US3906735A - Foundation method for caissons - Google Patents

Foundation method for caissons Download PDF

Info

Publication number
US3906735A
US3906735A US446335A US44633574A US3906735A US 3906735 A US3906735 A US 3906735A US 446335 A US446335 A US 446335A US 44633574 A US44633574 A US 44633574A US 3906735 A US3906735 A US 3906735A
Authority
US
United States
Prior art keywords
temporary
members
support structure
caisson
downwardly extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US446335A
Inventor
Olav Mo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NO1541/72A external-priority patent/NO135909C/en
Application filed by Individual filed Critical Individual
Priority to US446335A priority Critical patent/US3906735A/en
Application granted granted Critical
Publication of US3906735A publication Critical patent/US3906735A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/025Reinforced concrete structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/02Caissons able to be floated on water and to be lowered into water in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0052Removal or dismantling of offshore structures from their offshore location
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0069Gravity structures

Definitions

  • ABSTRACT A method for the production of a support structure for supporting a platform above the surface of the sea.
  • the support itself comprises a base which rests on the sea bed and which includes a plurality of depending cells which are open at the bottom and May 2, 1972 Norway 1541/72 which can he Pressed down into the deeper layers of the sea bed.
  • the process includes the steps of (1) con- 52 us. (:1. 61/46.5; 61/50; 114/65 A structihg at least a Pomon of the cells of the base of 51 Int. 01.
  • the object of the present invention is-to find a way for foundating a caisson in deeper earth stratums which are good enough to absorb the applied forces and pref-- erably so that the foundation can be combined with a pile effect, i.e., that stresses may be taken up by friction/adhesion or passive earth pressure.
  • the invention involves the extension of the walls of the caisson a significant distance below the bottom slab and to press/jet'the walls down into the ground until the bottom slab reaches the sea bed.
  • the caisson is in this case foundated at a depth corresponding to the lower edge of the extended wall (the skirt) and will in addition be stabilized by friction/adhesion along the outside of the outside walls as well by passive earth pressure against the front wall.
  • the skirt according to the invention must not be mistaken for the previously mentioned conventional cutting edge, since the effect in practice is completely different.
  • Such a small cutting edge may have a certain prior art marine support structure and the support structure of the invention;
  • FIG. 9 is a diagrammatic side elevational view, para cutting edge can prevent sliding in the joint between the caisson' and ground, but that the sliding joint only moves downwards to the. edge point and the conditions do not particularly improve.
  • FIG. 2 shows the conditions according to the invention. The sliding surface has now moved down to the level 4, where the niobilized shear forces normally will be far larger than in the surface layer. In addition there is achieved a passive earth pressure at the front edge and an active one at the rear edge which together provide a substantial resistive force, and frictional forces are also obtained along the outer walls lying parallel to the direction of force.
  • FIG. 3 4 show the conditions for pure vertical load. It is immediately seen from FIG. 3 that it is without significance whether a small cutting edge is present or not.
  • FIG. 5 6 show an example of the conditions for combined horizontal-, vertical and movement load, i.e., the normal-case. Also in this case the skirt will act in a stabilizing way similar to the case of a pure vertical load.
  • FIG. 6 a 7 show the difference in ground stress (hatched area).
  • the skirt provides less absolute ground pressure and maximum ground pressure occurs in addition at larger depths, which normally is an advantage.
  • a usual surface foundation which is subject to horizontal forces and movements is depen'dant on similtanously having av large dead weight to prevent sliding or capsizing.
  • Sufficient dead weight may be difficult to achieve, inter alia because a submerged caisson subject to wave loads similtanously with the other loads also tially in section, of a support structure accordingto the I present invention;
  • FIG. 10 is a diagrammatic top sectional view taken generally along line Il of FIG. 9.
  • FIGS. 11-14 are diagrammatic side elevation views showing the assembly and submersion of a support obtains substantial upward forces, which will act against the dead weight. There is also a limit for the vertical forces which a building asite can absorb.
  • FIG. 9 10 show a proposal for an actual and present case somewhere in the North Sea.
  • a platform was to be placed at a site where the ground consisted of soft clay with a shear strength of approximately I t/m for the upper 4 m and thereafter increasing to approximately t/m at a depth of m. It was tried to solve this problem with a usual surface foundation, but this had to be abandoned since it showed impossible to construct a foundation which resulted in sufficient low shear forces in the clay. Even if this had been possible to solve, long time settlements of several meters would have prevented the project in any case.
  • a larger caisson forpositioning on the bottom of the sea will be made as follows: The bottom section is cast in a dock, is thereafter towed out on deeper water and the walls are cast using a slipform in the floating state. The top cover and superstructure is thereafter cast, and finally the construction is towed out on deep water and lowered by letting water into it. t
  • the same method may be used in order to produce a structure according to this invention, but the depth of the dock becomes so large due to the skirt that this may make the project uneconomical.
  • Another method is to cast the caisson in similar way as described but turned upside down. The skirt may thus be cast above water in the floating state, and the caisson is turned by pumping water into the cells on one side. The caisson may consequently be put into a right position by trimming and the work is terminated as described above.
  • step (FIG. ll l4) A third possible production and positioning method will now be explained step by step (FIG. ll l4).
  • the caisson is lifted fully upto the floating state by pumping out water and may betowed to a new site.
  • a fourth possible solution to reduce the dock depth is, to cast the lower bottom 7 in the dock and have an air cushion in the interspace 9.
