US3900768A - Electric spark generating device for ignitors - Google Patents

Electric spark generating device for ignitors Download PDF

Info

Publication number
US3900768A
US3900768A US505377A US50537774A US3900768A US 3900768 A US3900768 A US 3900768A US 505377 A US505377 A US 505377A US 50537774 A US50537774 A US 50537774A US 3900768 A US3900768 A US 3900768A
Authority
US
United States
Prior art keywords
silicon controlled
controlled rectifier
condenser
transformer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US505377A
Inventor
Nobuyoshi Moriya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mansei Kogyo KK
Original Assignee
Mansei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mansei Kogyo KK filed Critical Mansei Kogyo KK
Application granted granted Critical
Publication of US3900768A publication Critical patent/US3900768A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T15/00Circuits specially adapted for spark gaps, e.g. ignition circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • F23Q3/004Using semiconductor elements

Definitions

  • An electric spark generating device for ignitors comprising a diode connected to an inverter means, a discharge circuit including a condenser and a silicon controlled rectifier, and a step-up transformer.
  • a programmable unijunction transistor is arranged such that the anode thereof is opened while the cathode is connected to the gate of the silicon controlled rectifier.
  • the gate of the programmable unijunction transistor is connected to the anode of the silicon controlled rectifier.
  • the present invention relates to an electric spark generating device for ignitors such as cigarette lighters. More particularly. it relates to an electric spark generating device for ignitors, wherein the circuit includes, in combination, either a diode connected with an inverter means or a DC-DC converter connected with a direct current source, a discharge circuit including a condenser and a silicon controlled rectifier, a step-up transformer, and a spark gap. In this device, through either the diode connected with the inverter means or the DC-DC converter a half-wave voltage is obtained.
  • the condenser is charged with the half-wave voltage and the electric charge of the condenser is transiently applied to the step-up transformer through the action of the silicon controlled rectifier.
  • the primary side voltage of the step-up transformer induced by the above operation is stepped up to discharge sparks at the spark gap provided at the secondary side of the step-up transformer.
  • One object of the present invention is to improve an electric spark generating device for ignitors of the above-mentioned type.
  • Another object of the present invention is to provide an electric spark generating device for ignitors which has a durable and reliable circuit arrangement.
  • Further object of the present invention is to provide an electric spark generating device for ignitors which sequentially discharges high voltage sparks.
  • an electric spark generating device for ignitors comprises, in combination, an inverter means, a diode connected in series with the inverter means, a discharge circuit connected with the inverter means including a condenser and a silicon controlled rectifier which are connected in parallel with the inverter means, and a step-up transformer having a primary side and a secondary side.
  • the primary side of the step-up transformer connected in series with the discharge circuit, and a spark gap is connected across the secondary side of the step-up transformer to discharge high voltage sparks.
  • a programmable unijunction transistor, opened at the anode, is connected at the cathode thereof to the gate of the silicon controlled rectifier, and the gate of the programmable unijunction transistor is connected to the anode of the silicon controlled rectifier.
  • Other thyristor devices may also be used in place of the programmable unijunction transistor.
  • a constant-voltage controlling device such as a zener diode. a silicon controlled rectifier or the like between the power source and the condenser, so that when the energy of the source drops below a predetermined level, the constant-voltage controlling device does not apply the voltage from the source to the condenser.
