US3904447A - Method for producing steel materials for large heat-input welding - Google Patents

Method for producing steel materials for large heat-input welding Download PDF

Info

Publication number
US3904447A
US3904447A US491483A US49148374A US3904447A US 3904447 A US3904447 A US 3904447A US 491483 A US491483 A US 491483A US 49148374 A US49148374 A US 49148374A US 3904447 A US3904447 A US 3904447A
Authority
US
United States
Prior art keywords
steel
tin
total
temperature
large heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US491483A
Inventor
Hisashi Gondo
Hajime Nakasugi
Hiroo Mazuda
Yasayuki Kawada
Rikio Chijiiwa
Shoichi Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of US3904447A publication Critical patent/US3904447A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • Japan 57 ABSTRACT [22] Filed: July 1974 A method for producing steel materials suitable for [21] 1 ;491 4 3 large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al,
  • mIAT 0G IIAZ IMPAGT VALUE kgsnu mm 800 900 1000 n0uc FINISHING GUIILING TEMPERATURE (GI STEEL I PLATE THIGIIIIESS 25mm (IGGU G X GGG MINUTES GGGLING RATE 80 G NIIN.
  • an object of the present invention is to provide a method for producing high-toughness steel materials which satisfy the above demands.
  • Hardenability and cracking resistance are primarily depend on the chemical composition of the steel material to be welded and the heat-input for welding so far as the welding materials and welded structures are same, and thus generally determined by Ceq or Pc values as their parameters.
  • FIG. 1 is a graph showing the relation between the austenite grain size number and 2 mm V notch Charpy impact test values at 0C of the HAZ of hoint portions by electroslag welding of the steel materials according to the present invention and comparative steel materials.
  • FIG. 2 is a graph showing the relation between 2 mm V notch Charpy impact values at 0C of the HAZ of joint portions by electrogas welding and the amount of fine TiN up to 0.02; in the steel materials prior to welding in case of the steels containing 0.0015% N and 0.0036% N (Steels (2)-l0 and (2)-2 in Table 2) according to the present invention.
  • FIG. 3 is a graph showing the relation between the heat-inputs between 2 mm V notch Charpy impact val ues at 0C of HAZ of the steel (Steel (2)-l0 in Table 2) according to the present invention and a comparative steel (Steel (2)-9 in Table 2) welded by various welding methods.
  • FIG. 4 is a graph showing the relation between the ratio of NaS TiN/N (those marked by 0 and Q in the steels (Steel (2)-l0 and Steel (2)-2 in Table 2) of the present invention when they are heated at various tem peratures and held at the temperatures for l20 minutes and rapidly cooled in water and the amount (A and) of fine TiN up to 0.02 in the same steels when they are further held at 1 150C for minutes and quenched in water.
  • FIG. 5 is a graph showing the relation between the amount of fine TiN up to 002a in the steels (Steels (2)-l0 and (2)-2 according to the present invention when they are held at l350C for 600 minutes, subjected to breaking-down rolling, and cooled at a cooling rate of 60C/mm, and then reheated to various temperatures (holding time: 200 minutes).
  • FIG. 7 is a graph showing the relation between the finishing cooling temperatures and the HAZ toughness (2 mm V notch Charpy test) when the steel (Steel 1 l in Table 1) according to the present invention was heated and held at l350C for 600 minutes, broken down and water-cooled through the cooling course for stabilizing the HAZ toughness.
  • FIG. 8 shows the portion from which the 2mm V notch Charpy test pieces were taken for measuring the toughness values (vEo kg-m) of various welded joints as shown in Tables 1 to 6 (In the FIG. 1 is the deposited metal, I is the plate thickness).
  • the HAZ structure of conventional welding steel materials is not a lower-bainite structure, but mostly a mixture structure of martensite, lower-bainite, upperbainite ferrite and pearlite, and toughness of HAZ strongly depends on the austenite grain size. Thus it is most important to control the austenite grain size as small as possible for prevention of the toughness deterioration in HAZ. As shown in FIG. 1, it is necessary to maintain the austenite grain size in the HAZ equal or larger than ASTM No.
  • the present inventors have conducted extensive studies on methods for controlling the austenite grain size in the HAZ, and found that it is effective to disperse fine TiN more than a certain amount in the steel prior to welding for the purpose.
  • the present inventors have conducted further studies on methods for dispersing such fine TiN more than a certain amount, and developed a steel material which can give at least more than 4.2 kg-m 2 mm V notch Charpy impact valueat 0C to the HAZ by dispersing fine TiN more than a cer tain amount in the steel prior to welding by a method as described hereinafter other than the method disclosed in Japanese Patent Application Sho 45-25042, which comprises cooling rapidly the steel through the.
  • the present inventors have succeeded in adjusting the size and amount of TiN by refining the coarse TiN in the subsequent steps.
  • the adjustment has never been successful in the conventional arts.
  • the amounts of Ti and N in the steel are limited, and the steel is heated to a temperature commonly adopted in an ordinary steelmaking process to dissolve in solid solution TiN which was precipitated in the solidification and cooling in an amount not less than 0.004%, and this solid dissolved TiN is again reprecipitated as fine TiN of not larger than 0.02,u.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 1.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, and then reprecipitating the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 1.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total A], 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, rolling or forging the steel, forcedlycooling the steel to a temperature not higher than 800C, and then reheating the steel to a temperature not higher than 1 C so as to reprecipitate the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, rolling or forging the steel with a finishing temperature not lower than 1000C, and reheating the steel at a temperature not higher than 1 150C so as to reprecipitate the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, 0.001 to 0.03% REM with the balance being Fe and unavoidable impurities and satisfying the condition of REM/S 1.0 to 6.0 to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, and reprecipitating the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 10% Si, 0.5 to 1.8% Mn, not more than 0.1% total A1, 0.004 to 0.03Ti, 0.001 to 0.009% total N, one or more of not more than 0.05% Nb, not more than 0.08% V, and not morethan 0.003% B with the balance being iron and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, and reprecipitating the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total A1, 0004 to 0.03% Ti, 0.001 to 0.009% total N, one or more of not more than 0.35% Cr, not more than 0.35% Mo, not more than 0.6% Cu, not more than 1.5% Ni, and not more than 1.0% W, with the balance being iron and unavoidable impurities and satisfying the condition of(Cu +Ni+W)/5+Cr+Mo 0.75% toa tempera ture between l250 and 1400C, and reprecipitating the dissolved TiN into fine TiN.
  • Ti is replaced by the same amount of one or more of Ti, Zr, and Hf so as to assure solid solution of nitrides in an amount of not less than 0.004% as one or more of TiN, ZrN and HfN during the heating step and reprecipitate fine TiN, ZrN and/or HfN.
  • the features of the present invention in respect of the production process lie in that a heating step for dissolving not less than 0.004% of TiN which has been precipitated during the solidification and cooling is combined with a rolling or forging step for reprecipitating the dissolved TiN with or without reheating after the rolling or forging in the process for producing steel products by rolling or forging a Ti-containing steel ingot or slab prepared by an ordinary steel-making method, and in that grain growth of the austenite in the HAZ is restricted by means of the reprecipitated fine TiN so as to prevent the lowering of toughness.
  • the amount of Ti for assuring the lower limit of 0.004% of the fine TiN is 0.004% for the commercial purpose in view of some Ti which forms oxides and sulfides, etc.
  • the content of Ti should be 0.004 to 0.03%.
  • Tin which has been dissolved in solid solution precipitates during the rolling or forging and the subsequent cooling step, but the amount of Ti which remains in solid solution increases in some cases depending on the rolling, forging or cooling conditions. If this remaining Ti in solid solution is reprecipitated as TiN finely enough in the subsequent reheating step, the refinement of TiN is effectively stabilized particularly in case of a smaller content of TiN.
  • the steel materials obtained according to the present invention must have low hardenability and good crack resistance in the HAZ and also must be less susceptible to the HAZ toughness deterioration even when welded with a large heat-input up to about 350 KJ/cm. Therefore, the method according to the present invention is characterized in that TiN which has been precipitated during the solidification and cooling of the molten steel is once dissolved in solid solution by heating and then reprecipitated into fine TiN so as to refine the austenite grains in the HAZ and to assure the HAZ toughness.
  • the upper limit of the reheating tempeature for reprecipitating Ti and N remaining in solid solution when the reheating temperature is above 1 C, both the TiN which has been already precipitated and the TiN which is precipitated by the reheating become coarse and the amount of TiN not larger than 0.02 1. decreases so that itis impossible to control the austenite grain size in the HAZ by the fine TiN.
  • the upper limit of the reheating temperature is defined to 1 150C.
  • the basic steel composition according to the present invention comprises 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.00] to 0.009% total N with the balance being iron and unavoidable impurities.
  • Si is an element which is unavoidably contained in welding steels for reoxidation in steel making, but with less than 0. 1% Si, notch toughness of the steel material lowers and thus the lower limit is defined to 0.1%. On the other hand, with an excessive content of Si, not
  • the upper limit is defined to 1.0%.
  • the content of Mn with less than 0.5% Mn. softening of the HAZ is remarkable and strength and toughness of the steel material itself lower so that no satisfactory welding steel material is obtained. and thus the lower limit of Mn is defined to 0.5%.
  • the content of Mn is excessive, the HAZ toughness deteriorates sharply, and in case of the steel material as rolled the steel structure becomes upper bainite structure so that toughness lowers remarkably, and thus the upper limit of Mn is defined to 1.8%.
  • Al is an element which is unavoidably contained in Al-killed steels, but with more than 0. 1% total Al, not only the HAZ toughness but also the toughness of the weld metal lower remarkably, and thus the upper limit of total Al is defined to 0.1%.
  • the content of Ti is limited to from 0.004% to 0.03% and the content of total N is limited to from 0.001 to 0.009% for the reasons set forth hereinbefore.
  • the content of TiN never exceeds 0.04%.
  • the steel according to the present invention contains P and S as impurities and normally contains less than 0.04% P, but P is not added intentionally in the present invention.
  • S is normally contained in an amount less than 0.035%, and it is possible to lower the sulfur content down to about 0.0005% by the present level of technology, and in this case it is clear that both the HAZ toughness and the steel material toughness are improved. S is not added intentionally in the present invention.
  • the cooling conditions after the coarse TiN which has been precipitated during the solidification and cooling is dissolved by heating and the steel is rolled or forged are limited further.
  • the cooling is effected forcedly by water or a mixture of water and gas, and the finishing temperature of this cooling is limited not higher than 800C. so as to increase the amount of the fine TiN produced after the subsequent reheating at a temperature not higher than ll50C. Therefore, when the starting basic steel is treated by the first modification of the present invention, the HAZ toughness is further stabilized, while other properties required by a welding steel materials are not sacrificed at all.
  • the first modification of the present invention has been made for overcoming the above defect. and comprises heating the basic steel as defined above to a high temperature between l250 and l4()0C, rolling or forging the thus heated steel, forcedly cooling the rolled or forged steel with water or a mixture of water and gas so as to render the size of TiN precipitating during the cooling as small as possible and to suppress the precipitation amount, and reheating the steel to precipitate fine TiN not larger than 0.02,u as much as possible so as to further stabilize the HAZ toughness.
  • the finishing cooling temperature should be not higher than 800C for the reason that it is a temperature range above 800C which contributes substantially to the TiN precipitationand growth in case of a continuous cooling.
  • the amount of the precipitates is small and the size is also small so that the precipitates do not coarsen during the subsequent reheating step at a temperature below ll50C and do not effectthe amount of the fine TiN of 002p. or smaller. It is effective for stabilizing the HAZ toughness if the cooling after the working is forced effected according to the first modification of the present invention to suppress the coarsening of TiN when the steel is worked, and further the steel slab is heated between l250 and 1400C when it is worked into a final steel product, because the dissolution of TiN during the second heating promoted by the first heating and the forced cooling in combination, and thus the amount of the fine TiN in thc final steel product is increased.
  • the conditions of the rolling or forging the steel after the coarse TiN which has been precipitated during the solidification and cooling is dissolved are further limited.
  • the finishing working temperature to 1000C or higher, the amount of the fine TiN produced after the reheating at a temperature not higher than 1 C can be increased, and the HAZ toughness can be still further stabilized.
  • the technical means of the second modifi' cation is different from that of the first modification but the both modifications are metallurgically same in that the production conditions after the dissolving heating are particularly limited to suppress the precipitation of the coarse TiN before the reheating as much as possible to precipitate the fine TiN of 002p. or smaller as much as possible after the reheating.
  • the finishing working temperature is not lower than l000C so that the formation of TiN precipitation nuclei during the rolling or forging is reduced and thus TiN precipitation during the subsequent cooling is reduced and also the precipitation of the coarse TiN is suppressed. Therefore, the second modification brings forth the same results as the first modification and stabilizes still further the HAZ toughness. It is very natural that if the second modification is combined with the first modification, the HAZ toughness is still further stabilized.
  • rare earth metals chiefly Ce, La and Pr. are added to the basic steel composition, in an amount between 0.001 to 0.03%, and the ratio of REM/S is defined to from 1.0 to 6.0.
  • Table 4 the HAZ toughness of the steel treated according to the third modification is further stabilized.
  • more than 0.08% V and not more than 0.003% B is further added to the basic steel composition.
  • These elements are added for the purpose of further improving the strength and toughness of the steel produced by the present invention as well as widening the plate thickness range which can be commercially produced and assuring the strength of the joints welded with a large heat-input. If these elements are added in an excessive amount, the HAZ toughness is remarkably deteriorated even in case of a steel in which the l-lAZ toughness has been improved by the fine TiN as in the steel produced according to the present invention. Therefore, their upper limits are defined.
  • Nb contents up to 0.05% improves the above various properties without substantially deteriorating the HAZ toughness, but Nb contents beyond 0.05% remarkably deteriorate the HAZ toughness. Therefore, the upper limit is defined to 0.05%.
  • V has similar effects as Nb, but its upper limit is allowed to 0.08%.
  • B is a useful element when the steel produced by the present invention is quenched and tempered, but when it is added in an amount beyond 0.003% B-constituent is formed in the HAZ at the time of a large heat-input welding, and the HAZ toughness is remarkably deteriorated.
  • the upper limit of B is defined to 0.003%.
  • one or more of not more than 0.35% Cr, not more than 0.35% Mo, not more than 1.5% Ni, not more than 0.6% Cu and not more than 1.0% W is further added to the basic steel composition so as to satisfy the condition: (Cu Ni W)/5 Cr Mo 0.75%.
  • an excessive chromium content will increase hardenability of the HAZ and lower the HAZ toughness and crack resistance.
  • the upper limit is defined to 0.35%.
  • M0 is similar to Cr and effective to improve various properties of the steel material, but its upper limit is defined to 0.35% because of its adverse effect on the HAZ.
  • Ni is effective to increase the strength and toughness of the steel material without adverse effect on the HAZ hardenability and toughness, but a nickel content beyond 1.5% will cause adverse effect on the HAZ hardenability and toughness, and thus its upper limit is defined to 1.5%.
  • Ti is replaced by 0.004 to 0.03% of one or more than two of Ti, Zr and Hf.
  • Zr and Hf are elements belonging to the same group as Ti and form stable nitridesjust as Ti, prevent coarsening of the austenite grain size in the HAZ and improve the HAZ toughness. Therefore, if one or more than two of Ti, Zr and Hf is added in an amount from 0.04 to 0.03% so as to dissolve into solid solution not less than 0.004% of one or more than two of TiN, ZrN and HfN and then reprecipitates them, the same effects as obtained by Ti can be obtained.
  • the elements other than Ti, Zr and Hf are limited to the same ranges as defined in the previous modifications for the same reasons.
  • SAW Submerged arc welding
  • EU Elcctrogas welding
  • ES Electroslng Welding.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18%, C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250 and 1400C so as to dissolve not less than 0.004% of the TiN into solid solution and then reprecipitating the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C. 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250 and 1400C so as to dissolve not less than 0.004% of the TiN into solid solution, rolling or forging the steel. forcedly cooling the steel to a temperature not higher than 800C, and then reheating the steel to a temperature not higher than 1 l- 50C so as to reprecipitate the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total A], 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve not less than 0.004% C of the TiN into solid solution.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C. 1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N. and 0.001 to 0.03%- REM with the balance being Fe and unavoidable impurities and satisfying the condition of REM/S 1.0 to 6.0, to a temperature between l250 and 1400C so as to dissolve not less than 0.004% of the TiN into solid solution, and reprecipitating the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding in which i the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1 150C after the heatingv 10.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al,
  • 0.004 to 0.03% Ti 0.001 to 0.009% total N, one or more of not more than 0.05 Nb, not more than 0.08% V and not more than 0.003% B with the balance being iron and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve not less than 0.004% of the T iN into solid solution, and reprecipitating the dissolved TiN into fine TiN.
  • a method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to
  • a method for producing steel materials suitable for large heat-input welding according to any of the preceeding claims in which 0.004 to 0.03% Ti is replaced by the same amount of one or more of Ti, Zr and Hf so as to assure a solid solution of nitrides in an amount of not less than 0.004% as one or more of TiN, ZrN and HfN during the heating step and reprecipitate fine TiN, ZrN or HfN.