  • a skirt can be given series of different shapes. Normally it will extend around the outer edge of the caisson. It is however, advantageous in addition to divide the. underside of the caisson into several cells, and in practice the skirt walls should flush-with the walls of the caisson. Itwill thus be a close connection between the construction of the caisson and the skirt.
  • A'particularly preferred embodiment is to let both the caisson and the skirt consist of a series of vertical cylindrical cells 15 which are hold together monolitically in the points of Contact, as, cg, shown of FIG. 9 10.
  • the advantages of this embodiment is that the walls will obtain a nearly constant load in the ring direction and substantially pure pressure and tensive forces, and no moments.
  • the cells will also act independant of each other, a fact which is of large impor sure will press the bottoms against the walls and hold H the bottoms in position.
  • the caisson walls 8 are cast.
  • a division of'cells has also advantages in the ground. A break down ofa cell will also there have small consequences due to the fact that each cell only represents a fractionof the carryingcapacity and that intact cells have full strength indepcndant of the damaged one.
  • a division into small, round cells also offers advantages in that the trimming becomes easy to perform, both in floating state and by the operations as mentioned above in point 17. A bottom which is not even may to a certain degree be compensated for by overweight on the highest side.
  • the round shape is also advantageous with regard to cracking of the walls.
  • the underside of the bottom 7 may in order to prevent this be provided with a layer which is permeable to water but too dense for the clay to penetrate into it.
  • the layer may e.g. be constituted by extremely lean concrete.
  • the temporary bottoms 5 may be provided with floating tanks, for example for later lifting and reuse.
  • the lowermost part of the skirt may be shaved like a knife for easier penetration into the ground.
  • a small deviation from the uniform circular form which is indicated may be considered e.g. to achieve a form which in a better way can absorb the shear forces.
  • Equipment for jetting may be arranged on the lower part of the skirt in order to ease penetration.
  • the temporary bottoms 5 may be constructed as a continuous whole and with an edge around the lot.
  • the bottom will thereby have the character of a floating dock, but deviated from a floating dock in that it is lowcred rather than having a dock gate, and also in that the permanent construction will distribute and stiffen the floating dock, such that it will be made very simple and inexpensive.
  • the permanent construction will in reality be statically co-operating with the dock when the dock is maximally loaded.
  • FIG. 8 Another variation is shown on FIG. 8. Only one cell is here carried out with a skirt. The moments will in such a case not be absorbable such that the caisson will oscillate according to the waves. Drilling may however -be performed through the central cell.
  • concrete is the construction material, it is evident that other materials, e.g., steel also may be used. Some of the mentioned advantages will, however, be reduced or disappear.
  • the concrete may be not reinforced, reinforced in the normal way or prestressed.
  • skirt An important advantage of the skirt is that a better overall control of where the bearing pressure is acting is achieved, such that the caisson can be dimentioned correspondingly.
  • the bottom is somewhat unever such that the structure is founded on limited areas resulting in large moments and shear forces.
  • skirts there are always shown very long skirts. It may be mentioned, however, that in some cases a foundation according to the invention may be carried out with substantially shorter skirts. If for example a stiff clay has an overburden of loose sand, any skirt that penetrates the sand layer in fact will foundate the caisson on the stiff clay.
  • skirts By means of skirts according to the invention it will always be possible to suck or to jack a tilting structure into vertical position if the number'of skirt cells are at least 3. Grouting between lower bottom 7 and sea bed is not necessary if the dead weight is compensated as described above, as the ,wave forces'canbe carried by the trapped water cushion.
  • the skirts will however always offer the advantage that grouting can be carried out if necessary.
  • Pumping machinery for sea water should preferably be placed below water surface. Pumps placed above water surface will have a very poor suction effect.
  • the suction procedure described may be limited by the possibility of a bottom heave. This will happen if the underpressure is too large compared with the shear strength of the clay, and may also happen if for example sand layers occurs in a clay. Bottom heave can be avoided by creating the underpressure not in the space 12, but somewhere on the already downpressed wall, for example on the tip. This can be done by suction pipes following the skirt and ended with a filter to avoid earth flowing into the pipe.
  • the trapped water curshion (pore water) in the interspace 12 will during lifetime carry compressive and tensive forces by overpressure respectively underpressure in the water. This gives the advantage that all short time forces (wave forces) are evenly distributed on the bottoms 7.
  • a method for the production of a support structure for supporting a platform above the surface of the sea comprising a base which rests on the sea bed and which comprises at least one downwardly extending hollow wall member which is open at the bottom so as to define a downwardly opening compartment and which can be pressed down into the deeper layers of the sea bed, said process comprising the steps of:
  • said wall member comprises a plurality of independent downwardly extending cylindrical wall members and wherein said temporary bottom closure member comprises a unitary member closing each of said plurality of wall members, said method further comprising removing the temporary closure members by flooding water into the spaces defined by the temporary closure members and the wall members.
  • said hollow wall member comprises a plurality of independent downwardly extending cylindrical wallmembers, a plurality of separate temporary bottom closure members being provided for each of said cylindrical wall members to close off said plurality of cylindrical wall members, the temporary closure members'being removed by flooding water into the chambers defined by the temporary bottom closure members and the cylindrical wall members.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Revetment (AREA)
  • Foundations (AREA)

