US3902041A - Dry film processing apparatus - Google Patents

Dry film processing apparatus Download PDF

Info

Publication number
US3902041A
US3902041A US377887A US37788773A US3902041A US 3902041 A US3902041 A US 3902041A US 377887 A US377887 A US 377887A US 37788773 A US37788773 A US 37788773A US 3902041 A US3902041 A US 3902041A
Authority
US
United States
Prior art keywords
film
plates
developing
temperature
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US377887A
Inventor
Joseph N May
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US377887A priority Critical patent/US3902041A/en
Priority to CA199,347A priority patent/CA1029232A/en
Priority to FR7416097A priority patent/FR2237224B1/fr
Priority to JP49067586A priority patent/JPS5043928A/ja
Priority to NL7408314A priority patent/NL7408314A/xx
Priority to DE2429683A priority patent/DE2429683A1/en
Priority to GB2988974A priority patent/GB1462819A/en
Priority to US05/550,302 priority patent/US4009034A/en
Application granted granted Critical
Publication of US3902041A publication Critical patent/US3902041A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/26Processes using silver-salt-containing photosensitive materials or agents therefor
    • G03C5/263Processes using silver-salt-containing photosensitive materials or agents therefor with an exterior influence, e.g. ultrasonics, electrical or thermal means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03DAPPARATUS FOR PROCESSING EXPOSED PHOTOGRAPHIC MATERIALS; ACCESSORIES THEREFOR
    • G03D13/00Processing apparatus or accessories therefor, not covered by groups G11B3/00 - G11B11/00
    • G03D13/002Heat development apparatus, e.g. Kalvar

