
  • the electron emissive substance is applied to the dielectric surfaces after the fabrication of the panel.
  • the practice of this invention may be especially beneficial over given periods of panel operating time; that is, best results may be realized after appropriate aging of the panel, the required amount of aging being a function of the electron emissive substance used.
  • Panel aging is defined as the accumulated total operating time for the panel.
  • a gaseous discharge panel device of the Baker et al kind was constructed, e.g. as generally described hereinbefore.
  • the panel dielectric composition was a lead borosilicate consisting of 73.3 percent by weight PbO, 13.4 percent by weight B .and 13.3 percent by weight SiO
  • the panel glass substrates were of a soda lime composition containing about 73 percent by weight SiO about 13 percent by weight Na O, about percent by weight CaO, about 3 percent by weight MgO, about 1 percent by weight A1 0 and small amounts (less than 1 percent) of Fe 0 K 0, AS203, and Cr O
  • the electrode lines or conductor arrays were of hanovia gold.
  • the panel was filled with 375 torr of an inert ionizable gas consisting of 99.9 percent atoms of neon and 0.1 percent of argon.
  • a sealed elemental cesium metal reservoir was attached to the gas filling aperture so as to permit cesiation of the dielectric surfaces.
  • the dielectric surfaces were heavily cesiated to a thickness of at least 100 angstrom units by opening the cesium reservoir, heating the metal to a molten state, and permitting the molten cesium to flow into the sealed, gas filled panel. The excess metal was drained from the panel.
  • Heating of the cesiated device from 298K to 383K increased the partial pressure of the cesium metal from 10 to 10 torr, but produced no measurable change in the panel voltages, demonstrating that the voltage reductions in TABLE I are induced by the electron emissive cesiated surfaces.
  • a dielectric material body for a gaseous discharge display/memory device said dielectric body containing a surface deposit of at least one electron emissive substance having a thickness of at least about angstrom units to provide substantially decreased gaseous discharge operating voltages without substantially affecting the memory margin of said device, said electron emissive substance being selected from Group IA elements, Group IA oxides, barium, GaAs, GaP, lnAs, InSb, InP, NiO, CsF, CsI, AgOCs, and AuOCs.
  • a gaseous discharge display/- memory device characterized by an ionizable gaseous medium in a gas chamber formed by a pair of dielectric material members having opposed charge storage surfaces, which dielectric material members are respectively backed by a series of parallel-like electrode members insulated from said ionizable gaseous medium by said dielectric material members, the electrode members behind each dielectric material member being transversely oriented with respect to the electrode members behind the opposing dielectric material member so as to define a plurality of discrete discharge volumes constituting discharge units in open photonic communication, and wherein the gas is selectively ionized within each discharge unit by operating voltages applied to the transversely oriented electrode members, the improvement which comprises substantially decreasing the operating voltages over a given period of operating time of the device and increasing the effective operating life of the device by coating each opposed dielectric material charge storage surface with a deposit of at least one electron emissive substance to a thickness of at least about 100 angstrom units without substantially affecting the memory margin of said device, said electron emiss

Abstract

There is disclosed a multiple gaseous discharge display/memory panel having an electrical memory and capable of producing a visual display, the panel being characterized by an ionizable gaseous medium in a gas chamber formed by a pair of opposed dielectric material charge storage members which are respectively backed by a series of parallel-like conductor (electrode) members, the conductor members behind each dielectric material member being transversely oriented with respect to the conductor members behind the opposing dielectric material member so as to define a plurality of discrete discharge volumes constituting a discharge unit, the dielectric having at least one electron emissive substance applied to the surface thereof in an amount sufficient to decrease the operating voltages of the panel. Typical electron emissive substances contemplated include Group IA elements, Group IA oxides, barium, GaAs, GaP, InAs, InSb, InP, NiO, CsF, CsI, AgOCs, and AuOCs.