Abstract

A method is provided for the production of a support structure for supporting a platform above the surface of the sea. The support itself comprises a base which rests on the sea bed and which includes a plurality of depending cells which are open at the bottom and which can be pressed down into the deeper layers of the sea bed. The process includes the steps of (1) constructing at least a portion of the cells of the base of the support structure in dry dock; (2) enclosing the bottoms of the cells with temporary bottom closures to form a series of buoyancy chambers; (3) floating the partially constructed base in deep water; and (4) completing the construction of the support structure in deep water, the temporary bottom closures being removed after the support structure has sufficient self-floating capability.

Description

United States Patent 1191 FOUNDATION METHOD FOR CAISSONS '[76] Inventor: Olav M0, Groensundveien 94,
Related us. Application Data [62] Division of Ser. N0. 352,679, April 19, 1973,
abandoned.
[30] Foreign Application Priority Data Sept. 23, 1975 Primary Examiner-Jacob Shapiro Attorney, Agent, or FirmLarson, Taylor and Hinds [57] ABSTRACT A method is provided for the production of a support structure for supporting a platform above the surface of the sea. The support itself comprises a base which rests on the sea bed and which includes a plurality of depending cells which are open at the bottom and May 2, 1972 Norway 1541/72 which can he Pressed down into the deeper layers of the sea bed. The process includes the steps of (1) con- 52 us. (:1. 61/46.5; 61/50; 114/65 A structihg at least a Pomon of the cells of the base of 51 Int. 01. E02D 5/00; 863C l/06; B63B 35/44 the Support Structure in y dock; enclosing the [58] Field of Search 61/46, 465, 50, 52 bottoms of the cells with temporary bottom closures 114/65 A to form a series of buoyancy chambers; (3) floating the partially constructed base in deep water; and (4) [56] References Cited completing the construction of the support structure UNITED STATES PATENTS in deep water, the temporary bottom closures being 3 091 089 5/1963 G H t d I46 removed after the support structure has sufficient selfe ers a 3,464,212 9/1969 Yamagata et a1 61/46 floatmg capablhty' FOREIGN PATENTS OR APPLICATIONS 4 Claims, 14 Drawing Figures 1,088,804 10/1967 United Kingdom 6l/46.5
US Patent Sept. 23,1975 Sheet 1 of 4 3,906,735
I I l I/ Fig.1 Fig.2 PRIOR ART A /L l/ Ul I. Fig.3 PRIOR ART ,v l
Fig. 4
/ a 1// u 1/ /i I Fig. 5 x PRIOR ART Fig. 6
I I 2 I4 3 II .y l L I I! III //I III I/ Fig, 7 Fig. 8
PRIOR ART US Patent Sept. 23,1975 Sheet 2 of4 3,906,735
US Patent Sept. 23,1975 Sheet 3 of4 3,906,735
Fig. 12
Fig-H US Patent Sept. 23,1975
Sheet 4 0f 4 Fig 13 Fig. IL
troleum production.
To place a caisson on the bottom of the sea and use it as a foundation for platforms, possibly as an oil storage, is known inter alia from the Norwegian Pat. applications Nos. 3325/71 and 3326/71. The application No. 4282/71 also indicates a method for depth foundation, i.e.,-by-using piles which are pressed down. It is also known to use a caisson on the bottom of the sea as oil storage and provided with a small cuttingedge.
In many cases it will however not-be possible-to perform apositioning of a caisson on the bottom of the sea. The most frequent reason will be that the state of the bottom is poor, but also with good sea bed condi-. tions foundation may be impossible if the applied moments and forces are large. Another. case where conventional surface foundation, is not possible is where the foundation results in large longtime settlements, for example where the sea bed consists-of soft clay.
The object of the present invention is-to find a way for foundating a caisson in deeper earth stratums which are good enough to absorb the applied forces and pref-- erably so that the foundation can be combined with a pile effect, i.e., that stresses may be taken up by friction/adhesion or passive earth pressure.
The invention involves the extension of the walls of the caisson a significant distance below the bottom slab and to press/jet'the walls down into the ground until the bottom slab reaches the sea bed. In reality, the caisson is in this case foundated at a depth corresponding to the lower edge of the extended wall (the skirt) and will in addition be stabilized by friction/adhesion along the outside of the outside walls as well by passive earth pressure against the front wall. a
The skirt according to the invention must not be mistaken for the previously mentioned conventional cutting edge, since the effect in practice is completely different. Such a small cutting edge may have a certain prior art marine support structure and the support structure of the invention;
FIG. 9 is a diagrammatic side elevational view, para cutting edge can prevent sliding in the joint between the caisson' and ground, but that the sliding joint only moves downwards to the. edge point and the conditions do not particularly improve. FIG. 2 shows the conditions according to the invention. The sliding surface has now moved down to the level 4, where the niobilized shear forces normally will be far larger than in the surface layer. In addition there is achieved a passive earth pressure at the front edge and an active one at the rear edge which together provide a substantial resistive force, and frictional forces are also obtained along the outer walls lying parallel to the direction of force.
FIG. 3 4 show the conditions for pure vertical load. It is immediately seen from FIG. 3 that it is without significance whether a small cutting edge is present or not. FIG. 5 6 show an example of the conditions for combined horizontal-, vertical and movement load, i.e., the normal-case. Also in this case the skirt will act in a stabilizing way similar to the case of a pure vertical load.