Abstract

A method for producing steel materials suitable for large heatinput welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250* and 1400*C so as to dissolve into solid solution not less than 0.004% TiN, and then reprecipitating the dissolved TiN into fine TiN.

Description

United States Patent 1 1 1111 3,904,447
Gondo et al. Sept. 9, 1975 METHOD FOR PRODUCING STEEL [56] References Cited MATERIALS FOR LARGE HEAT-INPUT UNITED STATES PATENTS WELDING 3,625,780 12/1971 Bosch ct al. 148/123 [75] Inventors: Hisashi Gondo; Hajime Nakasugi; 31673909 6/1972 y 148/12-3 Hiroo Mazuda, all of Kisarazu; 3,787,250 l/l974 Korchynsky Ct al. l48/l2.3 Yasayuki Kawada; Rikio Chijiiwa, both of Kimitsu; Shoichi Matsuda, P r 3 Exammer w- Smuard Yokohama, n f Japan Attorney, Agent, or Firm-Toren, McGeady and Stan er [73] Assignee: Nippon Steel Corporation, Tokyo, g
Japan 57 ABSTRACT [22] Filed: July 1974 A method for producing steel materials suitable for [21] 1 ;491 4 3 large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al,
[ Foreign Applicafim Priority Data 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the July 31, 1973 Japan 2 balance being Fe and unavoidable impurities to a temperature between 1250" and [400C so as to dissolve [52'] US. Cl. 148/12.3 into solid solution not less than (),O()4% TiN, and then [5 l] Int. Cl. C211) 7/14 reprecipitating the dissolved TiN into fine TiN [58] Field Of Search 148/123, 142
16 Claims, 8 Drawing Figures )ATITG 4 AUSTENITE GRAIN SIZE ASTN NU.)
' GUNPARATIVE STEEL O STEEL ABGTJNTTING Tl] THE PRESENT INVENTION PATENTEB W5 3. 904,447
SHEET 1 0F 7 E o :2 o V 0 5 3 '5 0 o o E Mkg-m N 4 :l:
+4 -2 0 2 4 I s AUSTENTTE GRAIN SIZE (ASTM NU.)
' UUMPARATIVE STEEL O STEEL AGGURDING T0 THE PRESENT INVENTIUN PATENTED 91975 SHEET 2 DE 7 a o: w a; 5% 5 TiN(%)0E 0.02 #00 SMALLER IN STEEL MATERIAL PIIIDII T0 WELDING O STEEL (2) I0 STEEL (2) 2 WELDING NETHDD ELEGTITDGAS WELDING HEAT-INPUT IGD IIJ/cm PLATE THICKNESS 32mm I AS IIDLLED I SDBMEDDED AND ELEDTRDSLAD WELDING SHEET 3 [1F 7 FIG .3
SUBMERDED ADD ELEDTDDDAS WELDING WELDING HAND WElDING WELDING FATENTED SEP 9 1975 a z 2 a; =2; 2:
100 200 WELDING HEAT-INPUT (KJ lcm) STEEL PLATE THIDKNESS 32mm (ASRDLLED) PATENTED 1975 3. 904,447
SHEET 0 0F 7 A a: 5 z 2 0.010 a E g h- 1 A 3. 3 0.010 O A E A 0.005 g; 0.004 E A A f o 1000 000 1200 1300 1400 HEATING TEMPERATURE T (11) STEEL Nas TiN/ N EN DE 0.02MB SMALLER HEATING M20 00 T 120w0 AND THEN PATENTEDSEP 91915 sum 5 0F 7 REHEATING TEMPERATURE (0) sum 5 o EUIIIING RATE IIETEII BREAK-IIIIWN ROLLING (C/ MIN.)
STEEL I350C 600& 115012 X ZUU'AC FINISHING STIIIING COOLING TEMPERATURE PATENTEDBEP 9% 5:2 5 :3. E A V FATENTEUSEP 9:975 3. 904,447 V wmvqg I I'IS .7
mIAT 0G IIAZ IMPAGT VALUE (kgsnu mm 800 900 1000 n0uc FINISHING GUIILING TEMPERATURE (GI STEEL I PLATE THIGIIIIESS 25mm (IGGU G X GGG MINUTES GGGLING RATE 80 G NIIN.
GGGLING RATE ERGIII FINISHING GGGLING TEMPERATURE TG GRIIINARY TEMPERATURE G.4G/MIN.
WELDING METIIGII ELEGTRGSIAG WELDING NINUTGM METHOD FOR PRODUCING STEEL MATERIALS FOR LARGE HEAT-INPUT WELDING BACKGROUND OF THE INVENTION Requirements for welding materials have been becoming more and more severe in recent days and demands have been toward steel materials which are free from material deterioration at welded portions as well as from crackings during welding. Welding cracks generally occurs at welded portions by small heat-input welding while the material deterioration tends to increase as the heat-input for welding is increased. Thus, recent demands for welding materials are selfcontradictory in that the above two phenomena which are completely contrary in respect of the heat-input must be simultaneously eliminated.
Therefore, an object of the present invention is to provide a method for producing high-toughness steel materials which satisfy the above demands.
DETAILED EXPLANATION OF THE INVENTION As for the requirements to the welding materials particularly in respect of welded portions, the followings should be satisfied generally.
1. Hardenability is small.
2. Cracking resistance is good enough.
3. Toughness deterioration is small.
As for the requirements l and (2), they are of particular concern in cases of small heat-input weldings, such as tack welding, upward welding and horizontal welding, etc.
Hardenability and cracking resistance are primarily depend on the chemical composition of the steel material to be welded and the heat-input for welding so far as the welding materials and welded structures are same, and thus generally determined by Ceq or Pc values as their parameters.
According to the present invention, the carbon content and the Ceq value are maintained low so as to obtain good properties in respect of the requirements l and (2 but the most remarkable feature of the present invention lies in that toughness deterioration in the weld-heat affected zone (hereinafter abridged as HAZ) is small. Thus the toughness deterioration in HAZ is practically negligible in the present invention if the heat-input increases up to 350 KJ/cm which is practical large heat-input in ordinary welding.
According to the conventionally known facts and knowledges, l-IAZ toughness strongly depends on the steel micro structure, and it is known that the best toughness is obtained when the structure is a lowearbon lower bainite.
In order to maintain the lower bainite structure at the time of welding, it is necessary to add a relatively large amount of alloying elements such as Ni and M for assuring strength and to widen the weld heat-imput range which renders the HAZ structure into a lower bainite structure to a practically significant degree other than maintenance of the carbon content as low as possible. These requirements remarkably limit the utility field of welding materials having a lower bainite structure in the HAZ from both aspects of economy and the material strength (the material strength level is increased by the addition of alloying elements in a large amount).
The present invention has been developed for the purpose of eliminating the defects of conventional steels such that the heat-input is limited because of hardening, cracking and toughness deterioration in HAZ. or that steel materials must be selected for each of applications of the welded structures, and the steel materials produced according to the present invention are practically free from toughness deterioration in HAZ and free from the above limitation in the welding operation.
Brief Explanation of the Drawings:
The present invention will be described in more details referring to the attached drawings.
FIG. 1 is a graph showing the relation between the austenite grain size number and 2 mm V notch Charpy impact test values at 0C of the HAZ of hoint portions by electroslag welding of the steel materials according to the present invention and comparative steel materials.
FIG. 2 is a graph showing the relation between 2 mm V notch Charpy impact values at 0C of the HAZ of joint portions by electrogas welding and the amount of fine TiN up to 0.02;; in the steel materials prior to welding in case of the steels containing 0.0015% N and 0.0036% N (Steels (2)-l0 and (2)-2 in Table 2) according to the present invention.
FIG. 3 is a graph showing the relation between the heat-inputs between 2 mm V notch Charpy impact val ues at 0C of HAZ of the steel (Steel (2)-l0 in Table 2) according to the present invention and a comparative steel (Steel (2)-9 in Table 2) welded by various welding methods.
FIG. 4 is a graph showing the relation between the ratio of NaS TiN/N (those marked by 0 and Q in the steels (Steel (2)-l0 and Steel (2)-2 in Table 2) of the present invention when they are heated at various tem peratures and held at the temperatures for l20 minutes and rapidly cooled in water and the amount (A and) of fine TiN up to 0.02 in the same steels when they are further held at 1 150C for minutes and quenched in water.
FIG. 5 is a graph showing the relation between the amount of fine TiN up to 002a in the steels (Steels (2)-l0 and (2)-2 according to the present invention when they are held at l350C for 600 minutes, subjected to breaking-down rolling, and cooled at a cooling rate of 60C/mm, and then reheated to various temperatures (holding time: 200 minutes).
FIG. 6 is a graph showing the relation between the amount of the fine TiN (A and A in the graph) and the cooling rate after the breaking down when the steels (Steels (2)-l0 and (2)-2 according to the present invention wer heated and held at 1350C for 600 minutes, broken down, cooled at various cooling rates, and then heated and held at 1 C for 200C.
FIG. 7 is a graph showing the relation between the finishing cooling temperatures and the HAZ toughness (2 mm V notch Charpy test) when the steel (Steel 1 l in Table 1) according to the present invention was heated and held at l350C for 600 minutes, broken down and water-cooled through the cooling course for stabilizing the HAZ toughness.
FIG. 8 shows the portion from which the 2mm V notch Charpy test pieces were taken for measuring the toughness values (vEo kg-m) of various welded joints as shown in Tables 1 to 6 (In the FIG. 1 is the deposited metal, I is the plate thickness).
The HAZ structure of conventional welding steel materials is not a lower-bainite structure, but mostly a mixture structure of martensite, lower-bainite, upperbainite ferrite and pearlite, and toughness of HAZ strongly depends on the austenite grain size. Thus it is most important to control the austenite grain size as small as possible for prevention of the toughness deterioration in HAZ. As shown in FIG. 1, it is necessary to maintain the austenite grain size in the HAZ equal or larger than ASTM No. in order to attain 2 mm V notch Charpy impact value of 4.2 kg-m or more at 0C with a welding heat-input of 350 KJ/cm in case of a structure of pro-eutectoid ferrite upper bainite which is commonly formed in a large heat-input welded HAZ of an ordinary structural steel.
As explained above, it is veryeffective to control the austenite grains in the HAZ as small as possible for improvement of the HAZ toughness, but in order togive industrial significance to this measure, selection of the steel composition which can maintain small austenite grains in the HAZ and limitation of production process are necessary.