  • the constant-voltage controlling device may be connected through the DC-DC converter with the condenser.
  • FIG. I shows an ignition circuit in accordance with the present invention, wherein a programmable unijunction transistor is used for triggering a silicon controlled rectifier;
  • FIG. 2 shows a modified ignition circuit of FIG. I, wherein a constant-voltage controlling device is added;
  • FIG. 3 shows another modified ignition circuit of the invention, wherein a DC-DC converter is not used and a zener diode is added;
  • FIG. 4 shows a further modified ignition circuit of the invention, wherein a silicon controlled rectifier is substituted for the zener diode of FIG. 3.
  • the electric power source for the ignition circuit is a battery 1 which is connected with a well-known DC-DC converter 5.
  • the DC-DC converter 5 comprises a transistor 2 for switching, a transformer 3 serving concurrently as an oscillation circuit, and a diode 4 serving as a half-wave rectifier means.
  • An electric charge storage condenser 6 and a silicon controlled rectifier 7 (hereinafter referred to as SCR) are connected in parallel relation with the DC-DC converter 5.
  • SCR silicon controlled rectifier
  • the primary side of a step-up transformer 8 is connected in series with the SCR 7.
  • a spark gap which is formed with a pair of electrodes 9 and I0 is connected to the secondary side of the stepup transformer 8.
  • a programmable unijunction transistor II (hereinafter referred to as PUT), which is a silicon controlled rectifier with a negative type gate. is connected to the gate of the SCR 7.
  • the anode of the PUT II is open while the cathode thereof is connected with the gate of the SCR 7, and the gate of the PUT II is connected with the anode of the SCR 7.
  • This arrangement of the PUT II is different from its conventional connection, but according to this arrangement. It is possible to change the trigger voltage of the SCR 7 from a level of a few volts to a level considerably greater (about I00 volts). Therefore the triggering voltage of the SCR 7 may be kept at high level. Good results in discharge sparks are obtained with higher voltage at the spark gap.
  • a protective resistor 12 is provided between the anode of the SCR 7 and the gate of the PUT 11.
  • the resistor 12 has a value not more than certain kohms.
  • a constant-voltage controlling device I3 such as a zener diode is connected at the anode side thereof through a switch S in series with the negative pole of the battery I and at the cathode side thereof through the DC-DC converter 5 in series with the condenser 6.
  • the constantwoltagc controlling device 13 may be replaced by a silicon controlled rectifier in such a method as seen in FIG. 4. As long as the battery I supplies a voltage above a certain level, the voltage from the battery I is continuously applied through the constant-voltage controlling device 13 to the condenser 6. When the energy of the battery I falls below the certain level. the constant-voltage controlling device I3 will not supply the voltage from the battery I to the condenser 6 any longer.
  • a protective resistor 14 for the constant-voltage controlling device 13.
  • the switch in the circuit When the switch in the circuit is turned on, the volt age of the battery I is applied to the DC-DC converter 5 so as to be effectively stepped up.
  • the condenser 6 is charged with the half-wave voltage obtained through the DC-DC converter 5.
  • the SCR 7 fires, whereby the electric charge of the condenser 6 is rapidly discharged through the SCR 7 to the primary side of the step-up transformer 8.
  • the step-up transformer 8 steps up the voltage of the primary side thereof to induce a higher voltage at the secondary side thereof. This voltage is discharged at the spark gap formed by the pair of electrodes 9 and 10.
  • the SCR 7 is turned off. This operation is repeated until the switch S is opened.
  • the PUT I l serves as the trigger device for the SCR 7.
  • the anode of PUT ii is opened, the cathode is connected to the gate of the SCR 7, and the gate of PUT 11 is connected to the anode of the SCR 7.
