US3905883A - Electrolytic etching method - Google Patents
Electrolytic etching method Download PDFInfo
- Publication number
- US3905883A US3905883A US480472A US48047274A US3905883A US 3905883 A US3905883 A US 3905883A US 480472 A US480472 A US 480472A US 48047274 A US48047274 A US 48047274A US 3905883 A US3905883 A US 3905883A
- Authority
- US
- United States
- Prior art keywords
- etched
- potential
- mol
- anode electrode
- electrolytic etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000866 electrolytic etching Methods 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 30
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000003792 electrolyte Substances 0.000 claims abstract description 44
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims abstract description 31
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 28
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000010409 thin film Substances 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 11
- 239000010941 cobalt Substances 0.000 claims abstract description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 6
- 238000005530 etching Methods 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 229920002120 photoresistant polymer Polymers 0.000 claims description 24
- 239000010408 film Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- 150000008049 diazo compounds Chemical class 0.000 claims description 2
- 229910000889 permalloy Inorganic materials 0.000 abstract description 35
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052802 copper Inorganic materials 0.000 abstract description 12
- 239000010949 copper Substances 0.000 abstract description 12
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000001704 evaporation Methods 0.000 description 11
- 230000008020 evaporation Effects 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000003486 chemical etching Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002365 multiple layer Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- ABEXMJLMICYACI-UHFFFAOYSA-N [V].[Co].[Fe] Chemical compound [V].[Co].[Fe] ABEXMJLMICYACI-UHFFFAOYSA-N 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/02—Etching
- C25F3/14—Etching locally
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3163—Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
Definitions
- a precise pattern figure can be formed on a thin film of permalloy, iron, nickel, cobalt and copper through an electrolysis with a mixture of ammonium persulfate and nitric acid electrolyte under control of the electrode potential.
- a desired part of an electrode whose surface is in coexistence with aluminum can be electrolytically etched without damaging the aluminum.
- the present invention relates to an electrolytic etching method available for preparation of large size integrated circuits incorporated with a number of highly concentrated elements and circuits formed on a substrate, formation of electrodes of semiconductor elements and preparation of other elements and circuit: as well.
- a mask pattern of photoresist can have highly precise dimension and therefore with photoresist it is possible to form a mask pattern with l ,um precision.
- precision in a completed pattern is reduced to about um on account of the irregularity of etching and the damage of the photoresist mask.
- the chemical etching it is usual to raise the temperature for the purpose of promoting the dissolving speed and this often damages the photoresist film.
- an electrolytic etching softly acts on an object to be etched.
- electrolysis creates gases which are liable to cause the photoresist film to be peeled off, thus degrading precision in the pattern.
- a so-called selective electrolytic etching method wherein only one of two kinds of metals electrically connected and exposed from the electrode surface is dissolved has not been used for forming thin film circuit patterns since it requires a special combination of different metals and special conditions.
- a principal object of the present invention is to provide an electrolytic etching method for forming a precise pattern figure on thin films of permalloy, iron, nickel, cobalt, copper and molybdenum.
- a second object of the present invention is to provide an electrolytic etching method wherein a metal thin film a part of which is coated with a photoresist pattern film can be etched without damaging the photoresist pattern film.
- a third object of the present invention is to provide a selective electrolytic etching method wherein permalloy, iron, nickel, cobalt, copper, and molybdenum are each electrically connected to aluminum and under this electrical connection the permalloy, iron, nickel, cobalt, copper or molybdenum is selectively dissolved.
- a fourth object of the present invention is to provide an electrolytic etching method capable of suppressing the creation of gases.
- a fifth object of the present invention is to provide an electrolytic etching method wherein etching performance of metals can be observed during the etching process.
- a sixth object of the present invention is to provide measures of preparing precise electronic parts such as an aluminum strip lead and thin film magnetic heads.
- FIG. 1 is a schematic representation of one type of electrolytic etching device embodying the invention.
- FIG. 2 is a graphic representation of etching pattern figures in accordance with different electrolytes and materials of a pattern mask.
- FIGS. 3a to 3d show photographs of etched permalloy films provided on a glass substrate.
- FIG. 4 is a diagramatic representation of preparing process of a strip lead to which the invention is applied.
- FIG. 5 is a perspective view of a thin film magnetic head.