. Another advantage of the caisson according to the invention and in comparison withordinary caissons is thatfriction/adhesion along the skirt wall leads to the tensive forces being absorbed by the foundation. In dense soil tension may also be" absorbed in the level 4 (FIG. 2) of the horizontal j'oin't, since an upward movement will lead-to an under-pressure in this joint. The fact that tensive forces can be absorbed means great advantages, inter alia in that the resultant will have less eccentricity for large overturningmoments. It will also prevent lifting of the "caisson at the rear edge, and thereby scour at this point. The FIG. 6 a 7 show the difference in ground stress (hatched area). The skirt provides less absolute ground pressure and maximum ground pressure occurs in addition at larger depths, which normally is an advantage.
A usual surface foundation which is subject to horizontal forces and movements is depen'dant on similtanously having av large dead weight to prevent sliding or capsizing. Sufficient dead weight may be difficult to achieve, inter alia because a submerged caisson subject to wave loads similtanously with the other loads also tially in section, of a support structure accordingto the I present invention;
FIG. 10 is a diagrammatic top sectional view taken generally along line Il of FIG. 9; and
FIGS. 11-14 are diagrammatic side elevation views showing the assembly and submersion of a support obtains substantial upward forces, which will act against the dead weight. There is also a limit for the vertical forces which a building asite can absorb.
Lastly, there is a limit for the dead weight if a caisson ments become large, which may be particularly troublesome on soft ground.
With a construction according to the invention these problems will be substantially reduced. One becomes far less dependant on large vertical forces because passive earth pressure, frictional/adhesion forces as well as forces due to underpressure are mobilized. If the skirt is made sufficient long the forces due to the skirt can alone absorb all external forces and the dead weight may be zero. This may be achieved by pumping water out of the caisson. In such a case the construction will float and the soil is only stressed'by shear forces due to external forces. The settlement will thus be minimal, since these will only be a result of short external loads, while the settlements due to dead weight becomes zero.
FIG. 9 10 show a proposal for an actual and present case somewhere in the North Sea. A platform was to be placed at a site where the ground consisted of soft clay with a shear strength of approximately I t/m for the upper 4 m and thereafter increasing to approximately t/m at a depth of m. It was tried to solve this problem with a usual surface foundation, but this had to be abandoned since it showed impossible to construct a foundation which resulted in sufficient low shear forces in the clay. Even if this had been possible to solve, long time settlements of several meters would have prevented the project in any case.
By introducing a skirt 3 according to the invention the conditions were radically changed. The platform was now in reality foundated on a clay with a shear strength increased by 5- in relation to the surface clay since that clay which lies inside the skirt in practice acts as a part of the caisson.
In addition one achieved a certain force absorbance due to a friction against the outer walls. By pumping most of the water out of the caisson the buoyance became equal to the dead weight and the vertical load thereby became zero, except for variations in the payload and uplift due to waves which both were small in this case. The result was that the clay without difficulty could absorb the applied forces and moments and at the same time the settlements became minimal.
The production of a skirt according to the invention offers special problems. Normally a larger caisson forpositioning on the bottom of the sea will be made as follows: The bottom section is cast in a dock, is thereafter towed out on deeper water and the walls are cast using a slipform in the floating state. The top cover and superstructure is thereafter cast, and finally the construction is towed out on deep water and lowered by letting water into it. t
The same method may be used in order to produce a structure according to this invention, but the depth of the dock becomes so large due to the skirt that this may make the project uneconomical. Another method is to cast the caisson in similar way as described but turned upside down. The skirt may thus be cast above water in the floating state, and the caisson is turned by pumping water into the cells on one side. The caisson may consequently be put into a right position by trimming and the work is terminated as described above.
A third possible production and positioning method will now be explained step by step (FIG. ll l4).
1. Loose, temporary bottoms 5 are made in a dry dock.
2. The lowermost part of the skirt 6 is cast on the bottoms 5.
3. Water is let into the dock and the structure is floated out on deep water (FIG. 11). The water prespenetrated some distance down into the ground, possibly completely down such that the caisson bottom rests on the sea bed.
ll. lf the. caisson has not come completely down by its own weight and the ground consistsof a dense kind of soil, water is pumped out from the interspace 12 below the caisson bottom 7 .and the caisson is pressed further down. (FIG. 14).
12. If the caisson cannot be pressed to the bottom by the method as stated under point 10 and 11 the cells are filled with sand tillit is pressed completely down such that the bottom plate is contacting the bottom of the sea. t
13. Eccess sand according to point 12 is removed.
14. Water and/or ballast sand is pumped out of the caisson until the platforms dead weight is equalized.
15-. When the platform is to be removed, water is pumped in under the bottom plate 7 until it lifts due to overpressure. i
116. If the measures according to point 15 are insufficient, the part of the ballast 13 which is present in the in the caisson is removed until it lifts.
17. The caisson is lifted fully upto the floating state by pumping out water and may betowed to a new site.