Description

United States Patent 11 1 1111 3,846,670
Schaufele 1 Nov. 5, 1974 1 MULTIPLE GASEOUS DISCHARGE [57] ABSTRACT DISPLAY-MEMORY PANEL HAVING DECREASED OPERATING VOLTAGES Inventor: Robert F. Schaufele, Okemos, Mich. Assignee: Owens-Illinois, lnc., Toledo, Ohio Filed: Aug. 27, 1970 Appl. No.: 67,604
US. Cl 315/169 TV, 313/95, 315/169 R Int. Cl. 1105b 37/00 Field of Search 313/95, 106, 54;
315/169 R, 169 TV [56] References Cited UNITED STATES PATENTS 12/1959 Tschakert 313/54 4/1966 Wolfgang 313/95 8/1967 Heureaux ..3l5 /169X 3/1970 Bakeretal. ..31s/1e9 Primary Examiner-Roy Lake Assistant Examiner-Lawrence J. Dahl Attorney, Agent, or Firm-Donald K. Wedding; E. J. Holler There is disclosed a multiple gaseous discharge display/memory panel having an electrical memory and capable of producing a visual display, the panel being characterized by an ionizable gaseous medium in a gas chamber formed by a pair of opposed dielectric material charge storage members which are respectively backed by a series of parallel-like conductor (electrode) members, the conductor members behind each dielectric material member being transversely oriented with respect to the conductor members behind the opposing dielectric material member so as to define a plurality of discrete discharge volumes constituting a 1 discharge unit, the dielectric having at least one electron emissive substance applied to the surface thereof in an amount sufficient to decrease the operating voltages of the panel. Typical electron emissive substances contemplated include Group 1A elements, Group 1A oxides, barium, GaAs, GaP, lnAs, lnSb, lnP, NiO, CsF, Csl, AgOCs, and AuOCs.
6 Claims, 5 Drawing Figures PATENTEDNnv 5 m4 3.846370 sum ear 3 MULTIPLE GASEOUS DISCHARGE DISPLAY-MEMORY PANEL HAVING DECREASED OPERATING 'VOLTAGES This invention relates to novel multiple gas discharge display/memory panels which'have an electrical memory and which are capable of producing a visual display or representation of data such as numerals, letters, television display, radar displays, binary words, etc. More particularly, this invention relates to novel gas discharge display/memory panels having substantially lower operating voltages. As used herein, voltage is defined as any voltage required for operation of the panel including firing and sustaining voltages as well as any other voltages for manipulation of the discharge.
Multiple gas discharge display and/or memory panels of the type with which the present invention is concerned are characterized by an ionizable gaseous medium, usually a mixture of at least two gases at an appropriate gas pressure, in a thin gas chamber or space between a pair of opposed dielectric charge storage members which are backed by conductor (electrode) members, the conductor members backing each dielectric member being transversely oriented to define a plurality of discrete discharge volumes and constituting a discharge unit. In some prior art panels the discharge unit are additionally defined by surrounding or confining physical structure as by cells or apertures in perforated glass plates and the like so as to be physically isolated relative to other units. In either case, with or without the confining physical structure, charges (electrons, ions) produced upon ionization of the gas of a selected discharge unit, when proper alternating operating potentials are applied to selected conductors thereof, are collected upon the surfaces of the dielectric at specifically defined locations and constitute an electrical field opposing the electrical field which created them so as to terminate the discharge for the remainder of the half cycle and aid in the initiation of a discharge on a succeeding opposite half cycle of applied voltage, such charges as are stored constituting an electrical memory.
Thus, the dielectric layers prevent the passage of any conductive current from the conductor members to the gaseous medium and also serve as collecting surfaces for ionized gaseous medium charges (electrons, ions) during the alternate half cycles of the AC. operating potentials, such charges collecting first on one elemental or discrete dielectric surface area and then on an opposing elemental or discrete dielectric surface area on alternate half cycles to constitute an electrical memory.
An example of a panel structure containing nonphysically isolated or open discharge units is disclosed in US. Pat. No. 3,499,167 issued to Theodore C. Baker et al.
An example of a panel containing physically isolated units is disclosed in the article by D. L. Bitzer and H. G. Slottow entitled The Plasma Display Panel A Digitally Addressable Display With Inherent Memory, Proceeding of the Fall Joint Computer Conference, lEEE, San Francisco, California, Nov. 1966, pages 541-547.
In the operation of the panel, a continuous volume of ionizable gas isconfined between a pair of electron emmisive dielectric surfaces backed by conductor arrays forming matrix elemepts. The cross conductor arrays may be orthogonally related (but any other configuration of conductor arrays may be used) to define a plurality of opposed pairs of charge storage areas on the surfaces of the dielectric bounding or confining the gas. Thus, for a conductor matrix having H rows and C columns the number of elemental discharge volumes will be the product H X C and the number of elemental or discrete areas will be twice the number of elemental discharge volumes.
The gas is one which produces light (if visual display is an objective) and a copious supply of charges ions and electrons) during discharge. In an open cell Baker, et al type panel, the gas pressure and the electric field are sufficient to laterally confine charges generated on discharge within elemental or discrete volumes of gas between opposed pairs of elemental or discrete dielectric areas within the perimeter of such areas, especially in a panel containing non-isolated units.
As described in the Baker et al patent, the space between the dielectric surfaces occupied by the gas is such as to permit photons generated on discharge in a selected discrete or elemental volume of gas to pass freely through the gas space and strike surface areas of dielectric remote from the selected discrete volumes, such remote, photon struck dielectric surface areas thereby emitting electrons so as to condition other and more remote elemental volumes for discharges at a uniform applied potential.
With respect to the memory function of a given discharge panel, the allowable distance or spacing between the dielectric surfaces depends, inter alia, on the frequency of the alternating current supply, the distance typically being greater for lower frequencies.
While the prior art does disclose gaseous discharge devices having externally positioned electrodes for initiating a gaseous discharge, sometimes called electrodeless discharges, such prior art devices utilize frequencies and spacings or discharge volumes and operating pressures such that although discharges are initiated in the gaseous medium, such discharges are ineffective or not utilized for charge generation and storage in the manner of the present invention.
The term memory margin is defined herein as where V, is the magnitude of the applied voltage at which a discharge is initiated in a discrete conditioned (as explained in the aforementioned Baker, et al patent) volume of gas defined by common areas of overlapping conductors and V, is the magnitude of the minimum applied periodic alternating voltage sufficient to sustain discharges once initiated. It will be understood that basic electrical phenomena utilized in this invention is the generation of charges (ions and electrons) alternately storable at pairs of opposed or facing discrete points or areas on a pair of dielectric surfaces backed by conductors connected to a source of operating potential. Such stored charges result in an electrical field opposing the field produced by the applied potential that created them and hence operate to terminate ionization in the elemental gas volume between opposed or facing discrete points or areas of dielectric surface. The term sustain a discharge means producing a sequence of momentary discharges, one discharge for each half cycle of applied alternating sustaining voltage, once the elemental gas volume has been fired, to maintain alternate storing of charges at pairs of opposed discrete areas on the dielectric surfaces.
The above, as well as other objects, features and advantages of the invention will become apparent and better understood by reference to the following detailed description when considered in connection with the accompanying drawings. FIGS. 1 4 and the description of these figures are from the above mentioned Baker et al., Pat. No. 3,499,167.