- the present invention contemplates a method of electrolytic etching with a mixture of ammonium persulfate and nitric acid electrolyte for dissolving permalloys as well as iron, nickel, cobalt, copper and alloys thereof.
- an electrolytic etching method wherein an electro-chemical action is intentionally applied to an etching reaction. It also involves a case where some electro-cl'nemical means are added for promoting, or sometimes suppressing, the chemical etching reaction.
- the electro-chemical means is identical to means for changing electrode potential of an object to be etched from the natural electrode potential, which the object bears when immersed alone in an electrolyte, to a desired potential, and it may be constituted, for example, by application of voltage with an external power source or coupling of the object to be etched with a different metal].
- the electrolyte used herein is an aqueous solution which contains 0.1 to 2.5 mol/l ammonium persulfate [(NH S O and 0.2 to 10 mol/l nitric acid.
- the dissolving speed of permalloy is caused to differ markedly dependent on compositions of the permalloy and preparing conditions therefor. For example, since the dis solving speed of a vacuum evaporation deposited film is less than that of casting material and plated material by 1/10 to l/lOO, the aqueous solution of ammonium persulfate alone is unsuitable for electrolyte for making an etching pattern of an object coexistent with the casting and plating materials.
- the electrolyte of ammonium persulfate aqueous solution has a comparatively small etching speed and it will tend to damage anti-etching photoresist films.
- copper and cobalt-vanadium-iron alloy bear dissolving speeds of about 0.2 pun/min and l um/min, respectively, while the photoresist film of about 2 pm thickness can assume the protective ability within about 10 minutes. Accordingly, with the anti-etching photoresist film the depth of etching is restricted to less than 2 mm for copper and within um even for irons.
- the electrolytic etching speed is markedly increased owing to the oxidization action of nitric acid and especially difference in the dissolving speed clue to different preparation processes such as plating or evaporation becomes almost negligible.
- the addition of nitric acid acts to reduce the polarization of an iron object and to increase the passivating range of aluminum
- the ammonium persulfate aqueous solution added with nitric acid is advantageous to such a selective etching as to etch only the iron and copper of metals coexisting with aluminum.
- nitric acid ferric chloride, cupric chloride, potassium bichromate, and cerium sulfate are useful as oxidizing acids adapted to be added to the ammonium persulfate.
- chlorides induce etch pits on an aluminum surface, other additional substances than chlorides should be used when it is necessary to avoid the etch pits on the aluminum surface.
- supplemental injection of oxygen gas and addition of hydrogen peroxide are effective.
- concentration of ammonium persulfate within the electrolyte is 0.1 to 2.5 mol/l but 0.8 to 1.5 mol/l is preferred to the practical use, at which the solution assumes pl-l representation of 1.8 to 1.9.
- the oxygen creation potential (relative to saturated caromel electrode, hereinafter abbreviated as SCE) is about 1.0 volt.
- SCE saturated caromel electrode
- the electrode potential at the permalloy electrode adapted to be dissolved can be decreased below the oxygen creation potential, particularly below 1.0 volt (relative to SCE), thereby enabling etching of the permalloy without causing the creation of oxygen gas.
- the electrode potential at permalloy object to be etched may be selected to -0.1 to 0.5 volts (relative to SCE).
- the 1 mol/l concentration ammonium persulfate electrolyte, aluminum is passivated over a wide range of the oxygen creation potential of 0.5 to 2.5 volts (relative to SCE). When added with nitric acid, however, the passivation becomes unstable and the etch pit potential is observed.
- the etch pit potential decreases, especially, at the nitric acid concentration of above 10 mol/l a current flow necessary for maintaining the passivation exceeds 1 mA/cm Accordingly, it will be seen that the additional amount of the nitric acid ranges from 0.2 to 10 ml/l to obtain an aluminum etch pit potential of above 1.7 volts (relative to SCE) and the current flow necessary for passivation of below 0.5 mA/cm Preferably it ranges from 0.5 to 8 mol/l.
- a rapid etching for magnetic objects such as iron, nickel and cobalt and alloys thereof as well can be achieved with an electrolyte which contains 0.1 to 2.5 mol/l concentration ammonium persulfate and 0.2 to 10 mol/l nitric acid under the application of a potential between the natural electrode potential and the oxygen creation potential to the object.
- an electrolyte which contains 0.1 to 2.5 mol/l concentration ammonium persulfate and 0.2 to 10 mol/l nitric acid under the application of a potential between the natural electrode potential and the oxygen creation potential to the object.
