US3904323A - Water turbines and/or pumping apparatus incorporating said turbines - Google Patents
Water turbines and/or pumping apparatus incorporating said turbines Download PDFInfo
- Publication number
- US3904323A US3904323A US402014A US40201473A US3904323A US 3904323 A US3904323 A US 3904323A US 402014 A US402014 A US 402014A US 40201473 A US40201473 A US 40201473A US 3904323 A US3904323 A US 3904323A
- Authority
- US
- United States
- Prior art keywords
- water
- casing
- flow
- shaft
- propeller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/04—Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
- Y10S415/905—Natural fluid current motor
- Y10S415/906—Natural fluid current motor having specific features for water current
Definitions
- 417/334; 417/405; 415/4- A water Primarily designed for Peming a 415/7 pump has a plurality of multi-bladed propellers [5 1 Int F04B 17/00; F03D 7/00 mounted on a shaft with a sulficient spacing between [58] Field of Search U 415/2, 3, 4 99 R, 208 the propeller wheels to allow the flow of water to re- 415, 417/334 35 200 337 416/207 establish after each propeller wheel.
- Water rams are designed to operate upon the power provided by a head of water but there are many instances where a sufficient head of water is not readily available and this may create difficulties for installation and/or seriously limit the amount of water which can be pumped.
- the invention consists in a water turbine comprising a casing through which water may pass, a longitudinal shaft rotatably mounted within said casing, a plurality of multibladed propellers mounted on said shaft and flow control means to control the amount of water passing through said casing, and past said multibladed propellers so that in use part only of the multibladed propeller is in the water flow.
- the invention consists in a water pumping apparatus comprising a longitudinal casing having a water inlet at one end and an outlet at the opposite end, a longitudinal shaft rotatably mounted within said casing, a plurality of multibladed propellers fixed at intervals along said shaft, a restricted intake to limit the flow of water through said casing so that half or less of the multibladed propellers will be immersed in the flow of water, a crank in said shaft, a reciprocating pump operatively connected to said crank, an inlet to said reciprocating pump immersed in the flow of water passing through the casing and an outlet from said pump connectable to a discharge pipe.
- FIG. 1 is a sectional elevation through one preferred embodiment of the present invention
- FIG. 2 is a plan view of FIG. 1 with part of the upper casing broken away to show the multibladed propellers,
- FIG. 3 is an end view of FIG. 1,
- FIG. 4 is an alternate arrangement of the power takeoff
- FIG. 5 is a comparative performance graph for the present invention with the unit positioned at varying angles
- FIG. 6 is a more detailed performance graph with a drop through the unit of 18 inches
- FIG. 7 is a more detailed performance graph of the unit with a drop through the unit of 24 inches.
- the unit according to the present invention has a casing 1 which is preferably a clylindrical casing made up in two sections.
- the lower section is a semi-cylindrical part defining the water channel and the upper section functions as a guard.
- a longitudinal shaft 2 is mounted within the casing and is supported in bearings 3 fixed on structural members 4 extending across the casing.
- This shaft is preferably located centrally in the casing although it could be displaced below the centre with a minimum clearance at the bottom and an increasing clearance up the sides of the casing.
- the multibladed propellers are spaced apart adequately to allow the water flow to reestablish before it contacts the next multibladed propeller.
- a distance of approximately 12 inches (304.8 mm) provides satisfactory results, but this dimension may be varied.
- the efficiency of the unit will tend to drop if the multibladed propellers are closer together.
- advantages will still be gained with the propeller blades significantly closer for example, down to 6 inches apart (152.4 mm). The spacing may be increased beyond the optimum without increasing the efficiency but of course, this will result in an increased cost of the completed unit which should be avoided.
- An inlet funnel 6 directs the flow of water into the main part of the casing and has included therein a baffle or guide 7 which in conjunction with the remainder of the inlet casing defines a nozzle 8 restricting the flow of water through the main part of the casing which does not extend above the shaft 2.
- the inlet 6 is preferably guarded by a screen 14 to minimize the possibility of material entering the turbine and fouling blades.
- a crank pin 9 mounted on a crank plate is provided at the end of the shaft 2 and a reciprocal pump I0 is operatively connected to the crank pin.
- crank plate supporting the crank pin 9 has apertures at varying distances from the centre of the shaft to allow adjustment of pump displacement dependent upon the pumping head and rate of flow.
- the inlet II for the pump is arranged to draw the water supply from a small well 12 provided in the casmg.