Definitions

  • the film surface at the same temperature as the first platc surface, is placed in close non-contiguous relation with the exposed emulsion side of the film whereby the film is heated under adiabatic conditions during processing.
  • the film isremoved from the developing region and allowed to cool in air.
  • a further object of the present invention is to provide method and apparatus for automatically processing dry film.
  • a still further object of the present invention is to improve the uniformity of development of a dry process image recording medium.
  • the present invention herein utilizes the heated platen development technique but represents a radical departure from most approaches known and used in the art for producing uniformity of development.
  • the present system relies upon a conductive mechanism in the transient state, i.e. when a film is being raised to the process temperature and an adiabatic condition (net heat flux through film 0) in the steady state.
  • a conductive mechanism in the transient state, i.e. when a film is being raised to the process temperature and an adiabatic condition (net heat flux through film 0) in the steady state.
  • an adiabatic system in conjunction with heated platens, an extremely rapid, efficient and uniform heating of the exposed film is produced.
  • a developing system can be constructed which has a much wider developing latitude than those presently known and used in the art.
  • the present system does not demand that complete intimate contact be maintained between the film and the platen and can also tolerate a normal amount of contamination within the development zone while delivering repeatable uniform development.
  • the development station 10 of the present invention is made up of two vertically spaced blocks or plates l2, 13 which are preferably constructed of a material having a high co-efficient of thermal conductivity.
  • the plates can be fabricated of aluminum, copper or any other suitable material exhibiting the heretofore mentioned characteristics.
  • the upper plate 12 is provided with a generally convex shaped working surface 14 for contacting the back side or the nonemulsion side of the film.
  • the lower plate 13 is similarly provided with a concave working surface 15 that complements the working surface upon the upper plate.
  • the plates are mounted with the two working surfaces being adjacent to but in non-contiguous relation with each other to provide a horizontally extended cavity 17 therebetween which defines the development zone of the system.
  • each plate On the outer surface of each plate, that is, the surface opposite the working surfaces, there is placed a foil heating blanket 20 which provides heat energy to the system.
  • the blankets are both formed of a ribbon type resistance heating element 21 which is preferably sandwiched between two relatively thin sheets of plastic electrical insulating material 22. Blankets similar to the one herein described are commercially available from a number of suppliers including the Rodgers Corp. of Willimantic, Conn.
  • the ribbon type heating element can be bonded directly to the outer surface of the two plates directly above the developing cavity and an insulating material placed directly over the heating element.
  • each blanket is brought out, via lines 27, 38 to two variable power supplies, an upper blanket power supply 29 and a lower blanket power supply 30, which provide input energy to the heaters. Because of the high thermal conductivity of the plates, the energy delivered to the heaters is rapidly and efficiently passed through the plates to bring the working surface 14 and thereon to a predetermined operating temperature that is at or above the development threshold temperature of the film in process.
  • a pair of temperature sensors 32 and 33 are embedded within the two plates with the sensing elements thereon arranged to detect the temperature of the plates close to the working surfaces thereon.
  • the sensors are both electrically connected to a comparator circuit 35 via lines 36 and 37 which is capable of determining any deviation between the temperature sensed and the desired development temperature.
  • a corrective signal is generated by the comparator circuit and sent to the appropriate power supply unit by means of lines 40 or 41. In response to the corrective signal the output of the appropriate power supply is adjusted thus bringing the system back within optimum operating conditions.
  • the web in process consists of a series of exposed frames 50 containing input scene information recorded on the emulsion side of the film with the frames being separated by a strip 51 of unexposed film.
  • the web is carried upon a supply spool 52 and is brought emulsion side down through the developing cavity and secured to a take up spool 53.
  • an indexing drive is operatively connected to the take up spool which is adapted to advance, upon demand, the web one frame at a time.
  • the developing station 10 is located in reference to the take up spool so that the frame recorded on the web is centered within the developing cavity each time that the web is so indexed.
