US3895328A - Thermo-magnetically operated switches - Google Patents
Thermo-magnetically operated switches Download PDFInfo
- Publication number
- US3895328A US3895328A US420086A US42008673A US3895328A US 3895328 A US3895328 A US 3895328A US 420086 A US420086 A US 420086A US 42008673 A US42008673 A US 42008673A US 3895328 A US3895328 A US 3895328A
- Authority
- US
- United States
- Prior art keywords
- ferromagnetic
- cylindrical
- switch
- reeds
- magnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000014676 Phragmites communis Nutrition 0.000 claims abstract description 207
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 180
- 244000273256 Phragmites communis Species 0.000 claims description 98
- 230000005291 magnetic effect Effects 0.000 claims description 44
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 12
- 239000000696 magnetic material Substances 0.000 claims description 10
- 230000004323 axial length Effects 0.000 claims description 9
- 230000002441 reversible effect Effects 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 230000004907 flux Effects 0.000 description 22
- 239000011521 glass Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/02—Details
- H01H37/32—Thermally-sensitive members
- H01H37/58—Thermally-sensitive members actuated due to thermally controlled change of magnetic permeability
- H01H37/585—Thermally-sensitive members actuated due to thermally controlled change of magnetic permeability the switch being of the reed switch type
Definitions
- thermo-magnetically operated switch comprises a 30 Foreign Application priority Data reed switch, two ferromagnetic members having pre- Nov 30 1972 Ja an 47 l37063 determined and different Curie points and plural perp manent magnets.
- the switch has two operating or [52] U S Cl 335/208 335/207 switching points on a temperature axis and provides [51] 1 36/00 control over a range of temperatures.
- thermo-magnetically operated switches which utilize the saturation flux density versus the temperature characteristic of a magnetic substance to control the switching temperature.
- thermo-magnetically operated switch using magnetic materials which is constructed by positioning a permanent magnet and a magnetic substance proximate a reed switch whereby the contacts of the reed switch are opened and closed in response to changes in the temperature. is known in the prior art. as exemplitied for example. by in French Pat. No. 1.549.349. US. Pat. No. 3.295.081 and other.
- thermo-magnetically operated switches as above mentioned are conveniently used to control the operation of devices operating in response to a predetermined temperature. because they are mechanically and thermally strong and solid. operatively stable in long use and. therefore. have a long life-time.
- thermo-magnetically operated switches are of the one point operation type or of the type with which a switching operation is available at one point on a temperature axis. This restricts fields the of use of thermomagnetically the known operated switches.
- thermomagnetically operated switches are not useful.
- the use of two known thermo-magnetically operated switches having different operation temperatures meets such requirement but it necessarily requires greater area for the location of two switches.
- An object of this invention is to provide a thermomagnetically operated switch which has two different operating points on a temperature axis so that it may be maintained closed (or open) below the lower operating point and above the higher operating point; and be maintained open (or closed] between the two different operating points.
- Another object of this invention is to realize the above object with simple construction. low cost and with a small-size switch.
- thermomagnetically operated switch comprises: an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereof overlapped for opening and closing movements relative to one another; two elongated permanent magnets having Curie points higher than an operating temperature range of the switch and being disposed alongside said reed switch at different angular positions on the circumference of said reed switch and in reverse polarity with respect to each other. the respective magnetic poles of each permanent magnet being disposed over the respective reeds; and two elongated ferromagnetic bodies having different predetermined Curie points within the operating temperature range of the switch and overlying respective permanent magnets.
- thermo-magnetically operated switch comprises: an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereofoverlapped for opening and closing movements relative to one another; two permanent magnets having Curie points higher than an operating temperature range of the switch and being disposed alongside said reed switch at different axial positions of said reed switch in same polar direction with respective magnets disposed over the respective reeds but short of the overlapped ends of the reeds; a first ferromagnetic body having a predetermined Curie point within the operating temperature range of the switch and disposed over the overlapped ends of the reeds in the axial space between said two magnets in such manner that opposite ends of said first ferromagnetic body may engage with adjacent different pole faces of the two magnets.
- second ferromagnetic body means having a predetermined Curie point lower than that of said first ferromagnetic body within the operating temperature range of the switch and overlapped and disposed on the two magnets in such manner that said second ferromagnetic body means is magnetically coupled between the other poles of the magnets opposite the poles thereof engaging said first ferromagnetic body.
- thermomagnetically operated switch comprises: an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereof overlapped for opening and closing movements relative to one another; two elongated permanent magnets having Curie points higher than an operating temperature range of the switch and being disposed alongside said reed switch at different axial positions of said reed switch in reverse polar direction relative to each other and with respective magnets disposed over the respective reeds short of the overlapped ends of the reeds; a first ferromagnetic body having a predetermined Curie point within the operating temperature range of the switch and disposed in the axial space between said two magnets with one end thereof engaging with the adjacent pole face of one magnet.