- the casing is completed by a slightly flared discharge end 13.
- Each multibladed propeller has eight blades with each blade set at 30 at the perimeter and reducing to 0 at the centre cone, but again the angle of the blades may be varied for example from 15 to 45.
- crank 15 is located at the mid-point of the shaft that is, with an equal number of multibladed propellers on each side thereof.
- the crank is preferably arranged with an adjustable throw whereby the stroke of the pump can be varied as was described above. Also, more than one crank could be incorporated. As will be seen from the drawings in the preferred embodiment six multibladed propellers are provided in the unit.
- the size of the unit can be varied but performance data is given herein based upon a unit with a 21 inch diameter casing and six 20 inch diameter multi-blade propellers.
- the main body of the casing has an effective length of 8 feet 3 inches (2,514.6 mm).
- the testing took place on a site with a weir and horizontal concrete flow channel delivering the water into the unit which was adjustable so that the drop through the unit was varied in 6 inch stages from 6 inches to 24 inches.
- the performance achieved lS shown in FIG. 5 with more detailed analyses for the drops of 18 and 24 inches given in FIGS. 6 and 7.
- the unit is capable of delivering a substantial flow of water to a considerable height.
- the unit may be installed in any of a number of locations for example as with the test rig in a discharge channel from a weir, or any water course without the erection of a weir provided a sufficient fall was achieved.
- the novelty claimed in the present invention resides in a control of the flow of water so that the multi-blade propellers are only partially submerged.
- the series of propellers are capable of effectively extracting power from the shallow super-critical flow which reestablishes after each propeller and so justifies the series of propellers.
- the power possible by allowing the unit to operate in a fully submerged condition is significantly less than that which can be achieved with the flow control in accordance with the present invention.
- Tests completed indicate that the unit makes most efficient use of the water with a minimum flow through the casing past the multi-bladed propellers. While the efficient use of the water decreases as the depth increases this is not critical until the water extends beyond the shaft on which the multi-b
- a water turbine comprising a generally, horizontally disposed casing through which water may pass, a longitudinal shaft rotatably mounted within said casing, a plurality of multi-bladed propellers mounted on said shaft at intervals along said shaft with the spacing sufficient to allow the flow of water to re-establish after passing each propeller, and flow control means to control the amount of water passing into said casing and past said multi-bladed propellers so that in use only part of the multi-bladed propeller is in the water flow, the flow control means comprising an upstream guide member in the casing defining a nozzle that directs the flow of water toward the propellors below the longitudinal shaft so that half or less of the propeller blades are successively submerged in the limited flow of water through the casing.
- a water turbine as claimed in claim I having a crank means attached to the shaft to act as a power take-off means.
- a water turbine as claimed in claim I wherein the multi-bladed propeller has eight blades with the angular pitch of the blades being between 15 and 45.