The present inventors have conducted extensive studies on methods for controlling the austenite grain size in the HAZ, and found that it is effective to disperse fine TiN more than a certain amount in the steel prior to welding for the purpose. The present inventors have conducted further studies on methods for dispersing such fine TiN more than a certain amount, and developed a steel material which can give at least more than 4.2 kg-m 2 mm V notch Charpy impact valueat 0C to the HAZ by dispersing fine TiN more than a cer tain amount in the steel prior to welding by a method as described hereinafter other than the method disclosed in Japanese Patent Application Sho 45-25042, which comprises cooling rapidly the steel through the. solidification course of the molten steel to precipitate fine TiN and subsequently heating the steel at a temperature which can avoid coarsening of TiN as much as possible to retain the fine TiN formed during the solidification cooling until the final steel products. (This method is most desirably done by a continuous casting method). a
In other words, 'in case of Ti-containing steels produced by an ordinarysteel-making method, TiN precipitates during the solidification of the steel ingot and coarsens during the solidification and the cooling so that it is almost impossible to adjust the size and amount of TiN in the subsequent steps. Therefore, as a method for obtaining a dispersion of fine TiN in Ticontaining steels, no method other than the method in which TiN precipitated during the solidification and cooling is finely dispersed, has been developed before the present'invention.
The present inventors have succeeded in adjusting the size and amount of TiN by refining the coarse TiN in the subsequent steps. The adjustment has never been successful in the conventional arts.
According to the present invention, the amounts of Ti and N in the steel are limited, and the steel is heated to a temperature commonly adopted in an ordinary steelmaking process to dissolve in solid solution TiN which was precipitated in the solidification and cooling in an amount not less than 0.004%, and this solid dissolved TiN is again reprecipitated as fine TiN of not larger than 0.02,u.
Now the feature of the present invention lies in that:
1. Basic Invention:
A method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 1.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, and then reprecipitating the dissolved TiN into fine TiN.
2. First Modification:
A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 1.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total A], 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, rolling or forging the steel, forcedlycooling the steel to a temperature not higher than 800C, and then reheating the steel to a temperature not higher than 1 C so as to reprecipitate the dissolved TiN into fine TiN.
3. Second Modification:
A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, rolling or forging the steel with a finishing temperature not lower than 1000C, and reheating the steel at a temperature not higher than 1 150C so as to reprecipitate the dissolved TiN into fine TiN.
4. Third Modification:
A method for producing steel materials suitable for large heat-input welding. which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, 0.001 to 0.03% REM with the balance being Fe and unavoidable impurities and satisfying the condition of REM/S 1.0 to 6.0 to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, and reprecipitating the dissolved TiN into fine TiN.
5. Fourth Modification:
A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 10% Si, 0.5 to 1.8% Mn, not more than 0.1% total A1, 0.004 to 0.03Ti, 0.001 to 0.009% total N, one or more of not more than 0.05% Nb, not more than 0.08% V, and not morethan 0.003% B with the balance being iron and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve into solid solution not less than 0.004% TiN, and reprecipitating the dissolved TiN into fine TiN.
6. Fifth Modification:
A method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total A1, 0004 to 0.03% Ti, 0.001 to 0.009% total N, one or more of not more than 0.35% Cr, not more than 0.35% Mo, not more than 0.6% Cu, not more than 1.5% Ni, and not more than 1.0% W, with the balance being iron and unavoidable impurities and satisfying the condition of(Cu +Ni+W)/5+Cr+Mo 0.75% toa tempera ture between l250 and 1400C, and reprecipitating the dissolved TiN into fine TiN.
7. Sixth Modification:
In this modification 0.004 to 0.03% Ti is replaced by the same amount of one or more of Ti, Zr, and Hf so as to assure solid solution of nitrides in an amount of not less than 0.004% as one or more of TiN, ZrN and HfN during the heating step and reprecipitate fine TiN, ZrN and/or HfN.
The present invention willbe described in more details hereinunder.
The features of the present invention in respect of the production process lie in that a heating step for dissolving not less than 0.004% of TiN which has been precipitated during the solidification and cooling is combined with a rolling or forging step for reprecipitating the dissolved TiN with or without reheating after the rolling or forging in the process for producing steel products by rolling or forging a Ti-containing steel ingot or slab prepared by an ordinary steel-making method, and in that grain growth of the austenite in the HAZ is restricted by means of the reprecipitated fine TiN so as to prevent the lowering of toughness.
In this case, if the content of Ti is excessive it is impossible to dissolve in solid solution 0.004% or more of the coarse TiN which has been precipitated during the solidification and cooling by an ordinary heating process. Therefore, in case of steels produced by an ordinary steel-making method, it is necessary to limit the content of Ti to 0.004 to 0.03%. Even in this case, if the heating temperature is excessively high, socalled burning phenomenon takes place so that there is a certain upper limit for the heating temperature, while the amount of Ti in solid solution depends on the heating temperature and time. In some cases, however, partial burning does not cause practical problem, and in case of the above-mentioned steel-making method based on the present steel making technics, it is necessary to limit the content of Ti up to 0.03%. On the other hand, the amount of Ti for assuring the lower limit of 0.004% of the fine TiN is 0.004% for the commercial purpose in view of some Ti which forms oxides and sulfides, etc. Thus the content of Ti should be 0.004 to 0.03%.
Tin which has been dissolved in solid solution precipitates during the rolling or forging and the subsequent cooling step, but the amount of Ti which remains in solid solution increases in some cases depending on the rolling, forging or cooling conditions. If this remaining Ti in solid solution is reprecipitated as TiN finely enough in the subsequent reheating step, the refinement of TiN is effectively stabilized particularly in case of a smaller content of TiN.
Descriptions will be made hereinunder on the heating temperature for dissolving the TiN which has been precipitated during the solidification and cooling of the molten steel. the reheating temperature and the limitations of the contents of N and TiN.
The steel materials obtained according to the present invention must have low hardenability and good crack resistance in the HAZ and also must be less susceptible to the HAZ toughness deterioration even when welded with a large heat-input up to about 350 KJ/cm. Therefore, the method according to the present invention is characterized in that TiN which has been precipitated during the solidification and cooling of the molten steel is once dissolved in solid solution by heating and then reprecipitated into fine TiN so as to refine the austenite grains in the HAZ and to assure the HAZ toughness. In order to dissolve T iN into solid solution by such a heat ing process economically and stably on a commercial base, it is effective to limit not only the content of Ti but also the content of N so far as the present level of technology is concerned. The reason for defining the lower limit ofN (total) to 0.001% is that the lower limit of the amount of TiN which must be dissolved into solid solution is 0.004% and the lower limit of N corresponds to this amount. On the other hand, it is disadvantageous if the upper limit of N (total) exceeds the equivalence to the upper limit of Ti for the purpose of assuring an enough amount of TiN which is dissolved into solid so lution during the heating process so that the upper limit of N (total) is defined to 0.009% which is considered to correspond to 0.03% of Ti.
Meanwhile, when the amount of TiN exceeds 0.04%, the steel material'toughness itself rather than the HAZ toughness is deteriorated, and thus it is necessary to define the upper limit of TiN to 0.04%, but so far as the amount of Ti and N (total) fall within the above range, the content of TiN never exceeds 0.04%.
When the contents of Ti and N are within the above mentioned range, the lower limit of the heating temperature for dissolving not less than 0.004% of TiN is l250C as shown in FIG. 4 which has been obtained by experiments. Meanwhile, as stated before, the upper limit is defined to 1400C which is practically allowable inspite of partial burning due to iron oxides on the steel surface.
Regarding the upper limit of the reheating tempeature for reprecipitating Ti and N remaining in solid solution, when the reheating temperature is above 1 C, both the TiN which has been already precipitated and the TiN which is precipitated by the reheating become coarse and the amount of TiN not larger than 0.02 1. decreases so that itis impossible to control the austenite grain size in the HAZ by the fine TiN. Thus the upper limit of the reheating temperature is defined to 1 150C.
The basic steel composition according to the present invention comprises 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.00] to 0.009% total N with the balance being iron and unavoidable impurities.
The reasons for defining the components of the starting steel material will be explained hereinunder.
Less than 0.03% C does not give enough strength required by steel materials used for welding, and softening of the HAZ becomes considerable and large difference in strength is caused between the welded portions and the steel material when a large heat-input welding is applied so that the steel material is of no practical use. Thus the lower limit of the carbon content is defined to 0.03%. On the other hand, if the carbon content exceeds 0.18%, not only hardenability and cracking of the welded portions are remarkable, but also the HAZ toughness deteriorates because the grain refinement effect to the HAZ toughness is severely hindered by the hardening and thus the upper limit of the carbon content is defined to 0.18%.