FIG. 1 is a partially cut-away plan view of a gaseous discharge display/memory panel embodying the invention as connected to a diagrammatically illustrated source of operating potentials;
FIG. 2 is a cross-sectional view (enlarged, but not to proportional scale since the thickness of the gas volume, dielectric members and conductor arrays have been enlarged for purposes of illustration) taken on lines 22 of FIG. 1;
FIG. 3 is an explanatory partial cross-sectional view similar to FIG. 2 (enlarged, but not to proportional scale);
FIG. 4 is an isometric view of a larger gaseous discharge display/memory panel incorporating the invention; and
FIG. 5 is an explanatory partial cross-sectional view similar to FIG. 3 (enlarged, but not to proportional scale) illustrating the present invention.
The invention utilizes a pair of dielectric films or coatings and 11 separated by a thin layer or volume of a gaseous discharge medium 12, said medium 12 producing a copious supply of charges (ions and electrons) which are alternately collectable on the surfaces of the dielectric members at opposed or facing elemental or discrete areas X and Y defined by the conductor matrix or nongas-contacting sides of the dielectric members, each dielectric member presenting large open surface areas and a plurality of pairs of elemental X and Y areas. While the electrically operative structural members such as the dielectric members 10 and 11 and conductor matrixes 13 and 14 are all relatively thin (being exaggerated in thickness in the drawings) they are formed on and supported by rigid nonconductive support members 16 and 17 respectively.
Preferably, one or both of nonconductive support members 16 and 17 pass light produced by discharge in the elemental gas volumes. Preferably, they are transparent glass members and these members essentially define the overall thickness and strength of the panel. For example, the thickness of gas layer 12 as determined by spacer 15 is under 10 mils and preferably about 5 to 6 mils, dielectric layers 10 and 11 (over the conductors at the elemental or discrete X and Y areas) is between 1 and 2 mils thick, and conductors 13 and 14 about 8,000 angstroms thick (tin oxide). However, support members 16 and 17 are much thicker (particularly larger panels) so as to provide as much ruggedness as may be desired to compensate for stresses in the panel. Support members 16 and 17 also serve as heat sinks for heat generated by discharges and thus minimize the effect of temperature on operation of the device. If it is desired that only the memory function be utilized, then none of the members need be transparent to light although for purposes described later herein it is preferred that one of the support members and members formed thereon be transparent to or pass ultraviolet radiation.
Except for being nonconductive or good insulators the electrical properties of support members 16 and 17 are not critical. The main function of support members l6 and 17 is to provide mechanical support and strength for the entire panel, particularly with respect to pressure differential acting on the panel and thermal shock. As noted earlier, they should have thermal expansion characteristics substantially matching the thermal expansion characteristics of dielectric layers 10 and 11. Ordinary one-fourth inch commercial grade soda lime plate glasses have been used for this purpose. Other glasses such as low expansion glasses or transparent devitrified glasses can be used provided they can withstand processing and have expansion characteristics substantially matching expansion characteristics of the dielectric coatings 10 and 11. For given pressure differentials and thickness of plates the stress and deflection of plates may be determined by following standard stress and strain formulas (see R. J. Roark, Formulas for Stress and Strain, McGraw-Hill, 1954).
Spacer 15 may be made of the same glass material as dielectric films l0 and 11 and may be an integral rib formed on one of the dielectric members and fused to the other members to form a bakeable hermetic seal enclosing and confining the ionizable gas volume 12. However, a separate final hermetic seal may be effected by a high strength devitrified glass sealant 15S. Tubulation 18 is provided for exhausting the space between dielectric members 10 and 11 and filling that space with the volume of ionizable gas. For large panels small bead like solder glass spacers such as shown at 15B may be located between conductors intersections and fused to dielectric members 10 and 11 to aid in withstanding stress on the panel and maintain uniformity of thickness of gas volume 12.
Conductor arrays 13 and 14 may be formed on support members 16 and 17 by a number of well known processes, such as photoetching, vacuum deposition, stencil screening, etc. In the panel shown in FIG. 4, the center to center spacing of conductors in the respective arrays is about 30 mils. Transparent or semitransparent conductive material such as tin oxide, gold or aluminum can be used to form the conductor arrays and should have a resistance less than 3000 ohms per line. It is important to select a conductor material that is not attacked during processing by the dielectric material.
It will be appreciated the conductor arrays 13 and 14 may be wires or filaments of copper, gold, silver or aluminum or any other conductive metal or material. For example 1 mil wire filaments are commercially available and may be used in the invention. However, formed in situ conductor arrays are preferred since they may be more easily and uniformly placed on and adhered to the support plates 16 and 17.
Dielectric layer members 10 and 11 are formed of an inorganic material and are preferably formed in situ as an adherent film or coating which is not chemically or physically effected during bake-out of the panel. One such material is a solder glass such as Kimble SG-68 manufactured by and commercially available from the assignee of the present invention.
This glass has thermal expansion characteristics substantially matching the thermal expansion characteristics of certain soda-lime glasses, and can be used as the dielectric layer when the support members 16 and 17 are soda-lime glass plates. Dielectric layers 10 and 11 must be smooth and have a dielectric strength of about 1000 v. and be electrically homogeneous on a microscopic scale (e.g., no cracks, bubbles, crystals, dirt, surface films, etc.). In addition, the surfaces of dielectric layers and 11 should be good photoemitters of electrons in a baked out condition. However, a supply of free electrons for conditioning gas 12 for the ionization process may be providedby inclusion of a radioactive material within the glass or gas space. A preferred range of thickness of dielectric layers 10 and 11 overlying the conductor arrays 13 and 14 is between 1 and 2 mils. Of course, for an optical display at least one of dielectric layers 10 and 11 should pass light generated on discharge and be transparent or translucent and, preferably, both layers are optically transparent.
The preferred spacing between surfaces of the dielectric films is about 5 to 6 mils with conductor arrays 13 and 14 having center to center spacing of about 30 mils.
The ends of conductors 14-1 14-4 and support member 17 extend beyond the enclosed gas volume 12 and are exposed for the purpose of making electrical connection to interface and addressing circuitry 19. Likewise, the ends of conductors 13-1 13-4 on support member 16 extend beyond the enclosed gas volume l2 and are exposed for the purpose of making electrical connection to interface and addressing circuitry 19.
As in known display systems, the interface and addressing circuitry or system 19 may be relatively inexpensive line scan systems or the somewhat more expensive high speed random access systems. However, it is to be noted that a lower amplitude of operating potentials helps to reduce problems associated with the interface circuitry between the addressing system and the display/memory panel, per se. Thus, by providing a panel having greater uniformity in the discharge characteristics throughout thepanel, tolerances and operating characteristics of the panel with which the interfacing circuitry cooperate, are made less rigid.