A fourth possible solution to reduce the dock depth, is, to cast the lower bottom 7 in the dock and have an air cushion in the interspace 9.
A skirt can be given series of different shapes. Normally it will extend around the outer edge of the caisson. It is however, advantageous in addition to divide the. underside of the caisson into several cells, and in practice the skirt walls should flush-with the walls of the caisson. Itwill thus be a close connection between the construction of the caisson and the skirt.
A'particularly preferred embodiment is to let both the caisson and the skirt consist of a series of vertical cylindrical cells 15 which are hold together monolitically in the points of Contact, as, cg, shown of FIG. 9 10. The advantages of this embodiment is that the walls will obtain a nearly constant load in the ring direction and substantially pure pressure and tensive forces, and no moments. The cells will also act independant of each other, a fact which is of large impor sure will press the bottoms against the walls and hold H the bottoms in position.
4. The rest of the skirts are cast w 5. New bottoms, the permanent ones 7, are cast.
6. The caisson walls 8 are cast.
7. Water is let into the interspace 9 between the temporary and the permanent bottoms. When the water pressure becomes large enough the temporary bottoms tance if a wall is breaking down due to some accident. If the number of cells is large enough this means that the construction is fullyfunctionable even with local breakdowns. If one examines the separate operations one arrives at the following result: Duringproduetion a break down ofa cell will only lead to the construction obtaining a certain tilt. The same is the case during towage provided one have a relatively large freeboard. Any tilt during lowering will become larger, but pro vided one or several towers are present as shown in the figures, the structure will not tilt over. Even if the conditions are such that the caisson goes to the bottom each intact cell will anyway resist the full water pressure suchthat the structure later may be lifted up and repaired. i
Division into many small cells have further the advantage that the ballast cannot move as well as the reduction in metacenter height due to inner free water surface becomes insignificant.
A division of'cells has also advantages in the ground. A break down ofa cell will also there have small consequences due to the fact that each cell only represents a fractionof the carryingcapacity and that intact cells have full strength indepcndant of the damaged one. In
practice it has proved that it is difficult'to achieve full carrying capacity in those cells where drilling equipment or the like is going down into the ground. This reaction will be small by division into small independant units.
A division into small, round cells also offers advantages in that the trimming becomes easy to perform, both in floating state and by the operations as mentioned above in point 17. A bottom which is not even may to a certain degree be compensated for by overweight on the highest side.
The round shape is also advantageous with regard to cracking of the walls.
The invention may be supplemented .with a series of details of which some shall be mentioned:
By pumping in water (point it may be theoretically thought that it will be difficult to get the water. to penetrate in betwen the bottom and the clay. The underside of the bottom 7 may in order to prevent this be provided with a layer which is permeable to water but too dense for the clay to penetrate into it. The layer may e.g. be constituted by extremely lean concrete.
The temporary bottoms 5 may be provided with floating tanks, for example for later lifting and reuse.
The lowermost part of the skirt may be shaved like a knife for easier penetration into the ground.
A small deviation from the uniform circular form which is indicated may be considered e.g. to achieve a form which in a better way can absorb the shear forces.
Equipment for jetting may be arranged on the lower part of the skirt in order to ease penetration.
The temporary bottoms 5 may be constructed as a continuous whole and with an edge around the lot. The bottom will thereby have the character of a floating dock, but deviated from a floating dock in that it is lowcred rather than having a dock gate, and also in that the permanent construction will distribute and stiffen the floating dock, such that it will be made very simple and inexpensive. The permanent construction will in reality be statically co-operating with the dock when the dock is maximally loaded.
A series of other variations of the construction than indicated above may be considered. Just a part of the caisson cells may be extended with a skirt. If one let the skirt consist of only three cells this will result in an approximate statically determined threepoint mounting with the static advantages this offers. Besides the penetration resistance will become less such that the skirts can be made longer and thus reach larger depths. On FIG. 10 one may consider just to extend those cells which are marked B. These cells may be connected by a framework instead of by other cells.
Another variation is shown on FIG. 8. Only one cell is here carried out with a skirt. The moments will in such a case not be absorbable such that the caisson will oscillate according to the waves. Drilling may however -be performed through the central cell.
It is not necessary that all the cells in the caisson are provided with a permanent bottom 7. It is possible to omit the bottom in some, e.g., in those cells which are provided with a skirt, such that all forces must be absorbed by shear forces against the skirt walls.
Even if it has in the foregoing been assumed that concrete is the construction material, it is evident that other materials, e.g., steel also may be used. Some of the mentioned advantages will, however, be reduced or disappear. The concrete may be not reinforced, reinforced in the normal way or prestressed.