  • a web tensioning means such as tensioning roll 56, is provided to place a predetermined amount of tension upon the web as it is being processed with the developing zone.
  • the two adiabatic heating plates are both arranged to move vertically between an operative or developing position to a second more extended open position. Prior to the indexing of each frame into the developing cavity, the plates are moved to the open position. Once the web has been indexed, the cavity is closed thereby bringing the upper working surface of plate 12 into pressure contact against the non-emulsion side or support surface of the film. The distance between the two plate working surfaces, when the plates are in the closed or operative position, are such that the working surface of the lower plate 13 is in relatively close non-contiguous relation with the exposed emulsion side of the film.
  • the distance between the two plate working surfaces is not critical, it is, however, preferred that the distance across the cavity be approximately between 2% and 5 times the thickness of the film in process.
  • the size cavity when in an operative or developing condition should be small enough to impede the introduction of unwanted convective air flow currents through the development zone during film processing.
  • a hydraulically actuated lifting mechanism is herein provided to facilitate movement of the plates in a vertical direction.
  • end blocks 60 constructed of a phenolic material, or any other suitable material exhibiting good heat insulating properties, to which a pair of hydrial lifting cylinders 61 and 62 are secured.
  • the phenolic end blocks provide a support surface against which the hydraulic cylinders act and also provides a thermal insulating barrier which serves to hold heat energy within the boundaries of the developing system.
  • similar heat barriers can also be positioned along the side walls of the plate to further reduce unwanted heat losses from the system.
  • the opposite ends of the hydraulic cylinders are secured to a mounting plate 63 which is affixed, as for example by welding, to a support frame (not shown).
  • a piston which is located within each cylinder, is arranged to be hydraulically moved between two extreme positions which, in turn, causes the plates to move in the direction indicated between a fully opened and a fully closed position.
  • the hydraulic control-system can be operatively associated with the web indexing mechanism by any suitable means known and used in the art to automatically coordinate the opening and closing of the developing cavity with the movement of exposed frames into and out of the development zone.
  • Dry silver halide film similar to that disclosed in the previously noted US. Pat. No. 3,457,075 has been processed using the apparatus herein disclosed to obtain consistently uniformly developed images.
  • the film process had a cross-sectional dimension of about 0.004 inches and a rapid development threshold temperature of approximately 225F.
  • the film was processed within a cavity formed between the working surfaces of two heated plates maintained a distance of between 0.010 and 0.020 inches apart.
  • the non-emulsion side of the film was held against the convex working surface of one of the plates with a tension of between 2 and 4 pounds.
  • the plates were heated in the manner herein described whereby the working surfaces of the plates were uniformly heated to about 60F above the developing threshold temperature of the film.
  • the exposed film was held in the cavity for between 6 and 10 seconds and then cooled in air. Uniformly developed images within a density range of 1.6 and 1.8 were repeatably processed.
  • Developing apparatus for processing exposed dry film having a heat developable emulsion placed upon a support material including a substantially enclosed cavity for encompassing an exposed film to be developed being formed of two plates spaced apart a distance greater than the thickness of the film,
  • each plate comprises a material having a relatively high coefficient of thermal conductivity and having heating means associated therewith for heating said plate to a uniform temperature.
  • the apparatus of claim 2 having further means to move said plates from a developing position to a second more widely spaced open position.
  • the apparatus of claim 3 having further means to automatically move film into said cavity when the plates are moved to an open position and to secure the nonemulsion, side of said film into contact against one of said plates when the plates are in a closed position.
  • Developing apparatus for processing exposed dry photosensitive film having a heat developable emulsion placed upon a support material including a substantially enclosed cavity for encompassing an exposed film to be developed being formed of two plates spaced apart a distance greater than the thickness of the film,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photographic Developing Apparatuses (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