One mode of initiating operation of the panel will be described with reference to FIG. 3, which illustrates the condition of one elemental gas volume 30 having an elemental cross-sectional area and volume which is quite small relative to the entire volume and cross-sectional area of gas 12. The cross-sectional area of volume 30 is defined by the overlapping common elemental areas of the conductor arrays and the volume is equal to the product of the distance between the dielectric surfaces and the elemental area. It is apparent that if the conductor arrays are uniform and linear and are orthogonally (at right angles to each other) related each of elemental areas X and Y will be squares and if conductors of one conductor array are wider than conductors of the other conductor array, said areas will be rectangles. If the conductor arrays are at transverse angles relative to each other, other than 90, the areas will be diamond shaped so that the cross-sectional shape of each volume is determined solely in the first instance by the shape of the common area of overlap between conductors in the conductor arrays 13 and 14. The dotted lines 30' are imaginary lines to show a boundary of one elemental volume about the center of which each elemental discharge takes place. As described earlier herein, it is known that the cross-sectional area of the discharge in a gas is affected by, inter alia, the pressure of the gas, such that, if desired, the discharge may even be constricted to within an area smaller than the area of conductor overlap. By utilization of this phenomena, the light production may be confined or resolved substantially to the area of the elemental cross-sectional area defined by conductor overlap. Moreover, by operating at such pressure charges (ions and electrons) produced on discharge are laterally confined so as to not matarially affect operation of adjacent elemental discharge volumes.
In the instant shown in FIG. 3, a conditioning discharge about the center of elemental volume has been initiated by application to conductor 13-] and conductor 14-1 firing potential V, as derived from a source of variable phase, for example, and source 36 of sustaining potential V (which may be a sine wave, for example). The potential V, is added to the sustaining potential V, as sustaining potential V, increases in magnitude to initiate the conditioning discharge about the center of elemental volume 30 shown in FIG. 3. There, the phase of the source 35 of potential V has been adjusted into adding relation to the alternating voltage from the source 36 of sustaining voltage V to provide a voltage V,', when switch 33 has been closed, to conductors 13-1 and 14-1 defining elementary gas volume 30 sufficient (in time and/or magnitude) to produce a light generating discharge centered about discrete elemental gas volume 30. At the instant shown, since conductor 13-1 is positive, electrons 32 have collected on and are moving to an elemental area of dielectric member l0 substantially corresponding to the area of elemental gas volume 30 and the less mobile positive ions 31 are beginning to collect on the opposed elemental area of dielectric member 11 since it is negative. As these charges build up, they constitute a back voltage opposed to the voltage applied to conductors 13-1 and 14-1 and serve to terminate the discharge in elemental gas volume 30 for the remainder of a half cycle.
During the discharge about the center of elemental gas volume 30, photons are produced which are free to move or pass through gas medium 12, as indicated by arrows 37, to strike or impact remote surface areas of photoemissive dielectric members 10 and 11, causing such remote areas to release electrons 38. Electrons 38 are, in effect, free electrons in gas medium 12 and condition each other discrete elemental gas volume for operation at a lower firing potential V; which is lower in magnitude than the firing potential V, for the initial discharge about the center of elemental volume 30 and this voltage is substantially uniform for each other elemental gas volume. 1
Thus, elimination of physical obstructions or barriers between discrete elemental volumes, permits photons to travel via the space occupied by the gas medium 12 to impact remote surface areas of dielectric members 10 and 11 and provides a mechanism for supplying free electrons to all elemental gas volumes, thereby conditioning all discrete elemental gas volumes for subsequent discharges, respectively, at a uniform lower applied potential. While in FIG. 3 a single elemental volume 30 is shown, it will be appreciated that an entire row (or column) of elemental gas volumes may be maintained in a fired condition during normal operation of the device with the light produced thereby being masked or blocked off from the normal viewing area and not used for display purposes. It can be expected that in some applications there will always be at least one elemental volume in a fired" condition and producing light in a panel, and in such applications it is not necessary to provide separate discharge or generation of photons for purposes described earlier.
However, as described earlier, the entire gas volume can be conditioned for operation at uniform firing potentials by use of external or internal radiation so that there will be no need for a separate source of higher potential for initiating an initial discharge. Thus, by radiating the panel with ultraviolet radiation or by inclusion of a radioactive material within the glass materials or gas space, all discharge volumes can be operated at uniform potentials from addressing and interface circuit 19.
Since each discharge is terminated upon a build up or storage of charges at opposed pairs of elemental areas, the light produced is likewise terminated. In fact, light production lasts for only a small fraction of a half cycle of applied alternating potential and depending on design parameters, is in the nanosecond range.
After the initial firing or discharge of discrete elemental gas volume 30 by a firing potential V], switch 33 may be opened so that only the sustaining voltage V from source 36 is applied to conductors 13-1 and 14-1. Due to the storage of charges (e.g., the memory) at the opposed elemental areas X and Y, the elemental gas volume 30 will discharge again at or near the peak of negative half cycles of sustaining voltage V to again produce a momentary pulse of light. At this time, due to reversal of field direction, electrons 32 will collect on and be stored on elemental surface area Y of dielectric member 11 and positive ions 31 will collect and be stored on elemental surface area X of dielectric member 10. After a few cycles of sustaining voltage V the times of discharges become symmetrically located with respect to the wave form of sustaining voltage V At remote elemental volumes, as for example, the elemental volumes defined by conductor 14-] with conductors 13-2 and 13-3, a uniform magnitude or potential V, from source 60 is selectively added by one or both of switches 34-2 or 34-3 to the sustaining voltage V shown as 36, to fire one or both of these elemental discharge volumes. Due to the presence of free electrons produced as a result of the discharge centered about elemental volume 30, each of these remote discrete elemental volumes have been conditioned for operation at uniform firing potential V,.
In order to turn of an elemental gas volume (i.e.'
terminate a sequence of discharge representing the on state), the sustaining voltage may be removed. However, since this would also turn off other elemental volumes along a row or column, it is preferred that the volumes be selectively turned of by application to selected on elemental volumes a voltage which can neutralize the charges stored at the pairs of opposed elemental areas.
This can be accomplished in a number of ways, as for example, varying the phase or time position of the potential from source 60 to where that voltage combined with the potential form source 36' falls substantially below the sustaining voltage.
It is apparent that the plates 16-17 need not be flat but may be curved, curvature of facing surfaces of each plate being complementary to each other. While the preferred conductor arrangement is of the crossed grid type as shown herein, it is likewise apparent that where an infinite variety of two dimensional display patterns are not necessary, as where specific standardized visual shapes (e.g., numerals, letters, words, etc.) are to be formed and image resolution is not critical, the conductors may be shaped accordingly.
The device shown in FIG. 4 is a panel having a large number of elemental volumes similar to elemental volume 30 (FIG. 3). In this case more room is provided to make electrical connection to the conductor arrays 13' and 14, respectively, by extending the surfaces of support members 16' and 17 beyond seal 15S, alternate conductors being extended on alternate sides. Conductor arrays 13' and 14 as well as support members 16' and 17' are transparent. The dielectric coatings are not shown in FIG. 4 but are likewise transparent so that the panel may be viewed from either side.