  • the normal trigger voltage of the SCR 7 of about 50 volts using a conventional trigger diode may be increased in its value to about l volts by using the PUT 1] instead of the conventional trigger diode. This fact causes the higher voltage to be dis charged at the spark gap so as to ignite the fuel more effectively.
  • the SCR 7 is protected by the resistor 12 arranged between the anode of the SCR 7 and the gate of the PUT 11, so that the SCR 7 may effectively and reliably operate in the ignition circuit.
  • a condenser 22 and a SCR 23 are connected in parallel with a battery 21.
  • a step-up transformer 24 is connected in series with the SCR 23 at the primary side thereof.
  • a pair of electrodes 25 and 26 to form a spark gap therebetween are connected to the secondary side of the step-up transformer 24.
  • a trigger diode 27 is arranged in the gate circuit of the SCR 23.
  • a switch 28 and zener diode 29 are connected in series between the positive pole of the battery 21 and the condenser 22.
  • a resistor R. which is connected in series between the battery 2! and the switch 28, is a protective resistance for the zener diode 29.
  • a SCR 30 is substituted for the zener diode 29.
  • the gate of the SCR 30 is connected through a variable resistor 31 with the positive pole of the battery 21.
  • various constant-voltage controlling devices for the zener diode 29 or the SCR 30.
  • the voltage is stepped up on the secondary side of the step-up transformer 24 and is discharged across the spark gap.
  • the SCR 23 turns to a non-conducting state. The operation is cyclically repeated and spark discharges continue until the switch 28 is opened.
  • the SCR 30 of FIG. 4 When the voltage applied to the gate of the SCR 30 of FIG. 4 reaches a higher level than a predetermined voltage value, the SCR 30 turnes on functioning the same as the circuit of FIG. 3'.
  • the voltage of the battery 21 When the energy of the battery 21 drops below a certain level through age or use, the voltage of the battery 21 is not supplied to the condenser 22 by the function of the constant-voltage controlling device 29 or 30. This is advantageous because the user of the ignitor will become aware that the battery 21 must be changed.
  • An electric spark generating device for ignitors comprising:
  • a condenser means connected to said diode to store a charge voltage supplied from said power supply;
  • a silicon controlled rectifier connected to said condenser means to discharge the charge voltage on said condenser means
  • a trigger means connected to the gate of said silicon controlled rectifier to trigger said silicon controlled rectifier at a predetermined level of the charge voltage on said condenser means;
  • step-up transformer having a primary winding and a secondary winding, the primary winding of said step-up transformer being connected between the cathode electrode of said silicon controlled rectifier and said condenser means and the secondary winding of said step-up transformer being connected to ignition electrodes.
  • An electric spark generating device for ignitors comprising:
  • an inverter means including a transistor and a transformer forming a blocking oscillator. said inverter means being connected to said power supply to raise the level of the voltage supplied from said power supply",
  • a silicon controlled rectifier connected to said condenser to discharge the charge voltage on said condenser
  • trigger means connected to the gate electrode of said silicon controlled rectifier so as to trigger said silicon controlled rectifier at a predetermined level of the charge voltage of said condenser;
  • step-up transformer having a primary winding and a secondary winding, the primary winding of said step-up transformer being connected between the cathode electrode of said silicon controlled rcctifier and said condenser and the secondary winding of said step-up transformer being connected to ignition electrodes, wherein said step-up transformer is adapted to step up the voltage of the primary winding thereof to induce a higher voltage at the secondary winding thereof thereby causing a spark across the ignition electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