- gas evolution is avoided, and it leads to the prevention of the photoresist film from being peeled off, and so aluminum will not be damaged.
- the aluminum is maintained in the passivation range, so it will not be dissolved.
- EXAMPLE 1 A permalloy sheet of 30 um thickness provided with a precise mask pattern was subjected to an electrolytic etching to examine the respective preferable kinds of mask material and electrolyte from the etching figure.
- FIG. 1 designates a permalloy sample to be etched, which sample constitutes an anode electrode.
- Numeral 2 designates a platinum cathode electrode in the form of a plate, which cathode electrode 2 is separated by an unglazed tube 5 such that gas created therein is prevented to prevail into the electrolyte but is electrically communicated with the etching electrolyte through the unglazed tube 5.
- Numeral 3 disignates a glass capillary vessel for measuring the electrode potential.
- electrolyte 4 there are further provided electrolyte 4, an electrolytic bath 6, a gas injection pipe 7 through which gas is injected into electrolyte with need to control the circumferential conditions thereof a magnetic stirrer 8 and a stirrer piece 9 adapted for stirring the electrolyte, saturated KNO solution 10, a salt bridge 1 1, saturated KCl solution 12, a saturated calomel electrode 1-3 and a potentiostat 14 for measuring the anode potential relative to the saturated calomel electrode and maintaining the anode potential at a desired value.
- the electrolitic etching in accordance with the present invention was carried out by maintaining the anode electrode potential and the oxygen creation potential of the permalloy sample to be etched with a DC. voltage being applied between the platinum cathode elec trode and the anode electrode of the permalloy sample.
- Table l permalloy compositions of the sample to be etched.
- permalloy film was coated with a photoresist film of a commercial photoresist made of isobutylene rubber and polycinnamic vinyle and deposited with aluminum by evaporation, with an uncovered partial figure of i 1 pm width and 50 um length.
- a photoresist film of a commercial photoresist made of isobutylene rubber and polycinnamic vinyle was deposited with aluminum by evaporation, with an uncovered partial figure of i 1 pm width and 50 um length.
- Three kinds of electrolytes as listed in Table 2 were used. With a 30C temperature electrolyte and under 0.1 volts (relative to SCE) electrode potential, the etching was performed to measure relation between the depth and the width of etched slots.
- Results are illustrated in FIG. 2.
- symbol A represents a case where No. 2 electrolyte is used with the protective coating of aluminum evaporation deposition, wherein a sharp slot is formed having the smallest extension in the width direction.
- symbol B represents a case where No. 2 and No. 3 electrolytes are used with the protective coating of photoresist
- symbol C represents a case where No. l electrolyte is used with a photoresist film.
- Symbol D represents a case where No. 2 electrolyte is used with a photoresist film, wherein a chemical etching is performed without passing a current flow. In chemical etching the etching speed was less than one-half that of the electrolytic etching and the dissolved or etched depth remarkably differs in the direction of width.
- EXAMPLE 2 Permalloy was deposited by means of evaporation upon a glass substrate (No. 7059 glass substrate of Cor ning) to a thickness of about 3,000 A and thereupon a permalloy layer was plated to a thickness of um.
- Photoresist film (KMER) was used as the protective mask and an electrolytic etching was performed under a constant potential of 0.05 volts (relative to SCE). After the etching, etched pattern figures were photographed as shown in FIG. 3.
- FIGS. 1 Photoresist film
- 3a to 3d correspond to electrolytic etchings with 1 mol/l ammonium persulfate electrolyte, 1 mol/l ammonium persulfate and 0.1 mol/l nitric acid electrolyte, 1 mol/l ammonium persulfate and 0.5 mole/l nitric acid electrolyte, and l mol/l ammonium persulfate and 1 mol/l nitric acid electrolyte, respectively.
- the electrolytic etching corresponding to FIG.
- EXAMPLE 3 On a glass substrate, a copper evaporation deposition pattern was formed and thereon a nickel plating layer was placed by about pm thick, thereby to form a multiple-layer as shown in FIG. 4a.
- a glass substrate 1, a copper evaporation deposition layer 2 and a nickel plating layer 3 are illustrated in the figure.