In accordance with this invention, it has been surprisingly discovered that the operating voltage of a gaseous discharge panel may be significantly decreased by the application of at least one electron emissive substance to the surface of the dielectric material. More particularly, at least one electron emissive substance is applied to each dielectric charge storage surface of a gaseous discharage panel in an amount sufficient to provide substantially lower gaseous discharge panel operating voltages.
As used herein, electron emissive refers to the processes of photoemission, secondary electron emission of ion and/or electron bombardment, and thermionic electron emission.
In the practice of this invention, it is contemplated using at least one electron emissive substance selected from Group IA elements (lithium, sodium, potassium, rubidium,- cesium, and francium); oxides of Group IA; barium; GaAs; GaP; InAs; InSb; InP; NiO; CsF; Csl; AgOCs; and AuOCs. In one specific embodiment hereof, there is used an electron emissive combination comprising at least one member selected from GaAs, GaP, InAs, InSb, or In? and one member selected from Cs or C820.
The selected electron emissive substance (or a source thereof) is applied to each dielectric surface by any convenient means including not by way of limitation vapor deposition; vacuum deposition; chemical vapor deposition; wet spraying upon the surface a mixture or solution of the substance (or source thereof) suspended or dissolved in a liquid followed by evaporation of the liquid; dry spraying of the substance upon the surface; electron beam evaporation; plasma flame and/or are spraying and/or deposition; sputtering target techniques; application of the substance as a molten melt followed by cooling in an inert or oxidizing environment.
The selected electron emissive substance is applied to each dielectric surface as a very thin film or layer, the thickness of such film or layer being sufficient to provide substantially decreased panel operating voltages, usually at least about 100 angstrom units, typically at least about 1000 angstrom units. As used herein, the terms film or layer are inclusive of all similar terms such as deposit, coating, finish, spread, covering, etc. The thin film or layer applied to the surface of each dielectric 10, 11 is shown in FIG. 5.
In one preferred embodiment hereof, the electron emissive substance is selected from Group IA alkali metals (as defined hereinbefore) and oxides of Group IA. In the practice of such embodiment, the Group IA metal or oxide thereof is applied to the dielectric surface by any convenient means (as defined hereinbefore), especially a molten melt technique. It is also contemplated that the Group IA oxide may be formed in situ on the surface of the dielectric, e.g., by applying a Group IA alkali metal to the surface followed by oxidation. One such in situ process comprises applying a Group IA melt to the dielectric followed by cooling in an oxygen rich environment. Another in situ process comprises applying an oxidizable source of the Group IA metal to the surface. Typical of such sources include minerals and/or compounds containing one or more Group IA metals, especially those inorganic or organic compounds which can be readily heat decomposed or pyrolyzed. However, as already noted, it is also contemplated that Group IA oxides may be directly used.
In the fabrication of a gaseous discharge panel, the dielectric material is typically applied to and cured on the surface of a supporting glass substrate or base to which the electrode or conductor elements have been previously applied. The glass substrate may be of any suitable composition such as a soda lime glass composition. Two glass substrates containing electrodes and cured dielectric are then appropriately heat sealed together so as to form a panel.
In one embodiment of this invention, the selected electron emissive substance is applied to the surface of the cured dielectric before the panel heat sealing cycle.
In another embodiment of this invention, the electron emissive substance is applied to the dielectric surfaces after the fabrication of the panel.
Depending upon the specific electron emissive substance or combinations thereof utilized, the practice of this invention may be especially beneficial over given periods of panel operating time; that is, best results may be realized after appropriate aging of the panel, the required amount of aging being a function of the electron emissive substance used. Panel aging is defined as the accumulated total operating time for the panel.
The following example is intended to illustrate one of the best embodiments contemplated by the inventor in the practice of this invention.
EXAMPLE A gaseous discharge panel device of the Baker et al kind was constructed, e.g. as generally described hereinbefore. The panel dielectric composition was a lead borosilicate consisting of 73.3 percent by weight PbO, 13.4 percent by weight B .and 13.3 percent by weight SiO The panel glass substrates were of a soda lime composition containing about 73 percent by weight SiO about 13 percent by weight Na O, about percent by weight CaO, about 3 percent by weight MgO, about 1 percent by weight A1 0 and small amounts (less than 1 percent) of Fe 0 K 0, AS203, and Cr O The electrode lines or conductor arrays were of hanovia gold. The panel was filled with 375 torr of an inert ionizable gas consisting of 99.9 percent atoms of neon and 0.1 percent of argon.
A sealed elemental cesium metal reservoir was attached to the gas filling aperture so as to permit cesiation of the dielectric surfaces. The dielectric surfaces were heavily cesiated to a thickness of at least 100 angstrom units by opening the cesium reservoir, heating the metal to a molten state, and permitting the molten cesium to flow into the sealed, gas filled panel. The excess metal was drained from the panel.
TABLE I Turn-On Turn-Off uncesiated surface 132 i 1 volts 103 i 1 volts cesiated surface 60 i 1 volts 48 i 1 volts The memory margin of the panel was insensitive to cesiation, decreasing from 0.28 to 0.25. The uncesiated areas of the dielectric remained essentially at their higher initial voltage values.
Heating of the cesiated device from 298K to 383K, increased the partial pressure of the cesium metal from 10 to 10 torr, but produced no measurable change in the panel voltages, demonstrating that the voltage reductions in TABLE I are induced by the electron emissive cesiated surfaces.
I claim:
1. As an article of manufacture, a dielectric material body for a gaseous discharge display/memory device, said dielectric body containing a surface deposit of at least one electron emissive substance having a thickness of at least about angstrom units to provide substantially decreased gaseous discharge operating voltages without substantially affecting the memory margin of said device, said electron emissive substance being selected from Group IA elements, Group IA oxides, barium, GaAs, GaP, lnAs, InSb, InP, NiO, CsF, CsI, AgOCs, and AuOCs.
2. In the operation of a gaseous discharge display/- memory device characterized by an ionizable gaseous medium in a gas chamber formed by a pair of dielectric material members having opposed charge storage surfaces, which dielectric material members are respectively backed by a series of parallel-like electrode members insulated from said ionizable gaseous medium by said dielectric material members, the electrode members behind each dielectric material member being transversely oriented with respect to the electrode members behind the opposing dielectric material member so as to define a plurality of discrete discharge volumes constituting discharge units in open photonic communication, and wherein the gas is selectively ionized within each discharge unit by operating voltages applied to the transversely oriented electrode members, the improvement which comprises substantially decreasing the operating voltages over a given period of operating time of the device and increasing the effective operating life of the device by coating each opposed dielectric material charge storage surface with a deposit of at least one electron emissive substance to a thickness of at least about 100 angstrom units without substantially affecting the memory margin of said device, said electron emissive substance being selected from Group IA elements, Group IA oxides, barium, GaAs, GaP, lnAs, InSb, InP, NiO, CsF, CsI, AgOCs, and AuOCs, being insulated from said electrode members by said dielectric material members and being exposed to said gaseous medium.
3. The invention of claim 2 wherein the electron emissive substance is deposited on the dielectric surmember selected from the group consisting of GaAs, GaP, InAs, InSb and InP, and one member selected from the group consisting of Cs and Cs O.
6. The invention of claim 1 wherein the electron emissive substance is present on the surface of said dielectric body in an amount sufficient to decrease the operating voltage of said device by at least 50 percent.