.In the foregoing a particular emphasis has been placed, on the very static foundation on soft ground. Such a deep skirt which is shown will however also offer other advantages. In particular it should be mentioned that a deep penetration downwards will prevent scour. This is in any case a fact if the skirt penetrates scour-proof layers as for example clay. There is also at present a factor of unsafety on sand because the wave will also have an effect on the underside of the caisson. A deep skirt will also reduce this effect.
An important advantage of the skirt is that a better overall control of where the bearing pressure is acting is achieved, such that the caisson can be dimentioned correspondingly. For a normal surface foundation one may risk that the bottom is somewhat unever such that the structure is founded on limited areas resulting in large moments and shear forces.
In the foregoing examples there are always shown very long skirts. It may be mentioned, however, that in some cases a foundation according to the invention may be carried out with substantially shorter skirts. If for example a stiff clay has an overburden of loose sand, any skirt that penetrates the sand layer in fact will foundate the caisson on the stiff clay.
By means of skirts according to the invention it will always be possible to suck or to jack a tilting structure into vertical position if the number'of skirt cells are at least 3. Grouting between lower bottom 7 and sea bed is not necessary if the dead weight is compensated as described above, as the ,wave forces'canbe carried by the trapped water cushion. The skirts will however always offer the advantage that grouting can be carried out if necessary.
If the sea bed is uneven, pipes for grouting can be placed in advance. The platform can then, when it is placed, be jacked to the correct position by the ballast system, and finally the space below the bottoms are grouted. The structure can be designed to resist full water pressure and then it is possible to empty one of the towers during the grouting. This grouting can therefore be done from a deck inside a tower in a suitable height. This is very important because if the grouting is carried out from above sea level, the difference in specific weight between the grouting material and the sea water may cause that the pressure is too hgih and the platform is lifted.
Pumping machinery for sea water should preferably be placed below water surface. Pumps placed above water surface will have a very poor suction effect.
It will easily be seen that the main difference between a usual gravity caisson and a caisson according to the invention is that the latter is more or less cantilevered from the sea bottom and not solely dependent on gravity forces.
It is also possible to let the underpressure mentioned in fabrication step 1 1 stay permanent. This will preconsolidate the soil and thereby reduce later settlements. It will also create a permanent load on the structure and thereby stabilize it against wave action.
The suction procedure described may be limited by the possibility of a bottom heave. This will happen if the underpressure is too large compared with the shear strength of the clay, and may also happen if for example sand layers occurs in a clay. Bottom heave can be avoided by creating the underpressure not in the space 12, but somewhere on the already downpressed wall, for example on the tip. This can be done by suction pipes following the skirt and ended with a filter to avoid earth flowing into the pipe.
It will immediately be understood that the embodiments of the invention as shown on the drawings and described above only are meant to illustrate the inventive thought, and that this inventive thought may be varied in a series of ways within the scope of the invention.
The trapped water curshion (pore water) in the interspace 12 will during lifetime carry compressive and tensive forces by overpressure respectively underpressure in the water. This gives the advantage that all short time forces (wave forces) are evenly distributed on the bottoms 7.
I claim:
1. A method for the production of a support structure for supporting a platform above the surface of the sea, said support structure comprising a base which rests on the sea bed and which comprises at least one downwardly extending hollow wall member which is open at the bottom so as to define a downwardly opening compartment and which can be pressed down into the deeper layers of the sea bed, said process comprising the steps of:
constructing a portion of said base including said downwardly extending hollow wall member in a dry dock;
enclosing the open bottom of said downwardly extending hollow wall member with a temporary bot tom closure member so as to close off the compartment defined by the downwardly extending wall member and thereby provide a buoyancy chamber;
floating the partially constructed base portion in deep water; and
completing construction of the support structure in deep water, said temporary bottom closure member being removed after the support structure has sufficient self-floating capability.
2. A method according to claim 1 wherein said wall member comprises a plurality of independent downwardly extending cylindrical wall members and wherein said temporary bottom closure member comprises a unitary member closing each of said plurality of wall members, said method further comprising removing the temporary closure members by flooding water into the spaces defined by the temporary closure members and the wall members.
3. A method according to claim 1 wherein said temporary bottom closure member comprises a floating tank.
4. A method according to claim 1 wherein said hollow wall member comprises a plurality of independent downwardly extending cylindrical wallmembers, a plurality of separate temporary bottom closure members being provided for each of said cylindrical wall members to close off said plurality of cylindrical wall members, the temporary closure members'being removed by flooding water into the chambers defined by the temporary bottom closure members and the cylindrical wall members.