Si is an element which is unavoidably contained in welding steels for reoxidation in steel making, but with less than 0. 1% Si, notch toughness of the steel material lowers and thus the lower limit is defined to 0.1%. On the other hand, with an excessive content of Si, not
only the HAZ is embrittled but also the cleanliness of the steel itself is damaged. Thus the upper limit is defined to 1.0%.
Regarding the content of Mn, with less than 0.5% Mn. softening of the HAZ is remarkable and strength and toughness of the steel material itself lower so that no satisfactory welding steel material is obtained. and thus the lower limit of Mn is defined to 0.5%. On the other hand when the content of Mn is excessive, the HAZ toughness deteriorates sharply, and in case of the steel material as rolled the steel structure becomes upper bainite structure so that toughness lowers remarkably, and thus the upper limit of Mn is defined to 1.8%.
Al is an element which is unavoidably contained in Al-killed steels, but with more than 0. 1% total Al, not only the HAZ toughness but also the toughness of the weld metal lower remarkably, and thus the upper limit of total Al is defined to 0.1%.
Regarding the contents of Ti and total N, the content of Ti is limited to from 0.004% to 0.03% and the content of total N is limited to from 0.001 to 0.009% for the reasons set forth hereinbefore. When Ti and N contents are within the above ranges, the content of TiN never exceeds 0.04%.
The steel according to the present invention contains P and S as impurities and normally contains less than 0.04% P, but P is not added intentionally in the present invention. S is normally contained in an amount less than 0.035%, and it is possible to lower the sulfur content down to about 0.0005% by the present level of technology, and in this case it is clear that both the HAZ toughness and the steel material toughness are improved. S is not added intentionally in the present invention.
According to the first modification of the present invention, the cooling conditions after the coarse TiN which has been precipitated during the solidification and cooling is dissolved by heating and the steel is rolled or forged are limited further. Thus, the cooling is effected forcedly by water or a mixture of water and gas, and the finishing temperature of this cooling is limited not higher than 800C. so as to increase the amount of the fine TiN produced after the subsequent reheating at a temperature not higher than ll50C. Therefore, when the starting basic steel is treated by the first modification of the present invention, the HAZ toughness is further stabilized, while other properties required by a welding steel materials are not sacrificed at all.
Some detailed explanations will be made hereinunder on the reason why the HAZ toughness is stabilized by the first modification of the present invention. As described before, the TiN which is once dissolved into solid solution by heating between l250 and [400C precipitates again during the rolling or forging step and the subsequent cooling step. In this case, the amount and size of the precipitates are determined by the cooling rate as shown in PK]. 6. Thus, precipitates such as TiN which has a small supersaturation degree, not only precipitate during the cooling step but also coarsen if the cooling rate is relatively slow.
The first modification of the present invention has been made for overcoming the above defect. and comprises heating the basic steel as defined above to a high temperature between l250 and l4()0C, rolling or forging the thus heated steel, forcedly cooling the rolled or forged steel with water or a mixture of water and gas so as to render the size of TiN precipitating during the cooling as small as possible and to suppress the precipitation amount, and reheating the steel to precipitate fine TiN not larger than 0.02,u as much as possible so as to further stabilize the HAZ toughness. In this case. the finishing cooling temperature should be not higher than 800C for the reason that it is a temperature range above 800C which contributes substantially to the TiN precipitationand growth in case of a continuous cooling. Within the temperature range below 800C, the amount of the precipitates is small and the size is also small so that the precipitates do not coarsen during the subsequent reheating step at a temperature below ll50C and do not effectthe amount of the fine TiN of 002p. or smaller. It is effective for stabilizing the HAZ toughness if the cooling after the working is forced effected according to the first modification of the present invention to suppress the coarsening of TiN when the steel is worked, and further the steel slab is heated between l250 and 1400C when it is worked into a final steel product, because the dissolution of TiN during the second heating promoted by the first heating and the forced cooling in combination, and thus the amount of the fine TiN in thc final steel product is increased.
According to the second modification of the present invention, the conditions of the rolling or forging the steel after the coarse TiN which has been precipitated during the solidification and cooling is dissolved are further limited. Thus, by limiting the finishing working temperature to 1000C or higher, the amount of the fine TiN produced after the reheating at a temperature not higher than 1 C can be increased, and the HAZ toughness can be still further stabilized.
Although the technical means of the second modifi' cation is different from that of the first modification but the both modifications are metallurgically same in that the production conditions after the dissolving heating are particularly limited to suppress the precipitation of the coarse TiN before the reheating as much as possible to precipitate the fine TiN of 002p. or smaller as much as possible after the reheating.
According to the second modification of the present invention, the finishing working temperature is not lower than l000C so that the formation of TiN precipitation nuclei during the rolling or forging is reduced and thus TiN precipitation during the subsequent cooling is reduced and also the precipitation of the coarse TiN is suppressed. Therefore, the second modification brings forth the same results as the first modification and stabilizes still further the HAZ toughness. It is very natural that if the second modification is combined with the first modification, the HAZ toughness is still further stabilized.
According to the third modification of the present invention, rare earth metals (REM), chiefly Ce, La and Pr. are added to the basic steel composition, in an amount between 0.001 to 0.03%, and the ratio of REM/S is defined to from 1.0 to 6.0. As shown in Table 4, the HAZ toughness of the steel treated according to the third modification is further stabilized. Regarding the contents of REM, with a content less than 0.001%, no practical effect for improving the HAZ toughness and the steel material toughness is attained, and on the other hand, with a content beyond 0037:, REM- sulfides grow larger and a large amount of REM- oxysulfides is produced to form large-size inclusions, thus remarkably damaging the steel material toughness and the cleanness of the steel. For this reason, the con tent of REM is limited to from 0.001 to 0.03%. Meanwhile, REM is effective in correlation with S content 5 for improving and stabilizing the HAZ toughness and the steel material toughness, and the optimum range of REM content is from L to 6.0 based on REM/S. It is natural that if the third modification of the present invention is combined with either the first or second modification or both the HAZ toughness is still further stabilized.
According to the fourth modification of the present invention, one or more of not more than 0.05% Nb, not
more than 0.08% V and not more than 0.003% B is further added to the basic steel composition. These elements are added for the purpose of further improving the strength and toughness of the steel produced by the present invention as well as widening the plate thickness range which can be commercially produced and assuring the strength of the joints welded with a large heat-input. If these elements are added in an excessive amount, the HAZ toughness is remarkably deteriorated even in case of a steel in which the l-lAZ toughness has been improved by the fine TiN as in the steel produced according to the present invention. Therefore, their upper limits are defined.
Nb contents up to 0.05% improves the above various properties without substantially deteriorating the HAZ toughness, but Nb contents beyond 0.05% remarkably deteriorate the HAZ toughness. Therefore, the upper limit is defined to 0.05%.
V has similar effects as Nb, but its upper limit is allowed to 0.08%.
B is a useful element when the steel produced by the present invention is quenched and tempered, but when it is added in an amount beyond 0.003% B-constituent is formed in the HAZ at the time of a large heat-input welding, and the HAZ toughness is remarkably deteriorated. Thus the upper limit of B is defined to 0.003%.
Meanwhile, experiments have been conducted by the present inventors on the combined addition of these elements, and it has been found that no deterioration of the HAZ toughness is caused by the combined addition, and the advantages and the features of the steel produced by the present invention are not damaged. It is also natural that if the fourth modification of the present invention is combined with one or more of the first, second and third modifications, the HAZ toughness is still further stabilized.
According to the fifth modification of the present invention, one or more of not more than 0.35% Cr, not more than 0.35% Mo, not more than 1.5% Ni, not more than 0.6% Cu and not more than 1.0% W is further added to the basic steel composition so as to satisfy the condition: (Cu Ni W)/5 Cr Mo 0.75%.
These elements are added to the basic steel composition for the purpose of improving the steel material strength and toughness and widening the plate thickness range which is permitted in the commercial production without substantially sacrificing the HAZ toughness. and their contents are naturally limited.
