US3904381A - Cast metal wire of reduced porosity - Google Patents
Cast metal wire of reduced porosity Download PDFInfo
- Publication number
- US3904381A US3904381A US422933A US42293373A US3904381A US 3904381 A US3904381 A US 3904381A US 422933 A US422933 A US 422933A US 42293373 A US42293373 A US 42293373A US 3904381 A US3904381 A US 3904381A
- Authority
- US
- United States
- Prior art keywords
- orifice
- gas
- wire
- jet
- porosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/005—Continuous casting of metals, i.e. casting in indefinite lengths of wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S75/00—Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
- Y10S75/95—Consolidated metal powder compositions of >95% theoretical density, e.g. wrought
Definitions
- the invention relates to cast wire products of novel character. More particularly, the invention relates to fine diameter cast wire having a greatly reduced porosity and a means by which it may be obtained.
- fine diameter wire there is meant a wire product having a diameter of less than about 35 mils.
- extrusion speeds of this magnitude have not previously been attainable, they are now brought to realization by an improved process which comprises the following steps in sequence: l) extruding continuously a metal melt through a shaping die to form a filamentary jet; (2) passing the filamentary jet immediately upon issue from the shaping die into a zone occupied by a pressurized gas; (3) forwarding the jet in cocurrent flow with the pressurized gas through a supersonic nozzle and intoa first zone occupied by a gaseous atmosphere capable of causing a film to form about the jet surface by reaction therewith; thence (4) passing the filamentary jet through a converging passageway into a second zone occupied by the film forming atmosphere.
- FIG. 1 is a schematic vertical crosssection of a typical filament extrusion apparatus employing a novel orifice assembly.
- FIG. 2 is an enlarged,-partial view of the orifice assembly of FIG. 1.
- FIG. 3 is an enlarged partial view of the gas plate orifice in the orifice assembly of FIG. 1.
- FIG. 1 depicts a crucible 10 enclosing a quantity of molten essentially inviscid material 11.
- an orifice plate 12 having an extrusion orifice 13.
- a gas plate 14 Spaced beneath plate 12 is a gas plate 14 having a convergent-divergent shaped orifice 15 which is aligned substantially coaxial with orifice 13.
- Plates 12 and 14 define an essentially enclosed chamber 16, which can be referred to as an attenuating gas zone.
- Beneath gas plate 14 is a third plate 17 hereinafter called a stream control plate.
- Stream control plate 17 has an orifice or throat 18 which is aligned substantially coaxial with throat 15 (and consequently with orifice 13).
- the walls of orifice 18 converge in the direction of its exit with the included angle of convergence being between 7 and 20 degrees.
- Stream control plate 17 and gas plate 14 define a second substantially enclosed chamber 19, which can be referred to as a first reactive gas zone.
- Pedestal 20 supports the entire apparatus and also defines cavity 21, which can be referred to as the second reactive gas zone, since the molten jet further reacts therein with a film forming gas.
- a positive pressure head is supplied to molten material 11, by means of a pressurized gas.
- the jet 22 is thus caused to issue from the extrusion orifice 13 into chamber 16.
- Chamber 16 is provided with a quantity of attenuating gas which is supplied under pressure through gas line 23.
- the attenuating gas is constrained to move laterally between orifice plate 12 and gas plate 14 and thus contacts the emerging jet 22 in a direction initially normal to the path of jet 22. This flow is in a large measure self-distributing toward symmetrical flow.
- the attenuating gas then flows cocurrently with jet 22 through the gas plate throat l5 and into chamber 19.
- the nature of the attenuating gas is not critical. Generally, an inert gas such as helium or argon is used. However, in some instances it may be desirable to employ a mixture of inert gas with a gas such as described below which is capable of forming a film about the jet surface.
- Chamber 19 is provided with a quantity of gas reactive with jet 22 via gas line 24.
- the reactive filmstabilizing gas contacts jet 22 at the entrance of orifice l8 and is at a flow rate sufficient to penetrate the shroud of attenuating gas which has been caused to envelope the jet as it issues from gas plate orifice 15.
- a fiirther quantity of reactive gas is supplied by gas line 25 into cavity 21 for contact with jet 22 proximate to the exit of orifice 18.
- the nature of the reactive gas is not critical so long as it is capable of forming a film about the surface of molten jet 22. In many instances oxidizing gases such as carbon monoxide and air have been successfully employed. For other suitable filmforming gases that may be used see US. Pat. No. 3,658,979.
- FIG. 2 illustrates the general geometrical relationship between plates 12, 14 and 17 together with their respective orifices.