Claims (4)

1. A method for the production of a support structure for supporting a platform above the surface of the sea, said support structure comprising a base which rests on the sea bed and which comprises at least one downwardly extending hollow wall member which is open at the bottom so as to define a downwardly opening compartment and which can be pressed down into the deeper layers of the sea bed, said process comprising the steps of: constructing a portion of said base including said downwardly extending hollow wall member in a dry dock; enclosing the open bottom of said downwardly extending hollow wall member with a temporary bottom closure member so as to close off the compartment defined by the downwardly extending wall member and thereby provide a buoyancy chamber; floating the partially constructed base portion in deep water; and completing construction of the support structure in deep water, sAid temporary bottom closure member being removed after the support structure has sufficient self-floating capability.
2. A method according to claim 1 wherein said wall member comprises a plurality of independent downwardly extending cylindrical wall members and wherein said temporary bottom closure member comprises a unitary member closing each of said plurality of wall members, said method further comprising removing the temporary closure members by flooding water into the spaces defined by the temporary closure members and the wall members.
3. A method according to claim 1 wherein said temporary bottom closure member comprises a floating tank.
4. A method according to claim 1 wherein said hollow wall member comprises a plurality of independent downwardly extending cylindrical wall members, a plurality of separate temporary bottom closure members being provided for each of said cylindrical wall members to close off said plurality of cylindrical wall members, the temporary closure members being removed by flooding water into the chambers defined by the temporary bottom closure members and the cylindrical wall members.
US446335A 1972-05-02 1974-02-27 Foundation method for caissons Expired - Lifetime US3906735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US446335A US3906735A (en) 1972-05-02 1974-02-27 Foundation method for caissons