An electric spark generating device for ignitors comprising a diode connected to an inverter means, a discharge circuit including a condenser and a silicon controlled rectifier, and a step-up transformer. A programmable unijunction transistor is arranged such that the anode thereof is opened while the cathode is connected to the gate of the silicon controlled rectifier. The gate of the programmable unijunction transistor is connected to the anode of the silicon controlled rectifier.

Description

United States Patent 11 1 Moriya 1 ELECTRIC SPARK GENERATING DEVICE FOR IGNITORS {75] Inventor: Nobuyoshi Moriya, Omiya, Japan [73] Assignee: Mansei Kogyo Kabushiki Kaisha, Saitama, Japan [22] Filed: Sept. 12, 1974 [21] Appl. No.: 505,377
[30] Foreign Application Priority Data Sept. 19 1973 Japan H 45-1092351U] [52] US. Cl. 317/96; 315/206; 317/79; 431/266 [51] Int. Cl. F23q 3/00 [58] Field of Search 317/79, 80, 96, 97; 431/27, 264,266; 315/183, 206, 209 SC [56] References Cited UNITED STATES PATENTS 3,529,410 9 1970 Potts et a1 317/96 x 1111 3,900,768 1 1 Aug. 19, 1975 3,779,692 12/1973 Ballantyne 431/266 3.818.277 6/1974 Gersing .1 317/79 3,824,432 6/1974 Gersing 317/79 Primary Examiner-Velodymyr Y. Mayewsky Attorney, Agent, or Firm-Armstrong, Nikaido & Wegner [57] ABSTRACT An electric spark generating device for ignitors comprising a diode connected to an inverter means, a discharge circuit including a condenser and a silicon controlled rectifier, and a step-up transformer. A programmable unijunction transistor is arranged such that the anode thereof is opened while the cathode is connected to the gate of the silicon controlled rectifier. The gate of the programmable unijunction transistor is connected to the anode of the silicon controlled rectifier.
7 Claims, 4 Drawing Figures ELECTRIC SPARK GENERATING DEVICE FOR IGNITORS BACKGROUND OF THE INVENTION The present invention relates to an electric spark generating device for ignitors such as cigarette lighters. More particularly. it relates to an electric spark generating device for ignitors, wherein the circuit includes, in combination, either a diode connected with an inverter means or a DC-DC converter connected with a direct current source, a discharge circuit including a condenser and a silicon controlled rectifier, a step-up transformer, and a spark gap. In this device, through either the diode connected with the inverter means or the DC-DC converter a half-wave voltage is obtained. The condenser is charged with the half-wave voltage and the electric charge of the condenser is transiently applied to the step-up transformer through the action of the silicon controlled rectifier. The primary side voltage of the step-up transformer induced by the above operation is stepped up to discharge sparks at the spark gap provided at the secondary side of the step-up transformer.
SUMMARY OF THE INVENTION One object of the present invention is to improve an electric spark generating device for ignitors of the above-mentioned type.
Another object of the present invention is to provide an electric spark generating device for ignitors which has a durable and reliable circuit arrangement.
Further object of the present invention is to provide an electric spark generating device for ignitors which sequentially discharges high voltage sparks.
According to the present invention, an electric spark generating device for ignitors comprises, in combination, an inverter means, a diode connected in series with the inverter means, a discharge circuit connected with the inverter means including a condenser and a silicon controlled rectifier which are connected in parallel with the inverter means, and a step-up transformer having a primary side and a secondary side. The primary side of the step-up transformer connected in series with the discharge circuit, and a spark gap is connected across the secondary side of the step-up transformer to discharge high voltage sparks. A programmable unijunction transistor, opened at the anode, is connected at the cathode thereof to the gate of the silicon controlled rectifier, and the gate of the programmable unijunction transistor is connected to the anode of the silicon controlled rectifier. Other thyristor devices may also be used in place of the programmable unijunction transistor.
In this arrangement of the present invention, it is preferrable to arrange in series a constant-voltage controlling device such as a zener diode. a silicon controlled rectifier or the like between the power source and the condenser, so that when the energy of the source drops below a predetermined level, the constant-voltage controlling device does not apply the voltage from the source to the condenser. If desired. the constant-voltage controlling device may be connected through the DC-DC converter with the condenser.
BRIEF DESCRIPTION OF THE DRAWINGS Other features and advantages in accordance with the present invention will be apparent from the following description taken in connection with the accompanying drawings in which FIG. I shows an ignition circuit in accordance with the present invention, wherein a programmable unijunction transistor is used for triggering a silicon controlled rectifier;