Method and apparatus for processing dry film. The non-emulsion side of the film is placed in contact with a plate surface that is at or above the developing threshold potential of the film. A second heated plate surface, at the same temperature as the first plate surface, is placed in close non-contiguous relation with the exposed emulsion side of the film whereby the film is heated under adiabatic conditions during processing. The film is removed from the developing region and allowed to cool in air.

Description

United States Patent 11 1 1111 3,902,041
May 1 Aug. 26, 1975 [54] DRY FILM PROCESSING APPARATUS 3,356,831 12/1967 Andrus et a1. 219/216 X 3,449,547 6/1969 Goodman et al. 219/216 [75] Inventor: JSePh Webste 3,648,019 3/1972 Brewitz 219/216 x [73] Assignee: Xerox Corporation, Stamford, f Conn. Primary Examin'erC. L. Albritton Filed: y 1973 Attorney, Agent, or F1rm-Robert J. Bird [21] Appl. No.: 377,887 5 ABSTRACT Method and apparatus for processing dry film. The [52] 219/216; 100/93 non-emulsion side of the film is placed in contact with 432/59 432/227 a plate surface that is at or above the developing [51] Int. Cl. 1105b 1/00; 003g 15/00 threshold potential of the mm A second heated plate [58] Field of Search 219/216, 388, 385, 390;
surface, at the same temperature as the first platc surface, is placed in close non-contiguous relation with the exposed emulsion side of the film whereby the film is heated under adiabatic conditions during processing. The film isremoved from the developing region and allowed to cool in air.
5 Claims, 1 Drawing Figure A/ZVVHIIH 5? r DRY FILM PROCESSING APPARATUS This invention relates to method and apparatus for processing heat sensitive film.
In recent years, a new type of heat processable film has been developed wherein, images recorded on the film, can be developed and fixed by heating the film to or above its threshold temperature and then cooling the film to ambient temperatures. This film is generally referred to as dry film and is typified by a film produced by the Minnesota, Mining and Manufacturing Company of St. Paul, Minn. and consists of a dry silver halide emulsion which is placed upon a polymer support surface. For further information concerning this dry film, reference is had to U.S. Pat. No. 3,457,075.
The use of this dry film, particularly in automatic processing equipment, has heretofore found only limited usage primarily because of problems relating to the heat developing process. The most dependable system for developing this film heretofore known in the art involves drawing the imaged film through a heated bath of non-wetting liquid to accomplish development. However, as such, this liquid system has all the objectionable drawbacks associated with a wet film processing system, particularly employed in an automatic environment, and thus defeats many of the advantages associated with the dry process. Other non-liquid heating systems, including hot platens, radiant ovens and the like have also been tried with varying degrees of success in the processing of dry film but these systems all have been found objectionable primarilydue to the fact that a uniformity in development has oftentimes been difficult or even impossible to maintain.
It is therefore an object of the present invention to improve the processing of dry film.
A further object of the present invention is to provide method and apparatus for automatically processing dry film.
A still further object of the present invention is to improve the uniformity of development of a dry process image recording medium.
These and other objects of the present invention are attained by means of an adiabatic heating process wherein complementary surfaces upon two blocks or plates are placed in close proximity with eachother to form a relatively enclosed cavity in which the dry film is processed. The non-emulsion side of the film is placed in direct contact with one of the plate surfaces forming the cavity while the exposed or image bearing emulsion side of the film is held in close noncontiguous relation with the other surface making up the cavity. The plates are then both heated to the same uniform temperature, preferably somewhat above the development threshold temperature of the film, and the film is held within the cavity for a period of time sufficient to develop images recorded thereon. The film is removed from the cavity and cooled to ambient temperatures to accomplish fixing.
For a better understanding of the invention as wellas other objects and further features thereof reference is had to the following detailed description of the invention to be read in connection with the accompanying drawing which represents a perspective view illustrating an adiabatic heating cavity embodying the teachings of the present invention.
As exemplified by US. Pat. No." 3,608,466, most thermal systems for processing dry film that are in use today involve a conductive heat transfer mechanism in which the exposed film is held in intimate contact against the surface of a heated platen. As described in the above-noted patent, one side of the film is placed in intimate physical contact with the heated platen surface with the heat energy passing through the film and being discharged into a heat sink positioned on the opposite side of the film. The heat sink can take any form ranging from an insulating backing member to the surrounding atmosphere. As such, the heat flux established between the isothermal boundaries of the system can be influenced by many different uncontrollable variables which lead to undesirable development. For example, if a small particle of foreign matter, such as random dirt or lint, is deposited upon the platen surface, the contaminate will act to reshape or otherwise influence the flux network in a localized region which will, in turn, produce non-uniform development within the contaminated regions. This type of defect generally manifests itself as a halo which is recorded upon the process film. Similarly, any changes in the heat transfer characteristics of the heat sink or backing member which is induced by means or convection or the like, will also effect the heat transfer geometry of the system and produce non-uniform development.