Regarding Cr, an excessive chromium content will increase hardenability of the HAZ and lower the HAZ toughness and crack resistance. Thus the upper limit is defined to 0.35%.
M0 is similar to Cr and effective to improve various properties of the steel material, but its upper limit is defined to 0.35% because of its adverse effect on the HAZ. v v
Ni is effective to increase the strength and toughness of the steel material without adverse effect on the HAZ hardenability and toughness, but a nickel content beyond 1.5% will cause adverse effect on the HAZ hardenability and toughness, and thus its upper limit is defined to 1.5%.
Regarding Cu and W, they have similar effects as Ni and are useful for corrosion resistance, but a copper content beyond 0.6% will cause Cu-crack during the rolling or forging step of the steel material. Thus the upper limit is defined to 0.6%. On the other hand, a tungsten content beyond 1.0% will cause deterioration of the HAZ toughness and increased hardenability, and thus the upper limit is defined to 1.0%.
Further these elements, are added within the above ranges under the condition of (Cu Ni W)/5 Cr Mo 5 0.75%. If this condition is not satisfied, the HAZ hardness is remarkably increased and cracks occur in the HAZ during the small heat-input welding.
It is natural that when the steel composition of the fifth modification is applied to one or more of the first, second and third modifications of the present invention, the HAZ toughness is still further stabilized, and it is also possible to apply the fourth modification to the steel composition of the fifth modification.
According to the sixth modification of the present invention, 0.004 to 0.03% Ti is replaced by 0.004 to 0.03% of one or more than two of Ti, Zr and Hf. Zr and Hf are elements belonging to the same group as Ti and form stable nitridesjust as Ti, prevent coarsening of the austenite grain size in the HAZ and improve the HAZ toughness. Therefore, if one or more than two of Ti, Zr and Hf is added in an amount from 0.04 to 0.03% so as to dissolve into solid solution not less than 0.004% of one or more than two of TiN, ZrN and HfN and then reprecipitates them, the same effects as obtained by Ti can be obtained. The elements other than Ti, Zr and Hf are limited to the same ranges as defined in the previous modifications for the same reasons.
Examples of the present invention are shown in Tables l to 7.
TABLE 1 Example of Group I of the Present Invention Chemical Composition N Producing Conditions Steel Al 1) 2) 3) No. C Si Mn Ti total total B V Nh Ni Cu Cr Mo W Ceq CM TiN up to Present Invention l 0. l 2 0.23 0.50 0.012 0.025 0.0048 0.203 0 0.0048 2 0.14 0.25 1.75 0.004 0.016 0.005l Q 0.432 0 0.0040 3 0.04 0.48 L45 0.025 0.03] 0.0036 0.282 0 0.0056 4 0,04 0.48 1.45 0.025 0.031 0.0036 0.282 0 0.0044
TABLE 1 -Continued Example of Group 1 of the Present Invention Chemical Composition (71) i Producing Conditions Steel Al N l 1 2) 3) No. C Si Mn Ti total total B V Nh Ni Cu Cr Mo W Ceq CM TiN up to Comparative Steels 5 0.04 0.48 1.45 0. 25 0.031 0.0036 0.282 0.0008 6 0.13 0.25 1.30 0.031 0.0052 0.347 0 7 0.13 0.25 1.30' 0.031 0.0052 0.347 0 8 0.16 0.31 0.95 0.025 0.018 0.0062 0.318 0 0.0004 9 0.15 0.25 1.37 0.050 0.037 0.0102 0.378 0 0.0014 10 0.15 0.25 1.37 0.050 0.037 0.0102 I 0.378 0 0.0015
Producing Conditions Material Properties Steel Soaking Cooling Heating Cooling Rate Heat Plate Yield Tensile Elonga- No. Temp. Rate, Temp. for in Rolling Treat- Thick Point Strength tion 1C) (C/mm) l1ing(C) (c/sec.) m m n un (kg/"W121 Present lnvcntion 1 1350 i 1.0 1150 1.2 AR 32 24.8 43.1 48 2 1300 1.0 1100 2.1 QT 25 59.0 68.3 24 3 1350 50 1150 1.2 N 32 23.6 41.8 53 4 1350 1.2 OT 32 47.3 62.4 28
\ Comparative Steels 1150 1.2 QT 32 46.3 63.1 28 6 1350 50 1150 1.2 AR 32 34 0 1 52.1 36 7 1350 1.0 1250 2.1 QT 25 48.7 61.0 27 8 1200 1.0 1150 1.2 AR 32 26.0 45.7 32 9 1350 1.0 1100 1.2 AR 32 43.7 62.0 24 1350 1.0 1100 2.1 QT 51.2 64.8 26
Material Properties Welding Properties Steel vE-l0 vTrs Maxi- 1 Toughness of HAZ of Toughness of Large Heat-Input mum No; (kg-m) (C) Hardness Shielded Arc Welded Welded Joint (JlSZ Joint (Manual Welding) Welding Method 3101 vEo (kg-m) and Heat lnput vEo (kg-m) (KJ/cm) 1 27.6 20 210 21.4 SAW 220 10.1 2 1 18.9 385 18.2 E6 150 8.6 3 36.2 1 240 32.5 ES 345 11.8 4 40.3 243 34.5 EC 190 9.3
5 38.7 248 22.3 EC} 190 2.1 6 10.9 25 320 13.2 SAW 220 1.8 7 19.3 40 315 18.7 EC 2.8 8 10.6 0 330 10.2 SAW 220 3.8 9 6.7 5 375 12.0 ES 327 2.7 10 19.3 l5 358. 16.3 EC] 150 3.1
' 1 1 1 i llCcq=C+ 6 Mn+ 5 Cr+ 4 Mo+ 40 (Ni+Cu+W)+ V 1 2) CM (Cu+Ni+W) Cr Mo 3) values of steel materials before welding.
4) SAW: Submerged arc welding; EU: Elcctrogas welding; ES: Electroslng Welding.
TABLE 2 Example of Group 2 of the Present Invention I Chemical Composition (7x) Producing Conditions Steel C Si Mn Ti Al N B V Ne Ni Cu Cr Mo W Ceq CM TiN up to No total total (71 (V!) 0.02 ("k (2)-1 0.12 0.25 1.38 0.013 0.035 0.0036 0.350 0 0.0100 Prc- (2)-2 0.12 0.25 1.38 0.013 0.035 0.0036 0.350 0 0.01 18 sent (2)-3 0.12 0.25 1.38 0.013 0.035 0.0036 0.350 0 0.01 16 lnvcn- (2)4 0.12 0.25 1.38 0.013 0.035 0.0036 0.350 0 0.0081 tion (2)-5 0.12 0.25 1.38 0.013 0.035 0.0036 0.350 0 0.0042 (2)41 0.13 0.25 1.45 0.014 0.038 0.0090 0.372 0 0.0045 (2)-7 0.13 0.25 1.45 0.014 0.038 0.0090 0.372 0 0.0042
TABLE 2 Continued Example of Group 2 of the Present lnvention Chemical Composition ("/i) Producing Conditions Steel C Si Mn Ti Al N B V No Ni Cu Cr Mo W Ceq CM TiN up to No. total total (71) (70) 0.02 471) Com P rativc (2)8 0.14 0.27 1.35 0.040 0.027 0.0037 0.365 0.0033 Steels (2)) 0.13 0.25 l 36 0.038 0.0051 0.357 0 Present lnven- (2')-10 0.12 0.37 1.45 0.012 0.033 0.0015 0.36 0 0.0059 tion Steel Producing Conditions Material Properties Soaking Cooling Finishing Heating Cooling Heat Plate Yield Tensile ElongvE- 10 vTrs Temp. Rate Accelerated Temp. for Rate in Treat- Thiek- I Point Strength ation (kg-m) (C) (C) (C/mm) Cooling Rolling Rolling ment ness(rnm) (kg/mm) (kg/mm'-') Temp. (C) (C) (C/sec.)
(2)-l 1350 60 1100 1150 1.2 AR 32 31.3 47.3 48 17.4 (2)-2 1350 50 800 1150 12 AR 32 33.1 48.3 43 19.3 28 (2)-3 1350 50 800 L150 1.2 QT 32 47.2 59.3 28, 20.8 -45 (2)-4 1350 0.15 1150 1.2 AR 32 31.3 46.7 47 18.2 (2)-5 1350 0.15 1250 1.2 AR 32 30.6 45.3 48 13.3 0 (2j-6 1350 60 800 1 150 1.2 AR 32 33.0 49.8 28.3 40 (2)-7 1350 50 1050 1150 1.2 AR 32 33.8 50.2 42 24.1 (2)-8 1350 800 1150 1.2 AR 32 44.2 63.5 23 3.1 +15 (2)-9 1350 50 800 1150 1.2 AR 32 34.3 50.6 39 14.3 0 (2)-10 1350 800 1150 1.2 AR 32 33.4 50.2 48 28.3 40
Welding Properties Steel Maximum Toughness of HAZ of Toughness of Large Heat-input No. Hardness Shielded Arc (Manual Welded Joint (JlSZ 3101 Welding) Welded Joint Welding Method vEo (kg-m) vEo (kgm) and Heat lnput (KJ/em) (2)-1 342 19.3 ES 320 13.9 (2)-2 328 18.3 ES 320 18.7 (2)-3 350 17.9 E0 190 16.3 (2)-4 321 20.4 ES 320 l 1.7 (2)-5 335 16.4 ES 320 4.3 (2)-6 390 14.8 320 9.3 (2)-7 386 161 ES 320 7.9 (2)-8 355 10.4 ES 320 3.7 (21 9 341 13.8 ES 320 1.8 (2)-10 333 18.0 ES 320 10.2
TABLE 3 Examples of Group 3 of the Present Invention Chmnicfll Composition Producing Conditions Steel C Si Mn Ti Al B V Nb Ni Cu Cr Mo W Ceq CM TiN up Soaking No. total total (7r) to 0.02;. Temp.
Steels of Present Invention (3)1 0.12 0.27 1.35 0.012 0.028 0.0035 0.356 0 0.0086 1350 (3)-2 0.12 0.27 1.35 0.012 0.028 0.0035 0.356 0 0.0065 1350 (3)3 0.12 0.27 1.35 0.012 0.028 0.0035 0.356 0 0.0061 1350 (3)-4 0.12 0.27 1.35 0.012 0.028 0.0035 0.356 0 0.0054 1350 (3)-5 0.12 0.27 1.35 0.012 0.028 0.0035 0.356 0 0.0113 1350 Comp. Steel (3)-6 0.13 0.25 1.31 0.043 0.026 0.0048 0.358 0 0.0027 1350 Producing Conditions Material Properties Steel Finish Cool- Finishing Heat Finishing Cooling Heat- Plate Yield Tensile ElonvE-10 vTrs No. ing ing Aeceing Temp. for Rate in Treat- Thiek Point Strength galeted Temp. Rate Cooling Temp. Rolling ment ness (kgImm Xkg/mm tion (C) Rolling gm) (C) (C/mm) Temp.lC) for (C) (C/sec) (mm) (7,
Rolling (3)-1 1100 1.0 1150 970 1.2 .AR 32 31.5 46.9 46 13.6 5 (3)0. 1050 1.0 1250 1050 1.2 N 32 32.1 47.3 47 23.5 40 (31-3 1050 1.0 1250 1000 1.2 N 32 32.4 47.6 47 25.1 45 (3 )4 1050 1.0 1250 900 1.2 N 32 32.7 47.8 45 25.8 40 (3)5 1050 50 800 1150 965 1.2 N 32 32.5 47.5 46 26.3 45 (3) 6 1050 1.0 1250 1050 1.2 N. 32 32.6 47.9 46 25.9 35
1 5 l 6 TABLE 3 Continued Welding Properties Steel Maximum Toughness of HAZ. of Toughness of Large Heat-Input No. Hardness Shielded Arc (Manual Welded Joint JISZ 3101 Welding) Welded Joint Welding Method vEo (kg-m) vEo (kg-m) and Heat Input (KJ/em) (31-1 332 15.0 155 320 12.3 (3)-2 328 17.8 [ES 320 11.2 (3)-3 326 18.3 ES 320 10.7 (3 )-4 332 16.9 ES 320 9.8 (3)-5 329 18.5 ES 320 15.4 (3)-6 347 105 ES 320 2.1
TABLE 4 Examples of Group 4 of die Present Invention Chemical Composition ("/c) Steel C Si Mn Ti Al N S V Nb Ni Cu Cr REM REM/S No. total total Present Invention (4)-1 0.14 0.27 1.37 0.010 0.040 0.0041 0.002 0 0 (4)-2 0.14 0.27 1.37 0.010 0.040 0.0041 0.002 0.002 1 (4)-3 0.14 0.27 1.37 0.010 0.040 0.0041 0.002 0.008 4 (4)4 0.14 0.27 1.37 0.010 0.040 0.0041 0.002 0.008 4 Comp. Steel (4)-5 0.12 0.29 1.45 0.038 0.0051 0.004 0.004 1 Producing Conditions Ceq CM TiN up to (71') (71) 0.021.].(7!) (4)-1 0.368 0 0.0064 (4)2 0.368 .0 0.0067 (4)-3 0.368 0 0.0061 (4)-4 0.368 0 0.0094 (41-5 0.362 0 Producing Conditions Material Properties Steel Soak- Cooling Heating Cooling Heat Plate Yield Tensile ElongavE-10 vTrs No. ing Rate Temp. for Rate in Treat- Thiek- Point Strength tion Temp. (C/mm) Rolling Rolling ment ness (kg/mm) (kg/mm) ('7r.) (kg-m) (C) (C) (T/ (mm) (4)-1 1350 0.6 1150 1.2 AR 32 34.1 50.6 40 15.7 (4 )-2 1350 0.6 1150 1.2 AR 32 33.7 49.8 43 16.9 (4)3 1350 0.6 1150 1.2 AR 32 24.1 51.7 41 20.8 -30 (4)-4 1350 1150 1.2 AR 32 33.8 51.0 43 22.1 -30 (4)-5 1350 50 1150 1.2 AR 32 34.0 52.3 41 18.0 25
Welding Properties Steel Maximum Toughness of HAZ of Toughness of Large Heat-Input No. Hardness Shielded Arc (Manual Welded Joint (.1182 3101 Welding) Welded Joint Welding Method vEo (kg-m) vEo (kg-m) and Heat Input (4)-1 375 17.3 E6 13.7 (4)-2 380 18.3 E6 190 16.3 (41-3 367 16.2 EC 190 15.2 (4)-4 377 17.3 EG 190 21.3 (4)5 342 10.8 EC} 190 1.9
TABLE 5 Examples of Group 5 of the Present Invention Chemical Composition ('7! Producing Conditions Steel C Si Mn Ti Al N B i V Nb Cu Cr Mo W CM TiN up to total total ('7') ('7!) 0.02p.( z)