- the other end thereof being short of the overlapped ends of the reeds; and a second ferromagnetic body having a predetermined Curie point lower than that of said first ferromagnetic body within the operating temperature range of the switch and disposed in the axial space between said first ferromagnetic body and the other magnet with one end thereof engaging with the adjacent pole face of said other magnet. the other end thereof exceeding the overlapped ends of the reeds and engaging with said the other end of said first ferromagnetic body.
- thermo-magnetically operated switch comprises: an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereof overlapped for opening and closing movements relative to one another; two elongated permanent magnets having Curie points higher than an operating temperature range of the switch and being disposed alongside said reed switch at different axial positions of said reed switch in the same polar direction relative to each other and with respective magnets disposed over the respective reeds short of the overlapped ends of the reeds; a first ferromagnetic body having a predetermined Curie point within the operating temperature range of the switch and disposed in the axial distance between said two magnets with one end thereof engaging with the adjacent pole face of one magnet.
- the other end thereof being just adjacent of the overlapped ends of the reeds: and a second ferromagnetic body having a predetermined Curie point lower than that of said first ferromagnetic body within the operating temperature range of the switch and disposed in the axial distance between said first ferromagnetic body and the other magnet with one end thereof engaging with the adjacent pole face of said other magnet. the other end thereof being just adjacent of the overlapped ends of the reeds and engaging with said other end of said first ferromagnetic body.
- FIG. I shows the saturated flux density vs. temperature characteristic of two ferromagnetic substances.
- FIGS. 2A and 2B show front and side views of an embodiment of this invention. respectively. but partially cross-sectioned.
- FIGS. 3A-3C show views for schematically explaining the operation of the switch in FIGS. 2A and 2B.
- FIGS. IA-4C show front views at different temperatures of another embodiment.
- FIGS. S 6, 7A. 7B. 8A and 8B show various modifications of the switch in FIGS. 4A-4C.
- FIG. 9 shows a perspective view of another embodiment.
- FIG. 10 shows a perspective view of a modification of the switch in FIG. 9.
- FIGS. IIA-IIC show views for schematically explaining the operating principle of switches in FIGS. 9 and 10.
- FIGS. lZA-IZB show front views at different temperatures of another embodiment of this invention.
- FIGS. l3l5 show various modifications of the switch in FIG. I0.
- This invention intends uses two ferromagnetic substances having different Curie points as shown in FIG. I together with plural permanent magnets and a reed switch. all arranged so that the reed switch may be op erated at two points on a temperature axis.
- FIG. I in which the saturated flux density vs. temperature characteristics of two ferromagnetic substances which are used in this invention for sensing temperature is illustrated.
- the curve .A" shows the characteristic of one of the two temperature sensitive ferromagnetic substances and the curve B shows that of the other substance.
- the substance A has a lower Curie point T,- than that (T 2) of the other substance B.
- FIGS. 2A and 2B show an embodiment of this invention. which comprises a reed switch I, two elongated permanent magnets 2 and 3, and two ferromagnetic bodies 4 and 5 having different Curie points. as indicated in FIG. 1.
- the rced switch as well known. comprises an elongated envelope II. whichis preferably made of glass. a pair of reeds l2 and I3 hermetically sealed therein. which are made of ferromagnetic and electroconductive materials. with ends thereof being over lapped for opening and closing movements relative to one another. and lead wires 14 and I5 connected with respective reeds. sealed to opposite ends of the glass envelope II and outwardly extending therefrom.
- the permanent magnets 2 and 3 have higher Curie points exceeding the operating temperature range of the switch and are mounted on and secured by adhesive I6 to the outside of the glass envelope 1 I.
- the permanent magnets 2 and 3 are so disposed that magnetic poles of one magnet are reversely disposed relative to those of the other magnet and that both of these magnets 2 and 3 are in parallel to one another and stradle the overlapped ends of the reeds I2 and I3.
- the ferromagnetic bodies 4 and 5 overlie and are secured on respective permanent magnets 2 and 3.
- non-conductive and non-magnetic jackets 6 and 7 are. preferably. provided so that they may enclose end portions of the glass envelope II and small lengths of lead wires 14 and 15 extending from their sealed portions. Thus. small lengths of the lead wires extending immediately from the glass envelope cannot be bent so that breakage of the glass envelope may be prevented.
- a heat-conductive cylindrical part 8 is. advantageously. provided to enclose the permanent magnets (2. 3). the ferromagnetic bodies (4, 5) and the reed switch 1.