- the multiple-layer was subjected to a shadowing evaporation with aluminum at 30 incident angle to obtain a resulted structure as illustrated in FIG. 4b. Thereafter, the resulted structure was electrolytically etched in 1.5 moI/l ammonium persulfate 1.5 mol/l nitric acid electrolyte under a constant electrode potential of zero volt (relative to SCE).
- an aluminum beam lead which takes a shape as shown in FIG. 4c was prepared.
- EXAMPLE 4 In manufacturing process of a thin-film magnetic head for writing in and reading out recording signals of a magnetic recording medium, a precise finish of figure is required for increasing recording density.
- a ferrite substrate 1 on which aluminum conductors 2 having an anodic coating on their surfaces are placed, and an upper permalloy magnetic member 3 across the aluminum conductors 2 magnetically communicating with the ferrite substrate 1 at its rear portion.
- a magnetic gap between the ferrite substrate and the front portion of an upper magnetic member serves as a magnetic head.
- the width d of the upper permalloy magnetic member equals the track width and therefore the upper permalloy magnetic member is required to be formed with high accuracy.
- a permalloy thin film layer having a larger area than a desired figure and 20 pm thickness was formed by means of the evaporation and plating, and thereupon a precise pattern of the desired figure was formed with naphthoquinone-diazo positive type photoresist coating.
- a resulted structure was subjected to an electrolytic etching in 1 mol/l ammonium persulfate-2 mol/l nitric acid electrolyte under a constant potential of 0.2 volts (relative to SCE), thereby to obtain the upper permalloy magnetic member. Errors in the width of the upper permalloy magnetic member thus obtained were within 30 m )i 15 am for one side) with respect to a target width of 200 pm.
- an electrolytic etching method of the invention it is possible to form precisely figured etching patterns and further it is possible to form comparatively readily a desired pattern figure on an object to be etched, with partly unetched portions if the etching intensity has previously been measured. Easy washing after completion of electrolyte etching and mass-treatment of fine and sophisticated objects to be etched within a short time permit a readily available etching method.
- An electrolytic etching method for etching precise electrical parts wherein a 0.1 to 2.5 mol/l concentration ammonium persulfate 0.02 to 10 mol/l concentration nitric acid electrolyte is used and a DC voltage is applied between a cathode electrode of insoluble metal and an anode electrode including a metal object to be etched, said metal object being made from a member selected from the group consisting of iron, nickel, cobalt, copper and alloys thereof, whereby a constant potential electrolytic etching is performed by maintaining the anode electrode potential between the natural electrode potential and the oxygen creation potential of said objects to be etched.
- electrolytic etching method comprises a 0.8 to 1.5 mol/l concentration ammonium persulfate 0.5 to 8 mol/l concentration nitric acid solution.
- An electrolytic etching method according to claim 1, wherein said anode electrode including said metal objects to be etched is covered with isobutylene rubber, polycinamic vinyle, diazo compound photoresist films at a part other than that to be etched.
- An electrolytic etching method according to claim 1, wherein said anode electrode including said metal objects to be etched is covered with an aluminum film at a part other than that to be etched.
- An electrolytic etching method for etching precise electrical parts wherein one end of an anode electrode including an object to be etched is connected to a potentiostat, said object being constituted by an electrically insulative substrate or aluminum layer provided thereon with a thin film made from a member selected from the group consisting of iron, nickel, cobalt and alloys thereof said thin film being coated with a photoresist or aluminum pattern, one end of a cathode electrode including an insoluble metal is connected to said potentiostat, and the other ends of said anode electrode and said cathode electrode are immersed in a 0.8 to 1.5 mol/l concentration ammonium persulfate 0.5 to 8 mol/l nitric acid electrolyte, whereby a constant potential electrolytic etching is performed by maintaining the anode electrode potential between the natural electrode potential and the oxygen creation potential of said anode electrode.
- An electrolytic etching method wherein after a constant potential electrolysis is performed by maintaining the anode electrode potential between the natural electrode potential of said anode metal and 1.2 volts (relative to SCE), a noble potential than said natural electrode potential is applied to said anode electrode immersed in said electrolyte, whereby a remaining part of metal to be etched which has been electrically insulated is dissolved.