Claims (6)

1. AS AN ARTICLE OF MANUFACTURE, A DIELECTRIC MATERIAL BODY FOR A GASEOUS DISCHARGE DISPLAY/MEMORY DEVICE, SAID DIELECTRIC BODY CONTAINING A SURFACE DEPOSIT OF AT LEAST ONE ELECTRON EMISSIVE SUBSTANCE HAVING A THICKNESS OF AT LEAST ABOUT 100 ANGSTROM UNITS TO PROVIDE SUBSTANTIALLY DECREASED GASEOUS DISCHARGE OPERATING VOLTAGES WITHOUT SUBSTANTIALLY AFFECTING THE MEMORY MARGIN OF SAID DEVICE, SAID ELECTRON EMISSIVE SUBSTANCE BEING SELECTED FROM GROUP IA ELEMENTS, GROUP IA OXIDES, BARIUM, GAAS, GAP, INAS, INSB, INP, NIO, CSF, CSI, AGOCS, AND AUOCS.
2. In the operation of a gaseous discharge display/memory device characterized by an ionizable gaseous medium in a gas chamber formed by a pair of dielectric material members having opposed charge storage surfaces, which dielectric material members are respectively backed by a series of parallel-like electrode members insulated from said ionizable gaseous medium by said dielectric material members, the electrode members behind each dielectric material member being transversely oriented with respect to the electrode members behind the opposing dielectric material member so as to define a plurality of discrete discharge volumes constituting discharge units in open photonic communication, and wherein the gas is selectively ionized within each discharge unit by operating voltages applied to the transversely oriented electrode members, the improvement which comprises substantially decreasing the operating voltages over a given period of operating time of the device and increasing the effective operating life of the device by coating each opposed dielectric material charge storage surface with a deposit of at least one electron emissive substance to a thickness of at least about 100 angstrom units without substantially affecting the memory margin of said device, said electron emissive substance being selected from Group IA elements, Group IA oxides, barium, GaAs, GaP, InAs, InSb, InP, NiO, CsF, CsI, AgOCs, and AuOCs, being insulated from said electrode members by said dielectric material members and being exposed to said gaseous medium.
3. The invention of claim 2 wherein the electron emissive substance is deposited on the dielectric surfaces in an amount sufficient to decrease the operating voltage of said device by at least 50 percent.
4. The invention of claim 1 wherein the electron emissive substance is a combination of at least one member selected from the group consisting of GaAs, GaP, InAs, InSb and InP, and one member selected from the group consisting of Cs and Cs2O.
5. The invention of claim 2 wherein the electron emissive substance is a combination of at least one member selected from the group consisting of GaAs, GaP, InAs, InSb and InP, and one member selected from the group consisting of Cs and Cs2O.
6. The invention of claim 1 wherein the electron emissive substance is present on the surface of said dielectric body in an amount sufficient to decrease the operating voltage of said device by at least 50 percent.
US00067604A 1970-08-27 1970-08-27 Multiple gaseous discharge display-memory panel having decreased operating voltages Expired - Lifetime US3846670A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00067604A US3846670A (en) 1970-08-27 1970-08-27 Multiple gaseous discharge display-memory panel having decreased operating voltages
US05/463,322 US3989982A (en) 1970-08-27 1974-04-23 Multiple gaseous discharge display/memory panel having decreased operating voltages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00067604A US3846670A (en) 1970-08-27 1970-08-27 Multiple gaseous discharge display-memory panel having decreased operating voltages