- the diameter of the throat section (most narrow section) of gas plate orifice 15 may be larger than the exit diameter of extrusion ori fice 13, best results are obtained when it is of an equal or lesser diameter than that of the exit of orifice 13. Particularly good results may be obtained when the ratio of the exit diameter of orifice 13 to the throat diameter of orifice 15 lies in the range of from about l.0:l.0 to 15:10
- the length of orifice 15 is generally maintained at from about 5 to lOO times greater than the exit diameter of orifice 13.
- orifice l8 converges in the direction of its exit at an included angle of from about 7 20. It is generally desirable although not critical that the entrance diameter of orifice 18 be from about 2 to 5 times larger than the throat diameter of gas plate orifice 15.
- gap distance of gap 31 between orifice plate 12 and gas plate 14 should be substantially equal to the diameter of gas plate throat 15.
- the dimensions of gap 32 between gas plate 14 and stream control plate 17 is not considered to be critical. However, enough space should be provided to accommodate a sufficient quantity of reactive gas to penetrate the inert gas which flows co-currently with jet stream 22. Generally, it has been found that a gap distance of from about 5 to 20 mils between gas plate 14 and stream control plate 17 in the vicinity of their respective orifices is satisfactory.
- FIG. 3 illustrates gas plate 14 and its shaped orifice schematically in an enlarged vertical section.
- the entry area or convergent section 28 is rounded gently to reduce friction.
- the extent of convergence is not critical, it being merely necessary that the orifice walls converge in some degree at the entry.
- the convergence terminates at throat section 29 from where the walls diverge to form divergent exit section 30.
- the included angle of divergence in this section should be between 4 and 12, with from 6 to 8 being of preference for attenuation at the higher speeds. Best results are achieved when divergent section 30 is of greater length than convergent section 28, and particularly when the length is from 10 to times greater.
- Arrows 26 and 27 illustrate the flow paths of the attenuating and reactive stabilization gases, respectively.
- the materials which are utilized in fabricating the plates which comprise the orifice assembly of this invention should be essentially inert, each to the other, under the conditions employed during extrusion. Moreover, the materials must be resistant to thermal shock and have sufficient strength to withstand the substantial mechanical stresssimposed by the extrusion process. For example, in the extrusion of metals such as copper and ferrous alloys, it may be preferable to use ceramic.
- materials such as high density alumina, beryllia, and zirconia.
- materials such as molybdenum and graphite can be employed.
- stainless steel assemblies have been found to perform well.
- an oxygen-containing gas is employed as the stabilizing medium into which the molten stream is extruded to form the enveloping film which protects the liquid stream against surface tension break-up until solidification can occur.
- the oxide formed must be stable and insoluble in the melt. Because the oxide of iron does not possess these properties, it is necessary that a second alloying metal be added to the melt before steel can be satisfactorily processed. That is, a second metal is added whose oxide is stable and insoluble in the molten charge.
- metals may be used for this purpose and include among others magnesium, beryllium, chromium, lanthanum, titanium, aluminum and silicon, with aluminum and silicon' being generally preferred.
- the second metal is present in only very minor amounts ranging from about 0.3 to 6.0 percent on the weight of the alloy.
- aluminum it is generally present in an amount of from 0.3 to 5.0 percent while silicon is preferably employed in an amount of from 0.5 to 6.0 percent on the weight of the alloy.
- EXAMPLE I An apparatus such as depicted in FIG. 1 was employed to form filaments by extruding the melt of steel alloyed with 1.0% by weight of aluminum at a realized production rate of 3500 feet per minute.
- the orifice assembly used was of a design as typified by F IG. 2 of the drawings.
- the orifice plate 12 was 125 mils in both length and diameter, i.e., having an aspect ratio L/D of l.
- Gas plate 14 was also l25 mils thick with the throat of the supersonic nozzle 15 therein being 8 mils in diameter or equivalent to the diameter of filament shaping orifice 13.
- Stream control plate 17 was 62 mils thick and orifice 18 therein had an exit diameter approximately four times that of the throat diameter of convergentdivergent orifice 15. An included angle of 15 was formedby the converging walls of orifice l8.
- an argon gas head pressure of p.s.i.g. was used to force the melt through the orifice of extrusion plate 12 to form a filamentary jetemerging into gap space 16 between plates 12 and 14.
- Gap 16 was supplied with helium at a pressure of 76.8 p.s.i. g. and at a flow rate of 301 cm lmin (STP).
- STP 301 cm lmin
- the pressurized helium contacted the jet, at an angle normal to its path of movement and then flowed cocurrently with the jet through supersonic nozzle in gas plate 14.
- the filamentary jet entered gap space 19, which was supplied with carbon monoxide as the film-forming gas.
- the carbon monoxide flow rate into gap space 19 was 5080 em /min (STP).