- FIGS. 2A and 28 The operation of the switch illustrated in FIGS. 2A and 28 will be explained in conjunction with FIGS. 3A-3C in which only the permanent magnets 2 and 3. the temperature sensitive ferromagnetic bodies 4 and 5 and the pair of reeds l2 and 13 are shown for simplicity of the drawings.
- FIGS. 4A. 4B and 4C show another embodiment of this invention. which comprises a reed switch 1, two permanent magnets 2 and 3 and two temperature sensi tive ferromagnetic bodies 4 and 5.
- the permanent magnets 2 and 3 are mounted on and secured to the glass envelope ll of the reed switch in such fashion that they are disposed in similar polar directions alongside the reed switch I at different axial positions and in parallel with the respective reeds l2 and I3, but short of the overlapped ends of the reeds.
- the temperature sensitive ferromagnetic body 4 having a predetermined Curie point overlies both of the two permanent magnets 2 and 3 over the axial lengths of both magnets.
- the other temperature sensitive ferromagnetic body 5 has a predetermined Curie point higher than the body 4 and is disposed in the space between the two permanent magnets 2 and 3 and beneath the ferromagnetic body 4, with axialopposite ends thereof engaging with adjacent pole faces of the magnets.
- Additional combinations of the two permanent magnets and the two temperature'sensitive bodies may be provided at different angular positions in circumference of the reed switch as shown in FIG. '5, in which additional members are referred by primed numbers.
- the temperature sensitive ferromagnetic body 5 (and/or 5') are of same thickness as the permanent magnets 2 and 3 (or 2' and 3') at the thickest. But this is not important.
- the other temperature sensitive means 4 may be formed of two parts of ferromagnetic materials 4A and 4B (4'A-4B) having the same Curie point. as illustrated in FIG. 6.
- the switch shown in FIG. 6 operates, as clearly and readily understood. similarly as the switch described in connection with FIGS. 4A -4C.
- Broken lines shown in FIG. 6 show how magnetic flux passes under a condition when the environmental temperature is lower than the Curie point of either temperature sensitive means (4A. 4B. 4A. 4'8. 5 and 5').
- a similarly functioning switch may be constructed by employing a reed switch I, two cylindrical permanent magnets 2 and 3, and two temperature sensitive cylindrical bodies 4 and S, as shown in FIGS. 7A and 7B.
- FIGS. 8A and 8B show a modification of the switch in FIG. 6, in which two cylindrical permanent magnets land 3, a temperature sensitive ferromagnetic cylindrical body 5, and two temperature sensitive ferromagnetic cylindrical pieces 4A and 4B are employed as shown in the drawings.
- an axial groove 9 may be provided on the outer surface of the temperature sensitive cylindrical body 4 (FIGS. 7A and 7B) or surfaces of the temperature sensitive cylindrical pieces 4A and 4B and cylindrical body 5 (FIGS. 8A and 83) to introduce one of lead wires. for example. 15 at same side as the other lead wire 14.
- the lead wire 15 is bent adjacent the sealed portion of the glass envelope I1 and, therefrom, is introduced along the cylindrical body 4 (FIG. 7A) or the cylindrical pieces 4A-4B and body 5 (FIG. 8A) in the groove 9. Accordingly. the resulting switches may be conveniently used in such applications where electric leads must be introduced from one direction.
- FIGS. 4A-8B Similar jackets and cylindrical members as members 6, 7 and 8 illustrated in FIGS. 2A and 2B may be provided for the switches shown in FIGS. 4A-8B. Such members are not shown in FIGS. 4A-8B for simplicity of the drawings.
- FIGS. 9 and 10 in which are shown other embodiments of this invention, each of which comprises a well known reed switch 1, two permanent magnets 2 and 3 having Curie points higher than the operating temperature range of the switch, a temperature sensitive ferromagnetic member 4 having a predetermined Curie point and another temperature sensitive ferromagnetic member 5 having a predetermined Curie point higher than that of the temperature sensitive member 4.
- FIGS. 9 and 10 are similar in principle but have differently shaped permanent magnets 2 and 3 and temperature sensitive members 4 and S, which block shaped in FIG. 9, cylindrically shaped sensitive bodies 5 and 5' are thicker than the perma in FIG. 10.
- FIGS. llA-l IC The positional relation between the permanent magnets 2 and 3 and the temperature sensitive members 4 and 5, as well as the reeds of the reed switch I. are shown in FIGS. llA-l IC. in which the operation ofthe switches in FIGS. 9 and 10 is schematically illustrated.
- the two permanent magnets 2 and 3 are disposed at different axial positions in parallel with respective reeds l2 and 13 of the reed switch. but are short of the overlapped ends of the reeds.