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/463,322 Continuation US3989982A (en) 1970-08-27 1974-04-23 Multiple gaseous discharge display/memory panel having decreased operating voltages

Publications (1)

Publication Number Publication Date
US3846670A true US3846670A (en) 1974-11-05

Family

ID=22077150

Family Applications (1)

Application Number Title Priority Date Filing Date
US00067604A Expired - Lifetime US3846670A (en) 1970-08-27 1970-08-27 Multiple gaseous discharge display-memory panel having decreased operating voltages

Country Status (1)

Country Link
US (1) US3846670A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919577A (en) * 1973-09-21 1975-11-11 Owens Illinois Inc Multiple gaseous discharge display/memory panel having thin film dielectric charge storage member
US3989982A (en) * 1970-08-27 1976-11-02 Owens-Illinois, Inc. Multiple gaseous discharge display/memory panel having decreased operating voltages
US4028578A (en) * 1973-02-16 1977-06-07 Owens-Illinois, Inc. Gas discharge dielectric containing a source of boron, gallium, indium, or thallium
US4053804A (en) * 1975-11-28 1977-10-11 International Business Machines Corporation Dielectric for gas discharge panel
US4109176A (en) * 1972-09-25 1978-08-22 Owen-Illinois, Inc. Insulating dielectric for gas discharge device
US4120808A (en) * 1971-12-06 1978-10-17 Owens-Illinois, Inc. Gas discharge dielectric containing a source of boron, gallium, indium, or thallium
US4132982A (en) * 1972-09-29 1979-01-02 Owens-Illinois, Inc. Gaseous display device
EP0000263A1 (en) * 1977-06-30 1979-01-10 International Business Machines Corporation Gaseous discharge display device
US4731560A (en) * 1970-08-06 1988-03-15 Owens-Illinois Television Products, Inc. Multiple gaseous discharge display/memory panel having improved operating life