- An electrolytic etching method according to claim 1, wherein said anode electrode including a metal object to be etched comprises aluminum.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6873473A JPS5313177B2 (enrdf_load_stackoverflow) | 1973-06-20 | 1973-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3905883A true US3905883A (en) | 1975-09-16 |
Family
ID=13382302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US480472A Expired - Lifetime US3905883A (en) | 1973-06-20 | 1974-06-18 | Electrolytic etching method |
Country Status (2)
Country | Link |
---|---|
US (1) | US3905883A (enrdf_load_stackoverflow) |
JP (1) | JPS5313177B2 (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543153A (en) * | 1984-05-17 | 1985-09-24 | Psi Star | Process and apparatus for etching copper masked by a nickel-gold mask |
EP0658220A4 (en) * | 1990-10-31 | 1993-07-23 | Omri M Behr | METHOD AND DEVICE FOR PRODUCING ETCHING PLATES FOR GRAPHIC PRINTING. |
US5248386A (en) * | 1991-02-08 | 1993-09-28 | Aluminum Company Of America | Milling solution and method |
US5509556A (en) * | 1994-11-17 | 1996-04-23 | International Business Machines Corporation | Process for forming apertures in a metallic sheet |
US20010031549A1 (en) * | 1999-11-23 | 2001-10-18 | Crawford Ankur Mohan | Magnetic layer processing |
US20030001713A1 (en) * | 1999-11-23 | 2003-01-02 | Gardner Donald S. | Integrated transformer |
US20030005572A1 (en) * | 1999-11-23 | 2003-01-09 | Gardner Donald S. | Integrated inductor |
US20040157370A1 (en) * | 1999-11-23 | 2004-08-12 | Intel Corporation | Inductors for integrated circuits, integrated circuit components, and integrated circuit packages |
US20040222492A1 (en) * | 2003-05-05 | 2004-11-11 | Gardner Donald S. | On-die micro-transformer structures with magnetic materials |
US20050017837A1 (en) * | 1999-11-23 | 2005-01-27 | Gardner Donald S. | Integrated transformer |
US20050082257A1 (en) * | 2001-09-10 | 2005-04-21 | Gust Bierings | Method of etching copper on cards |
US20070001762A1 (en) * | 2005-06-30 | 2007-01-04 | Gerhard Schrom | DC-DC converter switching transistor current measurement technique |
US20140269228A1 (en) * | 2013-03-14 | 2014-09-18 | Seiko Instruments Inc. | Metal structure, method of manufacturing metal structure, spring component, chronograph coupling lever for timepiece, and timepiece |
US20160053399A1 (en) * | 2014-08-25 | 2016-02-25 | Seiko Epson Corporation | Forming method and formed article |
US11738927B2 (en) | 2018-06-21 | 2023-08-29 | First Quality Tissue, Llc | Bundled product and system and method for forming the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2699028B2 (ja) * | 1991-02-22 | 1998-01-19 | 大日本スクリーン製造株式会社 | 面出し方法及び装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3013956A (en) * | 1957-04-05 | 1961-12-19 | Baldwin Piano Co | Methods of etching metals in the platinum group and producing printed circuits therefrom |
US3560357A (en) * | 1968-07-26 | 1971-02-02 | Rca Corp | Electroetching of a conductive film on an insulating substrate |
US3560358A (en) * | 1968-09-12 | 1971-02-02 | Motorola Inc | Electrolytic etching of platinum for metallization |
US3721592A (en) * | 1969-05-22 | 1973-03-20 | Philips Corp | Etching method employing an etching mask while suppressing underetching |
US3728237A (en) * | 1966-09-27 | 1973-04-17 | Philips Corp | Method of manufacturing aluminum electrode foil for electrolytic capacitors |
-
1973
- 1973-06-20 JP JP6873473A patent/JPS5313177B2/ja not_active Expired
-
1974
- 1974-06-18 US US480472A patent/US3905883A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3013956A (en) * | 1957-04-05 | 1961-12-19 | Baldwin Piano Co | Methods of etching metals in the platinum group and producing printed circuits therefrom |
US3728237A (en) * | 1966-09-27 | 1973-04-17 | Philips Corp | Method of manufacturing aluminum electrode foil for electrolytic capacitors |