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO1541/72A NO135909C (en) 1972-05-02 1972-05-02 MARIN CONSTRUCTION
US352679A US3911687A (en) 1972-05-02 1973-04-19 Foundation method for caissons
US446335A US3906735A (en) 1972-05-02 1974-02-27 Foundation method for caissons

Publications (1)

Publication Number Publication Date
US3906735A true US3906735A (en) 1975-09-23

Family

ID=27352560

Family Applications (1)

Application Number Title Priority Date Filing Date
US446335A Expired - Lifetime US3906735A (en) 1972-05-02 1974-02-27 Foundation method for caissons

Country Status (1)

Country Link
US (1) US3906735A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124989A (en) * 1975-06-04 1978-11-14 Redpath Dorman Long (North Sea) Limited Supports for maritime structures
US4249618A (en) * 1977-12-19 1981-02-10 Compagnie Generale Pour Les Developpements Operationnels Des Richesses Sous-Marines Method and apparatus for the working of underwater deposits
US10443574B2 (en) * 2015-03-27 2019-10-15 Drace Infraestructuras, S.A. Gravity foundation for the installation of offshore wind turbines
US20220340242A1 (en) * 2021-04-22 2022-10-27 Di Du Offshore Floating Island

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091089A (en) * 1957-09-17 1963-05-28 Gellerstad Robert Vilhelm Method and means for erecting lighthouses, breakwaters, bridge-piers and similar structures
US3464212A (en) * 1966-05-13 1969-09-02 Daiho Construction Co Ltd Method of building concrete structures in water bottoms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091089A (en) * 1957-09-17 1963-05-28 Gellerstad Robert Vilhelm Method and means for erecting lighthouses, breakwaters, bridge-piers and similar structures
US3464212A (en) * 1966-05-13 1969-09-02 Daiho Construction Co Ltd Method of building concrete structures in water bottoms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124989A (en) * 1975-06-04 1978-11-14 Redpath Dorman Long (North Sea) Limited Supports for maritime structures
US4249618A (en) * 1977-12-19 1981-02-10 Compagnie Generale Pour Les Developpements Operationnels Des Richesses Sous-Marines Method and apparatus for the working of underwater deposits
US10443574B2 (en) * 2015-03-27 2019-10-15 Drace Infraestructuras, S.A. Gravity foundation for the installation of offshore wind turbines
US20220340242A1 (en) * 2021-04-22 2022-10-27 Di Du Offshore Floating Island
US11661157B2 (en) * 2021-04-22 2023-05-30 Di Du Offshore floating island

Similar Documents

Publication Publication Date Title
US3911687A (en) Foundation method for caissons
US3896628A (en) Marine structures
US8025463B2 (en) Offshore foundation system with integral elements for preloading and extracting
US9567720B2 (en) Offshore platform for a marine environment
GB2079826A (en) Underwater support structures for platform-carrying tower or towers
US3640075A (en) Method of installing breakwater caissons
US3969900A (en) Breakwater construction
US4063426A (en) Three column tower
US3999395A (en) Support arrangement for a construction
KR100383409B1 (en) Construction Method of Direct Foundation for using Caisson
US3961489A (en) Method for placing a floating structure on the sea bed
US3906735A (en) Foundation method for caissons
US3618327A (en) Caisson structure and pier construction methods
US2675680A (en) Construction of submerged
US20220324540A1 (en) A marine construction and a method for constructing the same
US2935854A (en) Offshore drilling platform
GB1430084A (en) Marine structures
JPS6143493B2 (en)
JPH09316894A (en) Bridge pier foundation structure, and construction method thereof
US3965688A (en) Underwater structures, in particular for underwater drilling operations
US1394571A (en) Subaqueous structure and method
KR102573064B1 (en) Caisson launching apparatus and method without a floating dock using deep learning
KR102383735B1 (en) Caisson connection structure and construction method for tidal level difference
KR20040084126A (en) Dry Construction Method of Underwater Structure Using Watertight Caisson
US3608320A (en) Method and apparatus for constructing a concrete wall structure in open water