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919361A (en) * 1957-04-11 1959-12-29 Annita T Spolter Light tubes and walls with radioactive cold cathodes
US3244922A (en) * 1962-11-05 1966-04-05 Itt Electron multiplier having undulated passage with semiconductive secondary emissive coating
US3334269A (en) * 1964-07-28 1967-08-01 Itt Character display panel having a plurality of glow discharge cavities including resistive ballast means exposed to the glow discharge therein
US3499167A (en) * 1967-11-24 1970-03-03 Owens Illinois Inc Gas discharge display memory device and method of operating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919361A (en) * 1957-04-11 1959-12-29 Annita T Spolter Light tubes and walls with radioactive cold cathodes
US3244922A (en) * 1962-11-05 1966-04-05 Itt Electron multiplier having undulated passage with semiconductive secondary emissive coating
US3334269A (en) * 1964-07-28 1967-08-01 Itt Character display panel having a plurality of glow discharge cavities including resistive ballast means exposed to the glow discharge therein
US3499167A (en) * 1967-11-24 1970-03-03 Owens Illinois Inc Gas discharge display memory device and method of operating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4731560A (en) * 1970-08-06 1988-03-15 Owens-Illinois Television Products, Inc. Multiple gaseous discharge display/memory panel having improved operating life
US3989982A (en) * 1970-08-27 1976-11-02 Owens-Illinois, Inc. Multiple gaseous discharge display/memory panel having decreased operating voltages
US4120808A (en) * 1971-12-06 1978-10-17 Owens-Illinois, Inc. Gas discharge dielectric containing a source of boron, gallium, indium, or thallium
US4109176A (en) * 1972-09-25 1978-08-22 Owen-Illinois, Inc. Insulating dielectric for gas discharge device
US4132982A (en) * 1972-09-29 1979-01-02 Owens-Illinois, Inc. Gaseous display device
US4028578A (en) * 1973-02-16 1977-06-07 Owens-Illinois, Inc. Gas discharge dielectric containing a source of boron, gallium, indium, or thallium
US3919577A (en) * 1973-09-21 1975-11-11 Owens Illinois Inc Multiple gaseous discharge display/memory panel having thin film dielectric charge storage member
US4053804A (en) * 1975-11-28 1977-10-11 International Business Machines Corporation Dielectric for gas discharge panel
EP0000263A1 (en) * 1977-06-30 1979-01-10 International Business Machines Corporation Gaseous discharge display device
US4207488A (en) * 1977-06-30 1980-06-10 International Business Machines Corporation Dielectric overcoat for gas discharge panel

Similar Documents

Publication Publication Date Title
US4048533A (en) Phosphor overcoat
US3499167A (en) Gas discharge display memory device and method of operating
US3836393A (en) Process for applying stress-balanced coating composite to dielectric surface of gas discharge device
US3634719A (en) Gas discharge display/memory panel having lead oxide coated dielectric plates with decreased aging time
US3904915A (en) Gas mixture for gas discharge device
US3886393A (en) Gas mixture for gas discharge device
US3863089A (en) Gas discharge display and memory panel with magnesium oxide coatings
US3846670A (en) Multiple gaseous discharge display-memory panel having decreased operating voltages
US3786474A (en) Conditioning and writing of multiple gas discharge panel
US3614511A (en) Gas discharge display memory device
US3925697A (en) Helium-xenon gas mixture for gas discharge device
US3846171A (en) Gaseous discharge device
US3903445A (en) Display/memory panel having increased memory margin
US4081712A (en) Addition of helium to gaseous medium of gas discharge device
US3746420A (en) Manufacture and operation of gas discharge panel
US4794308A (en) Multiple gaseous discharge display/memory panel having improved operating life
US4731560A (en) Multiple gaseous discharge display/memory panel having improved operating life
US3919577A (en) Multiple gaseous discharge display/memory panel having thin film dielectric charge storage member
US3989982A (en) Multiple gaseous discharge display/memory panel having decreased operating voltages
US3878422A (en) Display of time-dependent vector information
US4090100A (en) Gas discharge display device with protected dielectric
US3976823A (en) Stress-balanced coating composite for dielectric surface of gas discharge device
US3943394A (en) Gaseous discharge display/memory panel with dielectric layer
US3896323A (en) Gaseous discharge device having lower operating voltages of increased uniformity
US4218632A (en) Gas discharge device

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS-ILLINOIS TELEVISION PRODUCTS INC., SEAGATE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OWENS-ILLINOIS, INC., A CORP. OF OHIO;REEL/FRAME:004772/0648

Effective date: 19870323

Owner name: OWENS-ILLINOIS TELEVISION PRODUCTS INC.,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS-ILLINOIS, INC., A CORP. OF OHIO;REEL/FRAME:004772/0648

Effective date: 19870323