US3560357A (en) * | 1968-07-26 | 1971-02-02 | Rca Corp | Electroetching of a conductive film on an insulating substrate |
US3560358A (en) * | 1968-09-12 | 1971-02-02 | Motorola Inc | Electrolytic etching of platinum for metallization |
US3721592A (en) * | 1969-05-22 | 1973-03-20 | Philips Corp | Etching method employing an etching mask while suppressing underetching |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4543153A (en) * | 1984-05-17 | 1985-09-24 | Psi Star | Process and apparatus for etching copper masked by a nickel-gold mask |
EP0658220A4 (en) * | 1990-10-31 | 1993-07-23 | Omri M Behr | METHOD AND DEVICE FOR PRODUCING ETCHING PLATES FOR GRAPHIC PRINTING. |
US5248386A (en) * | 1991-02-08 | 1993-09-28 | Aluminum Company Of America | Milling solution and method |
US5509556A (en) * | 1994-11-17 | 1996-04-23 | International Business Machines Corporation | Process for forming apertures in a metallic sheet |
US20060163695A1 (en) * | 1999-11-23 | 2006-07-27 | Intel Corporation | Inductors for integrated circuits |
US20030001713A1 (en) * | 1999-11-23 | 2003-01-02 | Gardner Donald S. | Integrated transformer |
US20030005572A1 (en) * | 1999-11-23 | 2003-01-09 | Gardner Donald S. | Integrated inductor |
US20040046630A1 (en) * | 1999-11-23 | 2004-03-11 | Gardner Donald S. | Integrated transformer |
US20040157370A1 (en) * | 1999-11-23 | 2004-08-12 | Intel Corporation | Inductors for integrated circuits, integrated circuit components, and integrated circuit packages |
US6815220B2 (en) * | 1999-11-23 | 2004-11-09 | Intel Corporation | Magnetic layer processing |
US7982574B2 (en) | 1999-11-23 | 2011-07-19 | Intel Corporation | Integrated transformer |
US20040250411A1 (en) * | 1999-11-23 | 2004-12-16 | Gardner Donald S. | Integrated inductor |
US20050017837A1 (en) * | 1999-11-23 | 2005-01-27 | Gardner Donald S. | Integrated transformer |
US6856228B2 (en) | 1999-11-23 | 2005-02-15 | Intel Corporation | Integrated inductor |
US6856226B2 (en) | 1999-11-23 | 2005-02-15 | Intel Corporation | Integrated transformer |
US6870456B2 (en) | 1999-11-23 | 2005-03-22 | Intel Corporation | Integrated transformer |
US20050062575A1 (en) * | 1999-11-23 | 2005-03-24 | Gardner Donald S. | Integrated transformer |
US20100295649A1 (en) * | 1999-11-23 | 2010-11-25 | Gardner Donald S | Integrated transformer |
US6891461B2 (en) | 1999-11-23 | 2005-05-10 | Intel Corporation | Integrated transformer |
US20050146411A1 (en) * | 1999-11-23 | 2005-07-07 | Gardner Donald S. | Integrated inductor |
US6940147B2 (en) * | 1999-11-23 | 2005-09-06 | Intel Corporation | Integrated inductor having magnetic layer |
US6943658B2 (en) | 1999-11-23 | 2005-09-13 | Intel Corporation | Integrated transformer |
US6988307B2 (en) | 1999-11-23 | 2006-01-24 | Intel Corporation | Method of making an integrated inductor |
US7064646B2 (en) | 1999-11-23 | 2006-06-20 | Intel Corporation | Integrated inductor |
US7119650B2 (en) | 1999-11-23 | 2006-10-10 | Intel Corporation | Integrated transformer |
US20010031549A1 (en) * | 1999-11-23 | 2001-10-18 | Crawford Ankur Mohan | Magnetic layer processing |
US7087976B2 (en) | 1999-11-23 | 2006-08-08 | Intel Corporation | Inductors for integrated circuits |
US7791447B2 (en) | 1999-11-23 | 2010-09-07 | Intel Corporation | Integrated transformer |
US7299537B2 (en) | 1999-11-23 | 2007-11-27 | Intel Corporation | Method of making an integrated inductor |
US7327010B2 (en) | 1999-11-23 | 2008-02-05 | Intel Corporation | Inductors for integrated circuits |
US7332792B2 (en) * | 1999-11-23 | 2008-02-19 | Intel Corporation | Magnetic layer processing |
US7434306B2 (en) | 1999-11-23 | 2008-10-14 | Intel Corporation | Integrated transformer |
US20090015363A1 (en) * | 1999-11-23 | 2009-01-15 | Gardner Donald S | Integrated transformer |
US20050082257A1 (en) * | 2001-09-10 | 2005-04-21 | Gust Bierings | Method of etching copper on cards |
US7767074B2 (en) * | 2001-09-10 | 2010-08-03 | Obducat Ab | Method of etching copper on cards |