- the jet then passed through stream control orifice '18 and into cavity 21 where' additional carbon monoxide was' supplied at a rate of 1630 cm /min (STP).
- STP 1630 cm /min
- the film stabilized jet which solidified upon cooling was then taken up as a filamentary product. During the course of this high-speed extrusion, the molten jet remained continuous and did not deviate from a straight path.
- -"microscope a mini-computer'and a television camera where the electrical output from the camera is fed into a closedwircuit television monitor that displays the image.
- the image is scanned by parallel, evenly-spaced lines of the scanning system.
- the signal produced represents the intensity profile of the image.
- This signal is next processed by the detection circuit, and the result is a binary signal that very precisely defines the selected feature.
- the output from the detector which consists only of signal pulses from the detected features is channeled into the TV monitor to allow a visual control of the features to be detected.
- the detectors output signal is also passed into the computer where the porosity measurements are instantly derived from the signal and recorded on the computer readout.
- In conducting the test measurements polished longitudinal sections of the wire are placed upon a specimen block and inserted in the sample holder of the microscope. After proper focusing, 15 scans are made and the results averaged.
- said alloy consists of steel alloyed with from 0.3 to 5.0 percent by weight aluminum
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Of Metal (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Continuous Casting (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US422933A US3904381A (en) | 1972-12-29 | 1973-12-07 | Cast metal wire of reduced porosity |
| NL7317585A NL7317585A (OSRAM) | 1972-12-29 | 1973-12-21 | |
| GB6008673A GB1460750A (en) | 1972-12-29 | 1973-12-28 | Process and apparatus for extruding molten steel to produce a cast steel wire and wire thereby produced |
| AT1089273A AT337232B (de) | 1972-12-29 | 1973-12-28 | Verfahren zum herstellen eines legierten dunnen stahldrahtes und vorrichtung zur durchfuhrung des verfahrens |
| ES421852A ES421852A1 (es) | 1972-12-29 | 1973-12-28 | Un procedimiento de tratamiento de un acero aleado de cola-da muy rapida. |
| DE2364944A DE2364944A1 (de) | 1972-12-29 | 1973-12-28 | Kontinuierlich gegossener metallfaden sowie verfahren und vorrichtung zu seiner herstellung |
| DD175724A DD108911A5 (OSRAM) | 1972-12-29 | 1973-12-29 | |
| IE2349/73A IE38710B1 (en) | 1972-12-29 | 1973-12-31 | Process and apparatus for extruding molten steel to produce a cast steel wire and wire thereby produced |
| FR7400076A FR2212197B1 (OSRAM) | 1972-12-29 | 1974-01-02 | |
| JP49004572A JPS49125226A (OSRAM) | 1972-12-29 | 1974-01-04 | |
| IT1935274A IT1067756B (it) | 1973-12-07 | 1974-01-11 | Filo metallico di fusione di porosita ridoita |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US00319133A US3811850A (en) | 1972-12-29 | 1972-12-29 | High speed production of filaments from low viscosity melts |
| US422933A US3904381A (en) | 1972-12-29 | 1973-12-07 | Cast metal wire of reduced porosity |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3904381A true US3904381A (en) | 1975-09-09 |
Family
ID=26981856
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US422933A Expired - Lifetime US3904381A (en) | 1972-12-29 | 1973-12-07 | Cast metal wire of reduced porosity |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US3904381A (OSRAM) |
| JP (1) | JPS49125226A (OSRAM) |
| AT (1) | AT337232B (OSRAM) |
| DD (1) | DD108911A5 (OSRAM) |
| DE (1) | DE2364944A1 (OSRAM) |
| ES (1) | ES421852A1 (OSRAM) |
| FR (1) | FR2212197B1 (OSRAM) |
| GB (1) | GB1460750A (OSRAM) |
| IE (1) | IE38710B1 (OSRAM) |
| NL (1) | NL7317585A (OSRAM) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080047736A1 (en) * | 2006-08-25 | 2008-02-28 | David Levine | Lightweight composite electrical wire |
| CN105598428A (zh) * | 2016-02-24 | 2016-05-25 | 攀钢集团攀枝花钢铁研究院有限公司 | 双层气幕挡墙及其制造方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2879566A (en) * | 1956-02-16 | 1959-03-31 | Marvalaud Inc | Method of forming round metal filaments |
| US3658979A (en) * | 1965-03-30 | 1972-04-25 | Monsanto Co | Method for forming fibers and filaments directly from melts of low viscosities |