FIG. 2 shows a modified ignition circuit of FIG. I, wherein a constant-voltage controlling device is added;
FIG. 3 shows another modified ignition circuit of the invention, wherein a DC-DC converter is not used and a zener diode is added; and
FIG. 4 shows a further modified ignition circuit of the invention, wherein a silicon controlled rectifier is substituted for the zener diode of FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIGS. I and 2, the electric power source for the ignition circuit is a battery 1 which is connected with a well-known DC-DC converter 5. The DC-DC converter 5 comprises a transistor 2 for switching, a transformer 3 serving concurrently as an oscillation circuit, and a diode 4 serving as a half-wave rectifier means. An electric charge storage condenser 6 and a silicon controlled rectifier 7 (hereinafter referred to as SCR) are connected in parallel relation with the DC-DC converter 5. The primary side of a step-up transformer 8 is connected in series with the SCR 7. A spark gap which is formed with a pair of electrodes 9 and I0 is connected to the secondary side of the stepup transformer 8. A programmable unijunction transistor II (hereinafter referred to as PUT), which is a silicon controlled rectifier with a negative type gate. is connected to the gate of the SCR 7. The anode of the PUT II is open while the cathode thereof is connected with the gate of the SCR 7, and the gate of the PUT II is connected with the anode of the SCR 7. This arrangement of the PUT II is different from its conventional connection, but according to this arrangement. it is possible to change the trigger voltage of the SCR 7 from a level of a few volts to a level considerably greater (about I00 volts). Therefore the triggering voltage of the SCR 7 may be kept at high level. Good results in discharge sparks are obtained with higher voltage at the spark gap. but the life of the SCR 7 becomes shorter. In order to keep the SCR 7 more durable, a protective resistor 12 is provided between the anode of the SCR 7 and the gate of the PUT 11. For a conventional silicon controlled rectifier where low electric power is available, the resistor 12 has a value not more than certain kohms.
As seen in FIG. 2, a constant-voltage controlling device I3 such as a zener diode is connected at the anode side thereof through a switch S in series with the negative pole of the battery I and at the cathode side thereof through the DC-DC converter 5 in series with the condenser 6. The constantwoltagc controlling device 13 may be replaced by a silicon controlled rectifier in such a method as seen in FIG. 4. As long as the battery I supplies a voltage above a certain level, the voltage from the battery I is continuously applied through the constant-voltage controlling device 13 to the condenser 6. When the energy of the battery I falls below the certain level. the constant-voltage controlling device I3 will not supply the voltage from the battery I to the condenser 6 any longer. Connected in series with the cathode of the constant-voltage controlling device 13 is a protective resistor 14 for the constant-voltage controlling device 13.
When the switch in the circuit is turned on, the volt age of the battery I is applied to the DC-DC converter 5 so as to be effectively stepped up. The condenser 6 is charged with the half-wave voltage obtained through the DC-DC converter 5. When the charged voltage of the condenser 6 reaches a predetermined value. the SCR 7 fires, whereby the electric charge of the condenser 6 is rapidly discharged through the SCR 7 to the primary side of the step-up transformer 8. Then, the step-up transformer 8 steps up the voltage of the primary side thereof to induce a higher voltage at the secondary side thereof. This voltage is discharged at the spark gap formed by the pair of electrodes 9 and 10. At the same time, the SCR 7 is turned off. This operation is repeated until the switch S is opened.
As described above, the PUT I l serves as the trigger device for the SCR 7. The anode of PUT ii is opened, the cathode is connected to the gate of the SCR 7, and the gate of PUT 11 is connected to the anode of the SCR 7. Accordingly, the normal trigger voltage of the SCR 7 of about 50 volts using a conventional trigger diode, may be increased in its value to about l volts by using the PUT 1] instead of the conventional trigger diode. This fact causes the higher voltage to be dis charged at the spark gap so as to ignite the fuel more effectively. Further, the SCR 7 is protected by the resistor 12 arranged between the anode of the SCR 7 and the gate of the PUT 11, so that the SCR 7 may effectively and reliably operate in the ignition circuit.
Referring to F108. 3 and 4, a condenser 22 and a SCR 23 are connected in parallel with a battery 21. A step-up transformer 24 is connected in series with the SCR 23 at the primary side thereof. A pair of electrodes 25 and 26 to form a spark gap therebetween are connected to the secondary side of the step-up transformer 24. A trigger diode 27 is arranged in the gate circuit of the SCR 23. A switch 28 and zener diode 29 are connected in series between the positive pole of the battery 21 and the condenser 22. A resistor R. which is connected in series between the battery 2! and the switch 28, is a protective resistance for the zener diode 29.