US20040222492A1 (en) * | 2003-05-05 | 2004-11-11 | Gardner Donald S. | On-die micro-transformer structures with magnetic materials |
US8471667B2 (en) | 2003-05-05 | 2013-06-25 | Intel Corporation | On-die micro-transformer structures with magnetic materials |
US7852185B2 (en) | 2003-05-05 | 2010-12-14 | Intel Corporation | On-die micro-transformer structures with magnetic materials |
US20110068887A1 (en) * | 2003-05-05 | 2011-03-24 | Gardner Donald S | On-die micro-transformer structures with magnetic materials |
US8482552B2 (en) | 2005-06-30 | 2013-07-09 | Micron Technology, Inc. | DC-DC converter switching transistor current measurement technique |
US20070001762A1 (en) * | 2005-06-30 | 2007-01-04 | Gerhard Schrom | DC-DC converter switching transistor current measurement technique |
US8134548B2 (en) | 2005-06-30 | 2012-03-13 | Micron Technology, Inc. | DC-DC converter switching transistor current measurement technique |
US9124174B2 (en) | 2005-06-30 | 2015-09-01 | Micron Technology, Inc. | DC-DC converter switching transistor current measurement technique |
US20140269228A1 (en) * | 2013-03-14 | 2014-09-18 | Seiko Instruments Inc. | Metal structure, method of manufacturing metal structure, spring component, chronograph coupling lever for timepiece, and timepiece |
US9310772B2 (en) * | 2013-03-14 | 2016-04-12 | Seiko Instruments Inc. | Metal structure, method of manufacturing metal structure, spring component, chronograph coupling lever for timepiece, and timepiece |
US20160053399A1 (en) * | 2014-08-25 | 2016-02-25 | Seiko Epson Corporation | Forming method and formed article |
US10501863B2 (en) * | 2014-08-25 | 2019-12-10 | Seiko Epson Corporation | Forming method and formed article |
US11738927B2 (en) | 2018-06-21 | 2023-08-29 | First Quality Tissue, Llc | Bundled product and system and method for forming the same |
Also Published As
Publication number | Publication date |
---|---|
JPS5017341A (enrdf_load_stackoverflow) | 1975-02-24 |
JPS5313177B2 (enrdf_load_stackoverflow) | 1978-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3905883A (en) | Electrolytic etching method | |
US6245213B1 (en) | Method for anisotropic etching of structures in conducting materials | |
CN102965719A (zh) | 薄膜金属和合金的低速率电化学蚀刻 | |
US4208257A (en) | Method of forming an interconnection | |
US3839110A (en) | Chemical etchant for palladium | |
KR20040028525A (ko) | 비시안계 전해 금도금액 | |
US4239587A (en) | Method of manufacturing a thin-film magnetic head with a nickel-iron pattern having inclined edges | |
Petrocelli | The electrochemical behavior of aluminum: I. In solutions of cerium sulfate in sulfuric acid | |
Datta et al. | Anodic film studies on nickel under high rate transpassive dissolution conditions | |
US3616349A (en) | Method for etching chromium oxide films | |
Lambert et al. | Analysis of films on Copper by Coulometric reduction | |
Kelly et al. | An electrochemical study of undercutting during etching of duplex metal films | |
EP0146796A2 (en) | Process for the fabrication of thin film magnetic transducer gaps by lift-off | |
US3476658A (en) | Method of making microcircuit pattern masks | |
Kern et al. | Electrochemical delineation of tungsten films for microelectronic devices | |
JPS6427229A (en) | Etching method for semiconductor substrate | |
Bertocci | The Role of Crystalline Orientation on the Behavior of Copper as Electrode in Chloride Solutions | |
Šesták | On the mechanism of rendering visible dislocations on the surface of iron crystals by anodic dissolving | |
US3869355A (en) | Method for making a magnetic wire of iron and nickel on a copper base | |
US4135989A (en) | Electrolytic etching of tin oxide films | |
US3407126A (en) | Electrodeposition of magnetic thin films | |
US3700569A (en) | Method of metallizing devices | |
US4077852A (en) | Selective gold plating | |
US3634202A (en) | Process for the production of thick film conductors and circuits incorporating such conductors | |
US4214960A (en) | Method of electrolytically etching ferrite |