Heretofore, most efiorts directed at correcting a platen type development system were directed solely towards producing a more positive contact between the heated platen surface and the exposed film in process.
The present invention herein utilizes the heated platen development technique but represents a radical departure from most approaches known and used in the art for producing uniformity of development. The present system relies upon a conductive mechanism in the transient state, i.e. when a film is being raised to the process temperature and an adiabatic condition (net heat flux through film 0) in the steady state. By use of the adiabatic system in conjunction with heated platens, an extremely rapid, efficient and uniform heating of the exposed film is produced. By combining these two features, a developing system can be constructed which has a much wider developing latitude than those presently known and used in the art. Furthermore, the present system does not demand that complete intimate contact be maintained between the film and the platen and can also tolerate a normal amount of contamination within the development zone while delivering repeatable uniform development.
Referring now to the drawing, the development station 10 of the present invention is made up of two vertically spaced blocks or plates l2, 13 which are preferably constructed of a material having a high co-efficient of thermal conductivity. In practice, the plates can be fabricated of aluminum, copper or any other suitable material exhibiting the heretofore mentioned characteristics. The upper plate 12 is provided with a generally convex shaped working surface 14 for contacting the back side or the nonemulsion side of the film. The lower plate 13 is similarly provided with a concave working surface 15 that complements the working surface upon the upper plate. In assembly, the plates are mounted with the two working surfaces being adjacent to but in non-contiguous relation with each other to provide a horizontally extended cavity 17 therebetween which defines the development zone of the system.
On the outer surface of each plate, that is, the surface opposite the working surfaces, there is placed a foil heating blanket 20 which provides heat energy to the system. The blankets are both formed of a ribbon type resistance heating element 21 which is preferably sandwiched between two relatively thin sheets of plastic electrical insulating material 22. Blankets similar to the one herein described are commercially available from a number of suppliers including the Rodgers Corp. of Willimantic, Conn. Alternatively, the ribbon type heating element can be bonded directly to the outer surface of the two plates directly above the developing cavity and an insulating material placed directly over the heating element.
The terminal ends of each blanket are brought out, via lines 27, 38 to two variable power supplies, an upper blanket power supply 29 and a lower blanket power supply 30, which provide input energy to the heaters. Because of the high thermal conductivity of the plates, the energy delivered to the heaters is rapidly and efficiently passed through the plates to bring the working surface 14 and thereon to a predetermined operating temperature that is at or above the development threshold temperature of the film in process.
In order to obtain truly uniform development of high density images, it is extremely important that the working surfaces of the two plates forming the development cavity be maintained at the same temperature. A pair of temperature sensors 32 and 33 are embedded within the two plates with the sensing elements thereon arranged to detect the temperature of the plates close to the working surfaces thereon. The sensors are both electrically connected to a comparator circuit 35 via lines 36 and 37 which is capable of determining any deviation between the temperature sensed and the desired development temperature. When the comparator circuit detects that the temperature of either plate has fallen above or below the desired operating temperature, a corrective signal is generated by the comparator circuit and sent to the appropriate power supply unit by means of lines 40 or 41. In response to the corrective signal the output of the appropriate power supply is adjusted thus bringing the system back within optimum operating conditions.
In the preferred embodiment of the present invention it is contemplated that a series of exposures that are stored upon a web 49 are to be processed. However, it should be clear to one skilled in the art that the teachings of the present invention are not so limited and that the development system herein disclosed can process cut strips of film equally as well without departing from the teachings of the present invention. The web in process consists of a series of exposed frames 50 containing input scene information recorded on the emulsion side of the film with the frames being separated by a strip 51 of unexposed film. The web is carried upon a supply spool 52 and is brought emulsion side down through the developing cavity and secured to a take up spool 53. Although not shown in the drawing, an indexing drive is operatively connected to the take up spool which is adapted to advance, upon demand, the web one frame at a time. The developing station 10 is located in reference to the take up spool so that the frame recorded on the web is centered within the developing cavity each time that the web is so indexed. A web tensioning means, such as tensioning roll 56, is provided to place a predetermined amount of tension upon the web as it is being processed with the developing zone.