- a water pumping apparatus comprising a generally, horizontally disposed longitudinal casing having a water inlet at one end and an outlet at the opposite end, a longitudinal shaft rotatably mounted within said casing, a plurality of multi-bladed propellers fixed at intervals along said shaft, flow control means comprising a guide member in said casing at said inlet defining a nozzle limiting the flow of water through said casing toward the propellers to half or less of the radial length of multi-bladed propellers from the longitudinal shaft so that the blades are immersed in the maximum freeflow of water, a crank in said shaft, a reciprocating pump operatively connected to said crank, an inlet to said reciprocating pump immersed in the flow of water passing through the casing and an outlet from said pump connectable to a discharge pipe.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydraulic Turbines (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ16854672 | 1972-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3904323A true US3904323A (en) | 1975-09-09 |
Family
ID=19916928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US402014A Expired - Lifetime US3904323A (en) | 1972-09-29 | 1973-10-01 | Water turbines and/or pumping apparatus incorporating said turbines |
Country Status (8)
Country | Link |
---|---|
US (1) | US3904323A (enrdf_load_stackoverflow) |
JP (1) | JPS5219259B2 (enrdf_load_stackoverflow) |
AU (1) | AU475474B2 (enrdf_load_stackoverflow) |
CA (1) | CA986389A (enrdf_load_stackoverflow) |
GB (1) | GB1407314A (enrdf_load_stackoverflow) |
IN (1) | IN140414B (enrdf_load_stackoverflow) |
IT (1) | IT999596B (enrdf_load_stackoverflow) |
ZA (1) | ZA737692B (enrdf_load_stackoverflow) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6935832B1 (en) * | 2002-05-21 | 2005-08-30 | Natural Forces, Llc | Portable power generating devices |
DE102007034618A1 (de) * | 2007-07-25 | 2009-01-29 | Georg Hamann | Vorrichtung zur Erzeugung von Energie aus einer Fluidströmung |
US7633174B1 (en) * | 2007-02-27 | 2009-12-15 | Fred John Feiler | Floating water turbine for a power plant |
US20100284784A1 (en) * | 2007-12-31 | 2010-11-11 | Daniel Farb | Placing water turbines in water flows |
RU2563287C2 (ru) * | 2010-08-18 | 2015-09-20 | Владимир Григорьевич Иванов | Водонапорный двигатель |
RU182692U1 (ru) * | 2018-02-13 | 2018-08-28 | Геннадий Кузьмич Горин | Гидроэлектростанция |
US20200124021A1 (en) * | 2018-10-17 | 2020-04-23 | Clint V. Reil | Turbine assembly for installation inside a pipe |
US10662917B2 (en) | 2016-03-22 | 2020-05-26 | Ntn Corporation | Water turbine, and connecting structure of two male screw shafts and connecting structure of two shafts respectively used for water turbine |
US11105367B2 (en) | 2019-01-18 | 2021-08-31 | Telesystem Energy Ltd. | Passive magnetic bearing and rotating machineries integrating said bearing, including energy production turbines |
US11629684B2 (en) | 2019-03-14 | 2023-04-18 | Telesysteme Energie Ltee | Multi-staged cowl for a hydrokinetic turbine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60249673A (ja) * | 1984-05-24 | 1985-12-10 | Koichi Totsugi | 水車 |
JPH07233796A (ja) * | 1994-02-23 | 1995-09-05 | Nippon Enbairo Kogyo Kk | ポンプ |
JP2013160098A (ja) * | 2012-02-02 | 2013-08-19 | Hajime Gokan | 水力発電用長距離用水路 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US61362A (en) * | 1867-01-22 | Abram rowe | ||
US332249A (en) * | 1885-12-15 | Motor | ||
US507294A (en) * | 1893-10-24 | Water-motor | ||
US852022A (en) * | 1905-11-23 | 1907-04-30 | John Kirschweng | Current-motor. |
US1396609A (en) * | 1920-05-04 | 1921-11-08 | Said George P A Weisenborn | Current or tide motor |
US1798646A (en) * | 1929-08-24 | 1931-03-31 | Andersson Wilhelm | Hydraulic pump |
US2382535A (en) * | 1943-01-26 | 1945-08-14 | Buffalo Forge Co | Axial flow fan |
US2726606A (en) * | 1951-07-16 | 1955-12-13 | Arthur P Davidson | Pumping system |
US2861195A (en) * | 1957-03-15 | 1958-11-18 | Salzer Alexander | Hydroelectric power system |
US3231022A (en) * | 1964-03-09 | 1966-01-25 | Buffalo Forge Co | Axial fan construction |
US3357496A (en) * | 1966-07-28 | 1967-12-12 | Westinghouse Electric Corp | Adjustable pitch axial flow fan blades |
-
1973
- 1973-09-28 CA CA182,380A patent/CA986389A/en not_active Expired
- 1973-09-28 GB GB4554673A patent/GB1407314A/en not_active Expired
- 1973-09-29 JP JP48110112A patent/JPS5219259B2/ja not_active Expired
- 1973-10-01 US US402014A patent/US3904323A/en not_active Expired - Lifetime
- 1973-10-01 IT IT69879/73A patent/IT999596B/it active
- 1973-10-01 ZA ZA737692A patent/ZA737692B/xx unknown