In the circuit of FIG. 4, a SCR 30 is substituted for the zener diode 29. The gate of the SCR 30 is connected through a variable resistor 31 with the positive pole of the battery 21. In the ignition circuit of the present invention, it is possible to substitute various constant-voltage controlling devices for the zener diode 29 or the SCR 30. When the switch 28 is closed, the zener diode 29 is turned on, a predetermined voltage charges the condenser 22. As soon as the voltage on the condenser 22 reaches a predetermined value. the trigger diode 27 connected to the gate of the SCR 23 triggers the SCR 23, whereby the current transiently flows through the primary side of the step-up transformer 24. Then, the voltage is stepped up on the secondary side of the step-up transformer 24 and is discharged across the spark gap. When the current value of the SCR 23 becomes less than its holding current value, the SCR 23 turns to a non-conducting state. The operation is cyclically repeated and spark discharges continue until the switch 28 is opened.
When the voltage applied to the gate of the SCR 30 of FIG. 4 reaches a higher level than a predetermined voltage value, the SCR 30 turnes on functioning the same as the circuit of FIG. 3'. When the energy of the battery 21 drops below a certain level through age or use, the voltage of the battery 21 is not supplied to the condenser 22 by the function of the constant-voltage controlling device 29 or 30. This is advantageous because the user of the ignitor will become aware that the battery 21 must be changed.
The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
What is claimed is:
1. An electric spark generating device for ignitors comprising:
a power supply;
a switch means connected in series with said power pp y inverter means connected to said switch means;
a diode connected in series with said inverter means;
a condenser means connected to said diode to store a charge voltage supplied from said power supply;
a silicon controlled rectifier connected to said condenser means to discharge the charge voltage on said condenser means;
a trigger means connected to the gate of said silicon controlled rectifier to trigger said silicon controlled rectifier at a predetermined level of the charge voltage on said condenser means; and
a step-up transformer having a primary winding and a secondary winding, the primary winding of said step-up transformer being connected between the cathode electrode of said silicon controlled rectifier and said condenser means and the secondary winding of said step-up transformer being connected to ignition electrodes.
2. An electric spark generating device for ignitors as set forth in claim I. wherein said trigger means is a programmable unijunction transistor.
3. An electric spark generating device for ignitors as set forth in claim 2, wherein said programmable unijunction transistor includes an open anode, and wherein the cathode thereof is connected to the gate of said silicon controlled rectifier and the gate thereof is connected to the anode of said silicon controlled rectifier. wherein a substantially higher trigger voltage of said silicon controlled rectifier is obtained.
4. An electric spark generating device for ignitors as set forth in claim 2, including a protective resistor connected between the gate of said programmable unijunction transistor and the anode of said silicon controlled rectifier.
5. An electric spark generating device for ignitors as set forth in claim 4, wherein said condenser means and said silicon controlled rectifier are connected in parallel to said power supply.
6. An electric spark generating device for ignitors as set forth in claim 5, wherein said power supply is a battery.
7. An electric spark generating device for ignitors comprising:
a power supply;
an inverter means including a transistor and a transformer forming a blocking oscillator. said inverter means being connected to said power supply to raise the level of the voltage supplied from said power supply",
a switch means connected between said power supply and said inverter means to operate said inverter means;
a diode connected in series with the output of said inverter means to rectify the output voltage of said inverter means;
a condenser connected to said diode said condenser being charged by output voltage of said inverter means;
a silicon controlled rectifier connected to said condenser to discharge the charge voltage on said condenser;
trigger means connected to the gate electrode of said silicon controlled rectifier so as to trigger said silicon controlled rectifier at a predetermined level of the charge voltage of said condenser;
a step-up transformer having a primary winding and a secondary winding, the primary winding of said step-up transformer being connected between the cathode electrode of said silicon controlled rcctifier and said condenser and the secondary winding of said step-up transformer being connected to ignition electrodes, wherein said step-up transformer is adapted to step up the voltage of the primary winding thereof to induce a higher voltage at the secondary winding thereof thereby causing a spark across the ignition electrodes.