To facilitate the positioning of the exposed frames within the developing cavity, the two adiabatic heating plates are both arranged to move vertically between an operative or developing position to a second more extended open position. Prior to the indexing of each frame into the developing cavity, the plates are moved to the open position. Once the web has been indexed, the cavity is closed thereby bringing the upper working surface of plate 12 into pressure contact against the non-emulsion side or support surface of the film. The distance between the two plate working surfaces, when the plates are in the closed or operative position, are such that the working surface of the lower plate 13 is in relatively close non-contiguous relation with the exposed emulsion side of the film. Although, because of the adiabatic heating mechanism herein utilized, the distance between the two plate working surfaces is not critical, it is, however, preferred that the distance across the cavity be approximately between 2% and 5 times the thickness of the film in process. The size cavity when in an operative or developing condition, however, should be small enough to impede the introduction of unwanted convective air flow currents through the development zone during film processing.
A hydraulically actuated lifting mechanism is herein provided to facilitate movement of the plates in a vertical direction. At the outboard ends of each plate is secured end blocks 60 constructed of a phenolic material, or any other suitable material exhibiting good heat insulating properties, to which a pair of hydrial lifting cylinders 61 and 62 are secured. The phenolic end blocks provide a support surface against which the hydraulic cylinders act and also provides a thermal insulating barrier which serves to hold heat energy within the boundaries of the developing system. Although not shown, similar heat barriers can also be positioned along the side walls of the plate to further reduce unwanted heat losses from the system. The opposite ends of the hydraulic cylinders are secured to a mounting plate 63 which is affixed, as for example by welding, to a support frame (not shown). A piston, which is located within each cylinder, is arranged to be hydraulically moved between two extreme positions which, in turn, causes the plates to move in the direction indicated between a fully opened and a fully closed position. The hydraulic control-system can be operatively associated with the web indexing mechanism by any suitable means known and used in the art to automatically coordinate the opening and closing of the developing cavity with the movement of exposed frames into and out of the development zone.
Dry silver halide film similar to that disclosed in the previously noted US. Pat. No. 3,457,075 has been processed using the apparatus herein disclosed to obtain consistently uniformly developed images. Basically, the film process had a cross-sectional dimension of about 0.004 inches and a rapid development threshold temperature of approximately 225F. The film was processed within a cavity formed between the working surfaces of two heated plates maintained a distance of between 0.010 and 0.020 inches apart. The non-emulsion side of the film was held against the convex working surface of one of the plates with a tension of between 2 and 4 pounds. The plates were heated in the manner herein described whereby the working surfaces of the plates were uniformly heated to about 60F above the developing threshold temperature of the film. The exposed film was held in the cavity for between 6 and 10 seconds and then cooled in air. Uniformly developed images within a density range of 1.6 and 1.8 were repeatably processed.
While this invention has been described with reference to the structure herein disclosed, the present invention is not confined to the specific details set forth and this application is intended to cover any modifications or changes that may come within the scope of the following claims.
What is claimed is:
1. Developing apparatus for processing exposed dry film having a heat developable emulsion placed upon a support material including a substantially enclosed cavity for encompassing an exposed film to be developed being formed of two plates spaced apart a distance greater than the thickness of the film,
means to hold the non-emulsion side of the film in contact with one of said plates with the emulsion side of the film in non-contiguous relation of said other plate means to heat the two plates uniformly to the same temperature, said temperature being at or above the developing threshold temperature of the film wherein each plate comprises a material having a relatively high coefficient of thermal conductivity and having heating means associated therewith for heating said plate to a uniform temperature.
2. The apparatus of claim 1 wherein the cavity forming surfaces of said plates are generally arcuate in shape and are complementary to each other.
3. The apparatus of claim 2 having further means to move said plates from a developing position to a second more widely spaced open position.
4. The apparatus of claim 3 having further means to automatically move film into said cavity when the plates are moved to an open position and to secure the nonemulsion, side of said film into contact against one of said plates when the plates are in a closed position.
5. Developing apparatus for processing exposed dry photosensitive film having a heat developable emulsion placed upon a support material including a substantially enclosed cavity for encompassing an exposed film to be developed being formed of two plates spaced apart a distance greater than the thickness of the film,
means to hold the non-emulsion side of the film in contact with one of said plates with the emulsion side of the film in non-contiguous relation of said other plate means to heat the two plates uniformly to the same temperature, said temperature being at or above the developing threshold temperature of the film.