| US3715419A (en) * | 1967-11-06 | 1973-02-06 | Monsanto Co | Drag stabilized low viscosity melt spinning process |
-
1973
- 1973-12-07 US US422933A patent/US3904381A/en not_active Expired - Lifetime
- 1973-12-21 NL NL7317585A patent/NL7317585A/xx not_active Application Discontinuation
- 1973-12-28 DE DE2364944A patent/DE2364944A1/de not_active Ceased
- 1973-12-28 ES ES421852A patent/ES421852A1/es not_active Expired
- 1973-12-28 AT AT1089273A patent/AT337232B/de not_active IP Right Cessation
- 1973-12-28 GB GB6008673A patent/GB1460750A/en not_active Expired
- 1973-12-29 DD DD175724A patent/DD108911A5/xx unknown
- 1973-12-31 IE IE2349/73A patent/IE38710B1/xx unknown
-
1974
- 1974-01-02 FR FR7400076A patent/FR2212197B1/fr not_active Expired
- 1974-01-04 JP JP49004572A patent/JPS49125226A/ja active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2879566A (en) * | 1956-02-16 | 1959-03-31 | Marvalaud Inc | Method of forming round metal filaments |
| US3658979A (en) * | 1965-03-30 | 1972-04-25 | Monsanto Co | Method for forming fibers and filaments directly from melts of low viscosities |
| US3715419A (en) * | 1967-11-06 | 1973-02-06 | Monsanto Co | Drag stabilized low viscosity melt spinning process |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080047736A1 (en) * | 2006-08-25 | 2008-02-28 | David Levine | Lightweight composite electrical wire |
| US7626122B2 (en) | 2006-08-25 | 2009-12-01 | David Levine | Lightweight composite electrical wire |
| US20100071931A1 (en) * | 2006-08-25 | 2010-03-25 | David Levine | Lightweight composite electrical wire with bulkheads |
| US8697998B2 (en) | 2006-08-25 | 2014-04-15 | David Levine | Lightweight composite electrical wire with bulkheads |
| CN105598428A (zh) * | 2016-02-24 | 2016-05-25 | 攀钢集团攀枝花钢铁研究院有限公司 | 双层气幕挡墙及其制造方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| NL7317585A (OSRAM) | 1974-07-02 |
| JPS49125226A (OSRAM) | 1974-11-30 |
| GB1460750A (en) | 1977-01-06 |
| FR2212197A1 (OSRAM) | 1974-07-26 |
| ES421852A1 (es) | 1976-05-01 |
| IE38710B1 (en) | 1978-05-10 |
| FR2212197B1 (OSRAM) | 1977-08-19 |
| AT337232B (de) | 1977-06-27 |
| DD108911A5 (OSRAM) | 1974-10-12 |
| IE38710L (en) | 1974-06-29 |
| ATA1089273A (de) | 1976-10-15 |
| DE2364944A1 (de) | 1974-08-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3771982A (en) | Orifice assembly for extruding and attenuating essentially inviscid jets | |
| US4619597A (en) | Apparatus for melt atomization with a concave melt nozzle for gas deflection | |
| US4778516A (en) | Process to increase yield of fines in gas atomized metal powder | |
| US4822267A (en) | Apparatus for producing superfine powder in spherical form | |
| US4801412A (en) | Method for melt atomization with reduced flow gas | |
| US4919854A (en) | Method for producing superfine powder in spherical form | |
| US3719733A (en) | Method for producing spherical particles having a narrow size distribution | |
| US3771929A (en) | Means for continuously cooling powder produced by granulating a molten material | |
| US2900708A (en) | Apparatus for producing alloy and bimetallic filaments | |
| JPS6046845A (ja) | 非晶質金属の連続ストリツプ製造方法 | |
| US3658979A (en) | Method for forming fibers and filaments directly from melts of low viscosities | |
| US2892215A (en) | Process for the production of metal powder | |
| JPS5942586B2 (ja) | 金属の連続ストリップ製造装置 | |
| US2879566A (en) | Method of forming round metal filaments | |
| US3904381A (en) | Cast metal wire of reduced porosity | |
| US3645657A (en) | Method and apparatus for improved extrusion of essentially inviscid jets | |
| US3216076A (en) | Extruding fibers having oxide skins | |
| US3613158A (en) | Orifice assembly for spinning low viscosity melts | |
| US3842896A (en) | Method for producing composite metal wire | |
| US3811850A (en) | High speed production of filaments from low viscosity melts | |
| US4780130A (en) | Process to increase yield of fines in gas atomized metal powder using melt overpressure | |
| US3946794A (en) | Method for producing fine diameter wire from steel-titanium melts | |
| US3715419A (en) | Drag stabilized low viscosity melt spinning process | |
| US3715418A (en) | Low viscosity melt spinning process | |
| US3788786A (en) | Orifice assembly for extruding low-viscosity melts |