* (5 14 0.35 1.25 0.008 0.030 0.0025 0.03 um 0 0.0057 (51-2 1. 14 0.35 1.25 0.008 0.030 0.0025 0.05 0.348 0 0.0055 (51-3 0.14 0.35 1.25 0.008 0.030 0.0025 0.08 0.348 0 0.0052 (51-4 0.16 0.27 1.35 0.014 0.021 0.0042 h 0.06 0.397 0 0.0052 (51-5 0.16 0 27 1.35 0.014 0.021 0.0042 0.10 0.405 0 0.0058 (5)-6 0.12 0.45 1.50 0.018 0.040 0.0059 0.03 0.03 0.378 0 0.0053 (51-7 0.15 0.43 1.60 0.01 1 0.024 0.0060 0.02 0.03 0.330 0 0.0058 (51-8 0.13 0.27 1.37 0.012 0.031 0.0048 0.0008 0.358 0 0.004) (5 0.13 0.27 1.37 0.012 0.031 0.0048 0.0038 0.358 0 0.0044 (5) 11) 0.14 0.18 1.2 0.014 0.027 00038 00009 0.02 0.03 0 0.0091
TABLE -Continued Producing Conditions Material Properties Steel Soaking Cooling Heating Heat Plute Yield Tensile Elonga- No. Temp. Rate Temp. for Treut- Thick- Point Strength tion vE vTrs (C) (C/mm) Rolling ment ness (kg/mm (kg/mm) (71) (kg-m) (C) (C) (mm) (5)-1 1300 0.6 1150 AR 20 40.3 56.2 38 12.6 (5)2 1300 0.6 1150 AR 20 46.6 60.1 37 18.1 (51-3 1300 0.6 1150 AR 20 40.2 54.3 42 11.6 60 (5)-4 1320 0.6 1150 AR 20 38.0 56.1 32 12.1 -20 (5)-5 1320 0.6 1150 AR 20 40.2 57.1 28 7.5 0 (5)-6 1350 0.6 1150 AR 20 39.4 52.8 39 19.3 40 (5 )-7 1350 1150 AR 20 43.2 57.6 39 20.6 45 (5)-8 1350 0.6 1150 QT 25 46.1 61.8 27 14.8 -45 (5 )-9 1350 0.6 1150 QT 25 46.9 62.1 22 10.8 25 (5)-1O 1370 0.6 1150 QT 25 53.1 64.8 27 18.3
Welding Properties Steel Maximum Toughness of HAZ of Toughness of Large Heat-Input No. Hardness Shielded Arc (Manual Welded Joint (JISZ 3101) Welding) Welded Joint Welding Method vEo (kg-m) vEo (kg-m) and Heat Input (Kl/cm) (5)-1 230 16.2 10.7 (5)-2 240 14.8 90 6.8 (5 )-3 260 13.6 90 3.6 (5 )4 280 10.3 SAW 90 8.1 (5)-5 290 8.7 90 2.9 (5)-6 240 12.3 90 6.7 (5 )-7 340 12.3 90 6.7 (5)-8 370 18.1 14.3 (5 )-9 375 14.6 E6 150 3.9 (5)-10 356 17.3 150 11.2
* =Stee1s of Present Invention =C'ompurative Steel Remark: (SJ-7 was subjected to accelerated cooling to 800C.
TABLE 6 Example of Group 6 of the Present 1nvention Chemical Composition (7!) Steel C Si Mn Ti Al N B V Nb N0. total total Present Invention (6)- 1 0.15 0.15 0.87 0.018 0.012 0.0037 (6) 2 0.14 0.25 0.87 0.020 0.022 0.0052 (6) 3 0.12 0.34 1.20 0.014 0.027 0.0061 (6)- 4 0.16 0.30 1.15 0.020 0.043 0.0047 (6)- 5 0.17 0.21 0.98 0.010 0.011 0.0080 (6)- 6 0.09 0.31 0.59 0.014 0.021 0.0040 (6)- 7 0.09 0.21 0.67 0.023 0.045 0.0072 (6)- 8 0.12 0.18 (1.92 0.007 0.013 0.0061 (6)- 9 0.13 0.28 1.25 0.01 1 0.043 0.0038 (6)-10 0.07 0.31 0.98 0.019 0.021 0.0051 (6)41 0.18 0.31 0.53 0.016 0.047 0.0031 (6)-12 0.1 1 0.17 0.92 0.020 0.01 1 0.0047 (6 )-1 3 0.09 0.25 0.75 0.013 0.021 0.0033 (6)14 0.07 0.21 1.30 0.017 0.041 0.0039 (6)-15 0.14 0.17 1.21 0.012 0.029 0.0041
Comp. Steel (6)-16 0.13 0.27 1.40 0.011 0.033 0.0051
Present Invention (6)17 0.14 0.27 1.27 0.013 0.013 0.0033 0.03 (61-18 0 1 0 21 1. 1 0.021 0.0 7 0.01146 0.0010 0.04
TABLE 6 Continued Chemical Composition ('7!) Producing Conditions Steel Ni Cu Cr Mo W Ceq CM TiN up to No. (Q) ('7!) 0.02;.1.
Producing Conditions Material Properties Steel Soak- Cool- Heating Heap Plate Yield Tensile Elon- No. ing ing Tempfor Treal- Thiek- Point Strength gu Temp. Rate Rolling ment ness (kg/mm (kg/mm) tion (C) C/mm) (C) (mm) /1 (6)- 1 1350 1.0 1150 AR 25 28.0 44.3 46 (6)- 2 1350 10 1150 AR 25 30.2 47.6 32 (6)- 3 1350 50 1150 N 25 39.3 52.4 39 (6)- 4 1350 1.0 1150 AR 25 32.4 50.1 40 (6) 1350 50 1150 AR 25 30.0 47.2 39 (6) 6 1350 1.0 1150 N 25 22.7 40.8 47 (6)- 7 1350 1.0 1150 N 25 23.0 44.1 48 (6) 8 1350 1.0 1 150 AR 25 28.3 42.0 46 (6)- 9 1350 1.0 1150 N 25 32.0 47.3 42 (6)10 1350 50 1150 QT 25 47.0 56.9 28 (6)-11 1350 1.0 1150 QT 25 42.6 54.3 27 (6 )-12 1350 1.0 1150 N 25 33.0 50.7 42 (6)-1 3 1350 1.0 1150 N 25 33.2 51.0 43 (6)-14 1350 1.0 1150 QT 25 52.3 63.1 24 (6)-15 1350 1.0 1150 QT 25 54.3 64.5 22 (6)-16 1350 50 1150 QT 25 63.2 75.3 22 (6)-17 1350 50 1150 QT 25 60.2 71.3 21 (6)-18 1350 50 1150 QT 25 64.8 77.4 20
Material Properties Welding Properties Steel vE- vTrs Muxi- Toughness Toughness of Large heut mum No. (kg-m) (CU Hurdnem of HAZ of Input Welded Joint (.118 7. Shielded Are 3101 (Manual Weld- Welding Method vEo ing) Welded and Hen! Input (kg-m) Join! vEo (Kl/em) (kg m) (6)- 1 12.1 -40 325 12.1 90 9.2 (6)- 2 9.8 378 9.8 90 7.5 (6) 3 17.6 90 316 17.2 SAW 9'.) 14.9 (6)- 4 12.7 25 323 17.9 90 12.3 (6)- 5 19.2 314 13.2 90 14.2 (6) 6 29.3 40 265 20.6 150 10.]
SAW (6)- 9 20.9 352 18.2 90 18 7 (6)- 10 38.0 -80 241 20.6 150 11 4 (6)-1l 26.3 -'45 340 9,6 150 10 8 (6)-12 19.7 295 17.1 150 90 (6)-13 18.7 -50 270 23.4 E6 150 14 7 (6)-14 26.3 298 22.7 150 8 2 (6)-15 19.3 65 350 14.3 150 13.3 (6)-16 12.3 422 10.6 4.3 (6)-17 18.3 45 408 9.9 150 10.6 (6)-18 14.6 -80 392 13.1 150 12.7
" Remark: (6)5. (6)-10. (6)-16-18 was subjected to accelerated cooling to 800C.
TABLE 7 Examples of Group 7 of the Present Invention C hemical Composition ('7; Steel C Si Mn Ti Zr Hf Al N V Nh Ni No. total total Present (7)-1 0.12 0.28 1.36 0.01 1 0.029 0.0018 Invention (7)-2 0.12 0.28 1.36 0.01 l 0.029 0.0018
(7)-3 0.12 0.26 1.35 0.008 0.010 0.031 0.0044 0.03 (7)-4 0.13 0.30 1.25 0.003 0.009 0.040 0.0015 0.35 Comp. (.7 )-5 0.13 0.24 1.33 0.040 0.031 0.0023
Steels (7) 6 0.13 0.27 1.35 0.043 0.035 0.0031 0.31
Chemical Composition( Producing Conditions Cu Ti+Zr+Hf Ceq CM (7!) TiN up to 0.02 Present (7)-1 0.01 1 0.359 0.006 Invention (7)-2 0.01 1 0.359 0 0.008 (7)-3 0.018 0.358 0 0.013 (7)-4 0.28 0.012 0.367 0.126 0.006 Comp. (7 0.040 0.362 0 0.002 Steels (7)-6 0.31 0.043 0.382 0.124 0.002
Producing Conditions Material Properties Steel Soak Cooling Heating Cooling Heat Plate Yield Tensile ElonvE-10 vTrs No. ing Rate Temp. for Rate in Treat Thicl-o Point Strength ga- (kg-m) (C) Temp. (C/mm) Rolling Rolling ment ness (kglmm (kg/rnm )tion 7) (T/ (7)-1 1380 1.0 1 150 2.1 QT 25 50.8 63.5 26 20.3 40 (7)-2 1380 60 1150 1.2 AR 32 30.6 47.0 47 15.8 (7)-3 1350- 60 1150 1.2 AR 32 33.9 50.4 45 17.6 (7)-4 1380 60 1150 2.1 QT 57.5 68.1 24 22.1 45 (7)-5 1380 60 1150 2.1 QT 25 51.5 64.3 25 18.6 25 0 60 1150 2.! OT 25 50.3 69.7 23 10.5
Welding Properties Stccl Maximum Toughness of HAZ of Toughness of Large Heat-Input No. Hardness Shielded Arc (Manual Welded Joint (.1152 3101) Welding) Welded Joint Welding Method vEo (kg m) and Heat Input (Kl/cm) (7) l 327 14.7 EC 150 9.8 (7)2 343 18.6 ES 320 12.0 (7)-3 341 20.3 ES 320 19.5 (7)-4 331 13.6 EC 150 9.5 (7)-5 329 9.4 EC: 150 1.7 (7)-6 335 10.8 EG 150 1.9
What is claimed is:
l. A method for producing steel materials suitable for large heat-input welding. which comprises heating a steel ingot or slab containing 0.03 to 0.18%, C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250 and 1400C so as to dissolve not less than 0.004% of the TiN into solid solution and then reprecipitating the dissolved TiN into fine TiN.
2. The method according to claim 1, in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
3. The method according to claim 1, in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1 150C after the heating.
4. The method according to claim 2, in which the working is rolling or forging.
5. A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C. 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250 and 1400C so as to dissolve not less than 0.004% of the TiN into solid solution, rolling or forging the steel. forcedly cooling the steel to a temperature not higher than 800C, and then reheating the steel to a temperature not higher than 1 l- 50C so as to reprecipitate the dissolved TiN into fine TiN.
6. A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total A], 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve not less than 0.004% C of the TiN into solid solution. rolling or forging the steel with a finishing temperature not lower than 1000C, and reheating the steel at a temperature not higher than 1150C so as to reprecipitate the dissolved TiN into fine TiN.
7. A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C. 1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N. and 0.001 to 0.03%- REM with the balance being Fe and unavoidable impurities and satisfying the condition of REM/S 1.0 to 6.0, to a temperature between l250 and 1400C so as to dissolve not less than 0.004% of the TiN into solid solution, and reprecipitating the dissolved TiN into fine TiN.
8. A method for producing steel materials suitable for large heat-input welding according to claim 7 in which the rcprecipitation of the dissolved TiN is done by working the steel after the heating.
9. A method for producing steel materials suitable for large heat-input welding according to claim 7 in which i the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1 150C after the heatingv 10. A method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al,
0.004 to 0.03% Ti, 0.001 to 0.009% total N, one or more of not more than 0.05 Nb, not more than 0.08% V and not more than 0.003% B with the balance being iron and unavoidable impurities to a temperature between l250 and 1400C so as to dissolve not less than 0.004% of the T iN into solid solution, and reprecipitating the dissolved TiN into fine TiN.
11. A method for producing steel materials suitable for large heat-input welding according to claim 10 in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
12. A method for producing steel materials suitable for large heat-input welding according to claim 10 in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1 150C after the heating.
13. A method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to
10% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0001 to 0.009% total N, one or .more of not more than 0.35% Cr, not more than 0.35%
Mo, not more than 0.6% Cu, not more than 1.5% Ni, and not more than 1.0% W, with the balance being iron and unavoidable impurities and satisfying the condition of (Cu+Ni+W)/5+Cr+Mo 0.75% to a temperature between l250 and 1400C, and reprecipitating the dissolved TiN into fine TiN.
14. A method for producing steel materials suitable for large heat-input welding according to claim 13 in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
15. A method for producing steel materials suitable for large heat-input welding according to claim 13 in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1 150C after the heating.
16. A method for producing steel materials suitable for large heat-input welding according to any of the preceeding claims in which 0.004 to 0.03% Ti is replaced by the same amount of one or more of Ti, Zr and Hf so as to assure a solid solution of nitrides in an amount of not less than 0.004% as one or more of TiN, ZrN and HfN during the heating step and reprecipitate fine TiN, ZrN or HfN.