Claims (5)

1. Developing apparatus for processing exposed dry film having a heat developable emulsion placed upon a support material including a substantially enclosed cavity for encompassing an exposed film to be developed being formed of two plates spaced apart a distance greater than the thickness of the film, means to hold the non-emulsion side of the film in contact with one of said plates with the emulsion side of the film in noncontiguous relation of said other plate means to heat the two plates uniformly to the same temperature, said temperature being at or above the developing threshold temperature of the film wherein each plate comprises a material having a relatively high coefficient of thermal conductivity and having heating means associated therewith for heating said plate to a uniform temperature.
2. The apparatus of claim 1 wherein the cavity forming surfaces of said plates are generally arcuate in shape and are complementary to each other.
3. The apparatus of claim 2 having further means to move said plates from a developing position to a second more widely spaced open position.
4. The apparatus of claim 3 having further means to automatically move film into said cavity when the plates are moved to an open position and to secure the nonemulsion side of said film into contact against one of said plates when the plates are in a closed position.
5. Developing apparatus for processing exposed dry photosensitive film having a heat developable emulsion placed upon a support material including a substantially enclosed cavity for encompassing an exposed film to be developed being formed of two plates spaced apart a distance greater than the thickness of the film, means to hold the non-emulsion side of the film in contact with one of said plates with the emulsion side of the film in non-contiguous relation of said other plate means to heat the two plates uniformly to the same temperature, said temperature being at or above the developing threshold temperature of the film.
US377887A 1973-07-09 1973-07-09 Dry film processing apparatus Expired - Lifetime US3902041A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US377887A US3902041A (en) 1973-07-09 1973-07-09 Dry film processing apparatus
CA199,347A CA1029232A (en) 1973-07-09 1974-05-07 Dry processing of photographic film using heat
FR7416097A FR2237224B1 (en) 1973-07-09 1974-05-09
JP49067586A JPS5043928A (en) 1973-07-09 1974-06-12
NL7408314A NL7408314A (en) 1973-07-09 1974-06-20
DE2429683A DE2429683A1 (en) 1973-07-09 1974-06-20 PROCESS FOR DEVELOPING AN EXPOSED DRY FILM AND DEVICE FOR CARRYING OUT THE PROCESS
GB2988974A GB1462819A (en) 1973-07-09 1974-07-05 Dry film processing apparatus
US05/550,302 US4009034A (en) 1973-07-09 1975-02-18 Dry film processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US377887A US3902041A (en) 1973-07-09 1973-07-09 Dry film processing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/550,302 Division US4009034A (en) 1973-07-09 1975-02-18 Dry film processing

Publications (1)

Publication Number Publication Date
US3902041A true US3902041A (en) 1975-08-26

Family

ID=23490916

Family Applications (1)

Application Number Title Priority Date Filing Date
US377887A Expired - Lifetime US3902041A (en) 1973-07-09 1973-07-09 Dry film processing apparatus

Country Status (7)

Country Link
US (1) US3902041A (en)
JP (1) JPS5043928A (en)
CA (1) CA1029232A (en)
DE (1) DE2429683A1 (en)
FR (1) FR2237224B1 (en)
GB (1) GB1462819A (en)
NL (1) NL7408314A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021110A (en) * 1975-04-30 1977-05-03 Xerox Corporation Photocopying camera and processing device
US4317026A (en) * 1979-03-28 1982-02-23 Hoechst Aktiengesellschaft Developing chamber
US4653890A (en) * 1985-10-16 1987-03-31 Bell & Howell Company Film developing system for microimage recording apparatus
US4665303A (en) * 1984-11-09 1987-05-12 Fuji Photo Film Co., Ltd. Thermal developing apparatus
US4697919A (en) * 1986-11-28 1987-10-06 Bell & Howell Company Film developing system for microimage recording apparatus
US4761311A (en) * 1987-02-19 1988-08-02 The Mead Corporation Process for glossing a developer sheet and an apparatus useful therein
US4807560A (en) * 1987-02-19 1989-02-28 The Mead Corporation Apparatus for glossing a developer sheet
US20060124010A1 (en) * 2004-12-10 2006-06-15 Kodak Graphic Communications Canada Company Method and apparatus for rapidly heating printing plates