- 1973-10-04 AU AU62233/73A patent/AU475474B2/en not_active Expired
- 1973-10-08 IN IN2222/CAL/73A patent/IN140414B/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US61362A (en) * | 1867-01-22 | Abram rowe | ||
US332249A (en) * | 1885-12-15 | Motor | ||
US507294A (en) * | 1893-10-24 | Water-motor | ||
US852022A (en) * | 1905-11-23 | 1907-04-30 | John Kirschweng | Current-motor. |
US1396609A (en) * | 1920-05-04 | 1921-11-08 | Said George P A Weisenborn | Current or tide motor |
US1798646A (en) * | 1929-08-24 | 1931-03-31 | Andersson Wilhelm | Hydraulic pump |
US2382535A (en) * | 1943-01-26 | 1945-08-14 | Buffalo Forge Co | Axial flow fan |
US2726606A (en) * | 1951-07-16 | 1955-12-13 | Arthur P Davidson | Pumping system |
US2861195A (en) * | 1957-03-15 | 1958-11-18 | Salzer Alexander | Hydroelectric power system |
US3231022A (en) * | 1964-03-09 | 1966-01-25 | Buffalo Forge Co | Axial fan construction |
US3357496A (en) * | 1966-07-28 | 1967-12-12 | Westinghouse Electric Corp | Adjustable pitch axial flow fan blades |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6935832B1 (en) * | 2002-05-21 | 2005-08-30 | Natural Forces, Llc | Portable power generating devices |
US7633174B1 (en) * | 2007-02-27 | 2009-12-15 | Fred John Feiler | Floating water turbine for a power plant |
DE102007034618A1 (de) * | 2007-07-25 | 2009-01-29 | Georg Hamann | Vorrichtung zur Erzeugung von Energie aus einer Fluidströmung |
US20100284784A1 (en) * | 2007-12-31 | 2010-11-11 | Daniel Farb | Placing water turbines in water flows |
US8814515B2 (en) * | 2007-12-31 | 2014-08-26 | Daniel Farb | Placing water turbines in water flows |
RU2563287C2 (ru) * | 2010-08-18 | 2015-09-20 | Владимир Григорьевич Иванов | Водонапорный двигатель |
US10662917B2 (en) | 2016-03-22 | 2020-05-26 | Ntn Corporation | Water turbine, and connecting structure of two male screw shafts and connecting structure of two shafts respectively used for water turbine |
RU182692U1 (ru) * | 2018-02-13 | 2018-08-28 | Геннадий Кузьмич Горин | Гидроэлектростанция |
US20200124021A1 (en) * | 2018-10-17 | 2020-04-23 | Clint V. Reil | Turbine assembly for installation inside a pipe |
US11105367B2 (en) | 2019-01-18 | 2021-08-31 | Telesystem Energy Ltd. | Passive magnetic bearing and rotating machineries integrating said bearing, including energy production turbines |
US11629684B2 (en) | 2019-03-14 | 2023-04-18 | Telesysteme Energie Ltee | Multi-staged cowl for a hydrokinetic turbine |
Also Published As
Publication number | Publication date |
---|---|
JPS5219259B2 (enrdf_load_stackoverflow) | 1977-05-26 |
ZA737692B (en) | 1974-08-28 |
CA986389A (en) | 1976-03-30 |
AU6223373A (en) | 1975-05-08 |
JPS4993741A (enrdf_load_stackoverflow) | 1974-09-06 |
IT999596B (it) | 1976-03-10 |
IN140414B (enrdf_load_stackoverflow) | 1976-11-06 |
GB1407314A (en) | 1975-09-24 |
AU475474B2 (en) | 1976-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3904323A (en) | Water turbines and/or pumping apparatus incorporating said turbines | |
US3416729A (en) | Liquid aerator | |
KR950009119B1 (ko) | 수차 | |
US5681146A (en) | Low head pumping system for fish farms | |
US2726606A (en) | Pumping system | |
US4917577A (en) | High speed centrifugal oxygenator | |
US1955929A (en) | Impeller | |
FI71502B (fi) | Anordning vid saodana apparater foer inblandning och loesning av gaser i vaetskemassor vilka av ett axialpumphjul uppfordras genom en vertikal stigledning | |
US2329696A (en) | Centrifugal apparatus | |
GB1452483A (en) | Turbine unit | |
US3478690A (en) | Recirculating system for a self-contained sewage unit | |
BR102012004263A2 (pt) | Aerador submerso | |
CN111887131A (zh) | 一种高覆盖灌溉装置 | |
US3123651A (en) | Impeller device | |
USRE29075E (en) | Liquid aerator | |
CN106837805B (zh) | 一种离心脉冲射流泵 | |
CN223227556U (zh) | 一种交错式叶轮结构 | |
US1874450A (en) | Deep-well turbine pump | |
US1005204A (en) | Pump. | |
RU2008108327A (ru) | Погружной насосный агрегат для откачки газожидкостной смеси | |
EP0181754A1 (en) | Turbine | |
CN215171092U (zh) | 一种带过滤装置的输送用轴流泵 | |
US1924621A (en) | Cavitation free fluid joint | |
CN86206004U (zh) | 复合式推进装置 | |
CN222046151U (zh) | 一种可自动定向旋转的水泵叶轮 |