Claims (16)

1. A METHOD FOR PRODUCING STEEL MATERIALS SUITABLE FOR LARGE HEAT-INPUT WELDING, WHICH COMPRISES HEATING A STEEL INGOT OR SLAB CONTAINING 0.03 TO 0.18% C, 0.1 TO 1.0% SI, 0.5 TO 1.8% MN, NOT MORE THAN 0.1% TOTAL A1, 0.004 TO 0.03% TI, AND 0.001 TO 0.009% TOTAL N, WITH THE BALANCE BEING FE AND UNAVOIDABLE IMPURITIES TO A TEMPERATURE BETWEEN 1250* AND 1400*C SO AS TO DISSOLVE NOT LESS THAN 0.004% OF THE TIN INTO SOLID SOLUTION AND THEN REPRECIPITATING THE DISSOLVED TIN INTO FINE TIN
2. The method according to claim 1, in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
3. The method according to claim 1, in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1150*C after the heating.
4. The method according to claim 2, in which the working is rolling or forging.
5. A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250* and 1400*C so as to dissolve not less than 0.004% of the TiN into solid solution, rolling or forging the steel, forcedly cooling the steel to a temperature not higher than 800*C, and then reheating the steel to a temperature not higher than 1150*C so as to reprecipitate the dissolved TiN into fine TiN.
6. A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, and 0.001 to 0.009% total N, with the balance being Fe and unavoidable impurities to a temperature between 1250* and 1400*C so as to dissolve not less than 0.004% C of the TiN into solid solution, rolling or forging the steel with a finishing temperature not lower than 1000*C, And reheating the steel at a temperature not higher than 1150*C so as to reprecipitate the dissolved TiN into fine TiN.
7. A method for producing steel materials suitable for large heat-input welding, which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, and 0.001 to 0.03% REM with the balance being Fe and unavoidable impurities and satisfying the condition of REM/S 1.0 to 6.0, to a temperature between 1250* and 1400*C so as to dissolve not less than 0.004% of the TiN into solid solution, and reprecipitating the dissolved TiN into fine TiN.
8. A method for producing steel materials suitable for large heat-input welding according to claim 7 in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
9. A method for producing steel materials suitable for large heat-input welding according to claim 7 in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1150*C after the heating.
10. A method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, one or more of not more than 0.05 Nb, not more than 0.08% V and not more than 0.003% B with the balance being iron and unavoidable impurities to a temperature between 1250* and 1400*C so as to dissolve not less than 0.004% of the TiN into solid solution, and reprecipitating the dissolved TiN into fine TiN.
11. A method for producing steel materials suitable for large heat-input welding according to claim 10 in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
12. A method for producing steel materials suitable for large heat-input welding according to claim 10 in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1150*C after the heating.
13. A method for producing steel materials suitable for large heat-input welding which comprises heating a steel ingot or slab containing 0.03 to 0.18% C, 0.1 to 1.0% Si, 0.5 to 1.8% Mn, not more than 0.1% total Al, 0.004 to 0.03% Ti, 0.001 to 0.009% total N, one or more of not more than 0.35% Cr, not more than 0.35% Mo, not more than 0.6% Cu, not more than 1.5% Ni, and not more than 1.0% W, with the balance being iron and unavoidable impurities and satisfying the condition of (Cu+Ni+W)/5+Cr+Mo < or = 0.75% to a temperature between 1250* and 1400*C, and reprecipitating the dissolved TiN into fine TiN.
14. A method for producing steel materials suitable for large heat-input welding according to claim 13 in which the reprecipitation of the dissolved TiN is done by working the steel after the heating.
15. A method for producing steel materials suitable for large heat-input welding according to claim 13 in which the reprecipitation of the dissolved TiN is done by reheating the steel to a temperature not higher than 1150*C after the heating.
16. A method for producing steel materials suitable for large heat-input welding according to any of the preceeding claims in which 0.004 to 0.03% Ti is replaced by the same amount of one or more of Ti, Zr and Hf so as to assure a solid solution of nitrides in an amount of nOt less than 0.004% as one or more of TiN, ZrN and HfN during the heating step and reprecipitate fine TiN, ZrN or HfN.
US491483A 1973-07-31 1974-07-24 Method for producing steel materials for large heat-input welding Expired - Lifetime US3904447A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8623073A JPS5526164B2 (en) 1973-07-31 1973-07-31