Claims (7)

1. An electric spark generating device for ignitors comprising: a power supply; a switch means connected in series with said power supply; inverter means connected to said switch means; a diode connected in series with said inverter means; a condenser means connected to said diode to store a charge voltage supplied from said power supply; a silicon controlled rectifier connected to said condenser means to discharge the charge voltage on said condenser means; a trigger means connected to the gate of said silicon controlled rectifier to trigger said silicon controlled rectifier at a predetermined level of the charge voltage on said condenser means; and a step-up transformer having a primary winding and a secondary winding, the primary winding of said step-up transformer being connected between the cathode electrode of said silicon controlled rectifier and said condenser means and the secondary winding of said step-up transformer being connected to ignition electrodes.
2. An electric spark generating device for ignitors as set forth in claim 1, wherein said trigger means is a programmable unijunction transistor.
3. An electric spark generating device for ignitors as set forth in claim 2, wherein said programmable unijunction transistor includes an open anode, and wherein the cathode thereof is connected to the gate of said silicon controlled rectifier and the gate thereof is connected to the anode of said silicon controlled rectifier, wherein a substantially higher trigger voltage of said silicon controlled rectifier is obtained.
4. An electric spark generating device for ignitors as set forth in claim 2, including a protective resistor connected between the gate of said programmable unijunction transistor and the anode of said silicon controlled rectifier.
5. An electric spark generating device for ignitors as set forth in claim 4, wherein said condenser means and said silicon controlled rectifier are connected in parallel to said power supply.
6. An electric spark generating device for ignitors as set forth in claim 5, wherein said power supply is a battery.
7. An electric spark generating device for ignitors comprising: a power supply; an inverter means including a transistor and a transformer forming a blocking oscillator, said inverter means being connected to said power supply to raise the level of the voltage supplied from said power supply; a switch means connected between said power supply and said inverter means to operate said inverter means; a diode connected in series with the output of said inverter means to rectify the output voltage of said inverter means; a condenser connected to said diode, said condenser being charged by output voltage of said inverter means; a silicon controlled rectifier connected to said condenser to discharge the charge voltage on said condenser; trigger means connected to the gate electrode of said silicon controlled rectifier so as to trigger said silicon controlled rectifier at a predetermined level of the charge voltage of said condenser; a step-up transformer having a primary winding and a secondary winding, the primary winding of said step-up transformer being connected between the cathode electrode of said silicon controlled rectifier and said condenser and the secondary winding of said step-up transformer being connected to ignition electrodes, wherein said step-up transformer is adapted to step up the voltage of the primary winding thereof to induce a higher voltage at the secondary winding thereof thereby causing a spark across the ignition electrodes.
US505377A 1973-09-18 1974-09-12 Electric spark generating device for ignitors Expired - Lifetime US3900768A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1973109235U JPS5322137Y2 (en) 1973-09-18 1973-09-18

Publications (1)

Publication Number Publication Date
US3900768A true US3900768A (en) 1975-08-19

Family

ID=14505027

Family Applications (1)

Application Number Title Priority Date Filing Date
US505377A Expired - Lifetime US3900768A (en) 1973-09-18 1974-09-12 Electric spark generating device for ignitors

Country Status (6)

Country Link
US (1) US3900768A (en)
JP (2) JPS5322137Y2 (en)
DE (1) DE2444643A1 (en)
FR (1) FR2244279B1 (en)
GB (1) GB1483254A (en)
IT (1) IT1029584B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2309802A1 (en) * 1974-12-20 1976-11-26 Mansei Kogyo Kk ELECTRIC IGNITION GAS LIGHTER
US4382235A (en) * 1981-01-12 1983-05-03 International Control Systems, Inc. Simulated noise generator
CN101959354A (en) * 2009-07-14 2011-01-26 奥斯兰姆有限公司 Be used to light the circuit arrangement and the method for discharge lamp