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674809A (en) * 1950-08-24 1954-04-13 Raduner & Co Ag Apparatus for thermic treatment by infrared radiation
US3078589A (en) * 1956-12-03 1963-02-26 Xerox Corp Xerographic fusing apparatus
US3349222A (en) * 1964-07-02 1967-10-24 Stromberg Carlson Corp Device for contact heating of moving sheet material
US3356831A (en) * 1964-12-23 1967-12-05 Xerox Corp Xerographic fusing apparatus
US3449547A (en) * 1966-12-27 1969-06-10 Gaf Corp Thermographic developing apparatus
US3648019A (en) * 1969-12-10 1972-03-07 Minnesota Mining & Mfg Developer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2674809A (en) * 1950-08-24 1954-04-13 Raduner & Co Ag Apparatus for thermic treatment by infrared radiation
US3078589A (en) * 1956-12-03 1963-02-26 Xerox Corp Xerographic fusing apparatus
US3349222A (en) * 1964-07-02 1967-10-24 Stromberg Carlson Corp Device for contact heating of moving sheet material
US3356831A (en) * 1964-12-23 1967-12-05 Xerox Corp Xerographic fusing apparatus
US3449547A (en) * 1966-12-27 1969-06-10 Gaf Corp Thermographic developing apparatus
US3648019A (en) * 1969-12-10 1972-03-07 Minnesota Mining & Mfg Developer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021110A (en) * 1975-04-30 1977-05-03 Xerox Corporation Photocopying camera and processing device
US4317026A (en) * 1979-03-28 1982-02-23 Hoechst Aktiengesellschaft Developing chamber
US4665303A (en) * 1984-11-09 1987-05-12 Fuji Photo Film Co., Ltd. Thermal developing apparatus
US4653890A (en) * 1985-10-16 1987-03-31 Bell & Howell Company Film developing system for microimage recording apparatus
US4697919A (en) * 1986-11-28 1987-10-06 Bell & Howell Company Film developing system for microimage recording apparatus
US4761311A (en) * 1987-02-19 1988-08-02 The Mead Corporation Process for glossing a developer sheet and an apparatus useful therein
US4807560A (en) * 1987-02-19 1989-02-28 The Mead Corporation Apparatus for glossing a developer sheet
US20060124010A1 (en) * 2004-12-10 2006-06-15 Kodak Graphic Communications Canada Company Method and apparatus for rapidly heating printing plates
US7828547B2 (en) * 2004-12-10 2010-11-09 Kodak Graphic Communications Method and apparatus for rapidly heating printing plates

Also Published As

Publication number Publication date
GB1462819A (en) 1977-01-26
JPS5043928A (en) 1975-04-21
FR2237224B1 (en) 1976-10-15
CA1029232A (en) 1978-04-11
FR2237224A1 (en) 1975-02-07
NL7408314A (en) 1974-09-25
DE2429683A1 (en) 1975-01-30

Similar Documents

Publication Publication Date Title
US3902041A (en) Dry film processing apparatus
US3813516A (en) Apparatus for temperature control for a heated rotating cylinder
US3826896A (en) Dry film developing apparatus
US5414488A (en) Image forming apparatus having temperature control for photosensitive member
US3739143A (en) Heat developer apparatus
US5665257A (en) Flat bed thermophotographic film processor
US4009034A (en) Dry film processing
US3496332A (en) Porous plate developer for thermally sensitive film
US5616262A (en) Image erasing apparatus having an assembly for moving heat applicators
US3469077A (en) Heating device
US3417226A (en) Temperature responsive apparatus
JP3112137B2 (en) High frequency electromagnetic induction heater
GB1292752A (en) Photographic processing apparatus
US4293212A (en) Thermal processor in an apparatus for developing photographic film
JPH01279278A (en) Fixing device
US4665303A (en) Thermal developing apparatus
US3851839A (en) Compliance roll
US3725639A (en) Thermal processor
US3227074A (en) Rotary copy making device with temperature responsive heating means
US4160896A (en) Heat developing device for locally heat developing a dry photosensitive film
EP1282009A2 (en) Segmented heated drum processor
US3165786A (en) Apparatus for making thin sheets from synthetic resin
JP3315823B2 (en) Thermal recording method and apparatus
BE1011530A4 (en) Photothermographic DEVELOPMENT SYSTEM.
US3707001A (en) Magnetic imaging methods and apparatus