Publications (1)

Publication Number Publication Date
US3904447A true US3904447A (en) 1975-09-09

Family

ID=13880977

Family Applications (1)

Application Number Title Priority Date Filing Date
US491483A Expired - Lifetime US3904447A (en) 1973-07-31 1974-07-24 Method for producing steel materials for large heat-input welding

Country Status (5)

Country Link
US (1) US3904447A (en)
JP (1) JPS5526164B2 (en)
DE (1) DE2436419B2 (en)
GB (1) GB1473934A (en)
SE (1) SE417984B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125416A (en) * 1976-09-10 1978-11-14 Nippon Steel Corporation Method for producing steel strip or steel sheet containing carbide and nitride forming elements
US4219371A (en) * 1978-04-05 1980-08-26 Nippon Steel Corporation Process for producing high-tension bainitic steel having high-toughness and excellent weldability
USRE31251E (en) * 1976-04-12 1983-05-24 Nippon Steel Corporation Process for producing a high tension steel sheet product having an excellent low-temperature toughness with a yield point of 40 kg/mm2 or higher
EP1006209A1 (en) * 1998-03-13 2000-06-07 Nippon Steel Corporation Bn precipitation reinforced type low carbon ferritic heat resisting steel of high weldability
EP1254275A1 (en) * 2000-12-14 2002-11-06 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
US20030106623A1 (en) * 2000-12-01 2003-06-12 Hong-Chul Jeong Steel plate to be precipitating tinfor welded structures, method for manufacturing the same and welding fabric using the same
US20040144454A1 (en) * 2001-11-16 2004-07-29 Hong-Chul Jeong Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, and welded structure made therefrom
EP1719821A1 (en) * 2004-02-04 2006-11-08 Sumitomo Metal Industries, Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
CN102555351A (en) * 2010-12-20 2012-07-11 顾伟 Highly wear-resisting bimetal composite material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4033789A (en) * 1976-03-19 1977-07-05 Jones & Laughlin Steel Corporation Method of producing a high strength steel having uniform elongation
GB2099016B (en) * 1981-02-26 1985-04-17 Nippon Kokan Kk Steel for welding with high heat input
JPS581012A (en) * 1981-06-25 1983-01-06 Nippon Steel Corp Production of homogeneous steel
JPS59162223A (en) * 1983-03-07 1984-09-13 Japan Steel Works Ltd:The Production of clad steel consisting of non-tempered high strength high toughness steel as base material
GB8603500D0 (en) * 1986-02-13 1986-03-19 Hunting Oilfield Services Ltd Steel alloys
JPH02479U (en) * 1988-06-10 1990-01-05
FR2668169B1 (en) * 1990-10-18 1993-01-22 Lorraine Laminage IMPROVED WELDING STEEL.
JP5418662B2 (en) 2012-01-30 2014-02-19 Jfeスチール株式会社 Base material of high toughness clad steel plate excellent in weld zone toughness and method for producing the clad steel plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625780A (en) * 1968-04-29 1971-12-07 Youngstown Sheet And Tube Co Process for preparation of high-strength alloy of titanium and ferritic structure
US3673009A (en) * 1969-12-17 1972-06-27 Inland Steel Co Method for producing a part from steel sheet
US3787250A (en) * 1971-03-11 1974-01-22 Jones & Laughlin Steel Corp Corrosion-resistant high-strength low-alloy steels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625780A (en) * 1968-04-29 1971-12-07 Youngstown Sheet And Tube Co Process for preparation of high-strength alloy of titanium and ferritic structure
US3673009A (en) * 1969-12-17 1972-06-27 Inland Steel Co Method for producing a part from steel sheet
US3787250A (en) * 1971-03-11 1974-01-22 Jones & Laughlin Steel Corp Corrosion-resistant high-strength low-alloy steels

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE31251E (en) * 1976-04-12 1983-05-24 Nippon Steel Corporation Process for producing a high tension steel sheet product having an excellent low-temperature toughness with a yield point of 40 kg/mm2 or higher
US4125416A (en) * 1976-09-10 1978-11-14 Nippon Steel Corporation Method for producing steel strip or steel sheet containing carbide and nitride forming elements
US4219371A (en) * 1978-04-05 1980-08-26 Nippon Steel Corporation Process for producing high-tension bainitic steel having high-toughness and excellent weldability
EP1006209A1 (en) * 1998-03-13 2000-06-07 Nippon Steel Corporation Bn precipitation reinforced type low carbon ferritic heat resisting steel of high weldability
EP1006209A4 (en) * 1998-03-13 2002-08-07 Nippon Steel Corp Bn precipitation reinforced type low carbon ferritic heat resisting steel of high weldability
US6946038B2 (en) * 2000-12-01 2005-09-20 Posco Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
US20030106623A1 (en) * 2000-12-01 2003-06-12 Hong-Chul Jeong Steel plate to be precipitating tinfor welded structures, method for manufacturing the same and welding fabric using the same
EP1254275A1 (en) * 2000-12-14 2002-11-06 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
US20030121577A1 (en) * 2000-12-14 2003-07-03 Hae-Chang Choi Steel plate to be precipitating tinfor welded structures,method for manufacturing the same and welding fabric using the same
US6966955B2 (en) * 2000-12-14 2005-11-22 Posco Steel plate having TiN+ZrN precipitates for welded structures, method for manufacturing same and welded structure made therefrom
EP1254275A4 (en) * 2000-12-14 2004-11-10 Posco STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
US20050173030A1 (en) * 2001-11-16 2005-08-11 Strapack Corporation Method for manufacturing steel plate having superior toughness in weld heat-affected zone
US20040144454A1 (en) * 2001-11-16 2004-07-29 Hong-Chul Jeong Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, and welded structure made therefrom
US7105066B2 (en) * 2001-11-16 2006-09-12 Posco Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
US7396423B2 (en) 2001-11-16 2008-07-08 Posco Method for manufacturing steel plate having superior toughness in weld heat-affected zone
EP1719821A1 (en) * 2004-02-04 2006-11-08 Sumitomo Metal Industries, Ltd. Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
US20070217942A1 (en) * 2004-02-04 2007-09-20 Sumitomo Metal Industries, Ltd. Steel Product for Use as Line Pipe Having High Hic Resistance and Line Pipe Produced Using Such Steel Product
EP1719821A4 (en) * 2004-02-04 2008-06-25 Sumitomo Metal Ind Steel product for line pipe excellent in resistance to hic and line pipe produced by using the steel product
US7648587B2 (en) 2004-02-04 2010-01-19 Sumitomo Metal Industries, Ltd. Steel product for use as line pipe having high HIC resistance and line pipe produced using such steel product
CN102555351A (en) * 2010-12-20 2012-07-11 顾伟 Highly wear-resisting bimetal composite material

Also Published As

Publication number Publication date
JPS5526164B2 (en) 1980-07-11
SE417984B (en) 1981-04-27
DE2436419A1 (en) 1975-02-20
SE7409807L (en) 1975-02-03
GB1473934A (en) 1977-05-18
DE2436419B2 (en) 1978-04-06
JPS5033920A (en) 1975-04-02

Similar Documents

Publication Publication Date Title
US3904447A (en) Method for producing steel materials for large heat-input welding
EP0288054B1 (en) Method of producing steel plate with good low-temperature toughness
JP3718348B2 (en) High-strength and high-toughness rolled section steel and its manufacturing method
EP3385401A1 (en) High-strength steel having excellent brittle crack arrestability and welding part brittle crack initiation resistance, and production method therefor
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JPS626730B2 (en)
JPH05263182A (en) Manufacture of low alloy rolled shape steel excellent in toughness
KR20200012145A (en) Shape steel and method of manufacturing the same
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
JPH0225968B2 (en)
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3241199B2 (en) Oxide particle-dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3285732B2 (en) Rolled section steel for refractory and method for producing the same
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
KR100455082B1 (en) Method for manufacturing ferrite stainless steel having a good weldability
JPS6410565B2 (en)
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JPH0814001B2 (en) Method for manufacturing hot forged non-heat treated parts
JPH0790474A (en) Production of contained oxide-dispersed slab and rolled shape steel excellent in toughness by the same slab
JPH05345919A (en) Production of high strength hot rolled steel plate
JPH09310152A (en) Non-heat treated steel for hot forging
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPH06172917A (en) Production of high tensile strength steel for large heat input welding, excellent in toughness at low temperature