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137535A (en) * 1974-09-26 1976-03-29 Matsushita Electric Ind Co Ltd
JPS5227221A (en) * 1975-08-26 1977-03-01 Fuji Electric Co Ltd Data carrier for optical reader
JPS5242333A (en) * 1975-09-30 1977-04-01 Matsushita Electric Ind Co Ltd Bar code reader
JPS5259529A (en) * 1975-11-12 1977-05-17 Hitachi Ltd Mark reading system and device
JPS52105569U (en) * 1976-02-06 1977-08-11
JPS52144169U (en) * 1976-04-23 1977-11-01
FR2412969A1 (en) * 1977-12-21 1979-07-20 Interlight INDUCTIVE DISCHARGE IGNITION DEVICE
JPS5487021A (en) * 1977-12-22 1979-07-11 Fujitsu Ltd Automatic reading system
JPS53130933A (en) * 1978-04-27 1978-11-15 Nippon Denso Co Ltd Code reader
US4387297B1 (en) * 1980-02-29 1995-09-12 Symbol Technologies Inc Portable laser scanning system and scanning methods
JPS58101368A (en) * 1981-12-12 1983-06-16 Olympus Optical Co Ltd Bar code reader
JPS60100273A (en) * 1983-11-04 1985-06-04 Toa Medical Electronics Co Ltd Optical reader for identification code
CN112577065B (en) * 2020-12-29 2023-08-22 深圳市鑫洋新能源科技有限公司 Carbon fiber wire for lighter arc ignition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529410A (en) * 1969-01-08 1970-09-22 Int Harvester Co Cotton harvester
US3779692A (en) * 1971-07-13 1973-12-18 Dunhill Lighters Ltd Lighter with a capacitor discharge ignition system
US3818277A (en) * 1973-04-10 1974-06-18 Braun Ag Start device for battery igniter
US3824432A (en) * 1972-09-06 1974-07-16 Braun Ag Battery igniter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529410A (en) * 1969-01-08 1970-09-22 Int Harvester Co Cotton harvester
US3779692A (en) * 1971-07-13 1973-12-18 Dunhill Lighters Ltd Lighter with a capacitor discharge ignition system
US3824432A (en) * 1972-09-06 1974-07-16 Braun Ag Battery igniter
US3818277A (en) * 1973-04-10 1974-06-18 Braun Ag Start device for battery igniter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2309802A1 (en) * 1974-12-20 1976-11-26 Mansei Kogyo Kk ELECTRIC IGNITION GAS LIGHTER
US4382235A (en) * 1981-01-12 1983-05-03 International Control Systems, Inc. Simulated noise generator
CN101959354A (en) * 2009-07-14 2011-01-26 奥斯兰姆有限公司 Be used to light the circuit arrangement and the method for discharge lamp
US20110037398A1 (en) * 2009-07-14 2011-02-17 Osram Gesellschaft Mit Beschrankter Haftung Circuit Arrangement and Method for Starting a Discharge Lamp
CN101959354B (en) * 2009-07-14 2015-09-09 奥斯兰姆有限公司 For lighting circuit arrangement and the method for discharge lamp

Also Published As

Publication number Publication date
FR2244279B1 (en) 1979-02-02
DE2444643A1 (en) 1975-04-03
JPS5322137Y2 (en) 1978-06-09
IT1029584B (en) 1979-03-20
FR2244279A1 (en) 1975-04-11
JPS5054365U (en) 1975-05-23
GB1483254A (en) 1977-08-17
JPS5061934A (en) 1975-05-27

Similar Documents

Publication Publication Date Title
US3900768A (en) Electric spark generating device for ignitors
US3889160A (en) Spark-producing arrangement for a lighter with a battery
US3824432A (en) Battery igniter
US3877864A (en) Spark igniter system for gas appliance pilot ignition
GB2132267A (en) Multiple spark cd ignition system
US3504658A (en) Capacitive-discharge ignition system
US3189790A (en) Starting and operating circuit for gas discharge lamps
JPS59103056U (en) Fuel igniter with continuous spark igniter
US3721885A (en) Blasting machine with overvoltage and undervoltage protection for the energy storage capacitor
US4186421A (en) Anti-static device
CA1153421A (en) Relaxation oscillator type spark generator
US3806305A (en) Solid state spark ignition circuit with automatic shut-off
US3870028A (en) Ignition system for internal combustion engines
GB2050084A (en) Power supply apparatus
GB2193758A (en) Spark generator for gas fired appliances
GB1517068A (en) Gas ignition device
US4103258A (en) Pulse generator including a capacitor which is discharged through a thyristor
US4132923A (en) Circuit for light-integrator-controlled electronic flash unit
US4005694A (en) Electronic ignition system
US4112334A (en) Ignition system for extending the lifetime of gas filled electric lamps
US3624487A (en) Dual energy electrical pulse generating system
JPH09322563A (en) High voltage generator
SU464133A3 (en) A device for igniting a flammable substance to the lighters
US4115832A (en) Igniter utilizing a negative resistance light emitting diode
JPS6039641Y2 (en) timed ignition device