- the magnets 2 and 3 are disposed reversely in their polar directions. or in such manner that similar poles may face one another.
- the temperature sensitive members 4 and S are disposed in the axial space between the two magnets 2 and 3 and in series with one another.
- One end of the member 4 engages with adjacent pole of the magnet 2 with the other end being short of the overlapped ends of the reeds I2 and I3.
- one end of the member 5 having a higher Curie point engages with the adjacent pole of the magnet 3 and the other end thereof overlies the overlapped ends of the reeds 12 and 13 to engage with the other end of the member 4.
- the members 4 and 5 presents a ferromagnetic characteristic. But magnetic fluxes from the magnets 2 and 3 do not flow through the members 4 and 5 because similar poles (S poles in the drawing) face each other with the members 4 and 5 therebetween. Magnetic flux from the magnet 2 flows through the reed l2 and magnetic flux from the other magnet 3 flows through the other reed 13. as shown by broken lines in FIG. 11A. Thus. the overlapped ends of reeds l2 and I3 are maintained opened.
- the member 4 When the temperature is elevated to a temperature higher than the Curie point of the member 4 and lower than the Curie point of the other member 5, the member 4 presents a non-magnetic characteristic. Accordingly. magnetic flux from the magnet 3 flows through reeds l2 and I3 and the ferromagnetic member 5, while magnetic flux from the other magnet 2 flows through the reed 12, as shown by broken lines in FIG. IIB. As a result. magnetic strength between overlapped ends of reeds l2 and I3 overcomes the elasticity of each reed so that the overlapped ends of reeds are closed.
- both of the members 4 and 5 present a non-magnetic characteristic. so that magnetic flux of each of the magnets flows through only one reed. as shown by broken lines in FIG. 11C.
- Switches shown in FIGS. 9 and 10 have two operating points on a temperature axis, as is clearly understood from the above descriptions.
- FIGS. l2A-12C show another embodiment of this invention. which comprises a well known reed switch 1, two permanent magnets 2 and 3 and two temperature sensitive ferromagnetic members 4 and 5.
- the two magnets 2 and 3 have Curie points higher than the operating temperature range of the switch and are disposed alongside the reed switch I at different axial positions in such manner that they are similarly oriented in their polar directions (different poles face one another) and that they are in parallel with respective reeds 12 and 13 but short of the overlapped ends thereof.
- the two temperature sensitive ferromagnetic members 4 and 5 have different Curie points within the operating temperature range of the switch and are disposed, in series with one another and with the magnets 2 and 3. in the axial space between the magnets 2 and 3. Both of these members 4 and 5 engage with one another at a position adjacent to the overlapped ends of the reeds I2 and 13. with the opposite end of each member engaging with an adjacent pole of respective magnets.
- both members At a temperature higher than the Curie point of either of members 4 and 5, both members present a nonmagnetic characteristic. so that magnetic flux from the magnets 2 and 3 flows through the gap between overlapped ends of reeds 12 and 13 as shown by broken lines in FIG. 12C. As a result the. overlapped ends of reeds are closed.
- the switch shown in FIGS. l2A-I2C operates reversely by variation of temperature in relation to predescribed switches, and. therefore. may be utilized in a different temperature control system.
- two magnets 2 and 3 and two temperature sensitive members 4 and 5 may be formed cylindrically.
- the reed switch I is contained in a bore of the cylindrical body, similarly as the switch shown in FIG. 10.
- FIG. 13 shows a device in which a switch It] is contained in an enclosure 20.
- the switch 10 may be a switch such as shown in FIG. 10 which operates according to the operating principle described in conjunction with FIGS. llA-llC, or may be another switch which is of a type shown in FIG. 10 but operates according to the principle described in connection with FIGS. l2A-l2C.
- the enclosure comprises opposite end portions 21, 22 made of non-magnetic and non-electricallyconductive material. similar to the jackets 6 and 7 in FIG. 2A. and a cylindrical portion 23 made of nonmagnetic and heat-conductive material which corresponds to the part 8 in FIG. 2A.
- the opposite end portions 21 and 22. also. serve to prevent the breakage of the sealed portion of the glass envelope ll of the reed switch 1.
- the switch shown in FIG. 10 may be modified as shown in FIG. 14, in which two temperature sensitive members 4 and 5 are formed in imperfect rings and the imperfectness is filled up by non-magnetic material 41. As a result, the temperature sensitive members 4 and 5 are reduced in their heat capacities so that the switch operates more sensitively.
- FIG. 15 shows a switch shown in FIG. II) which is further provided with a groove 9 on outer surfaces of the 6; cylindrical bodies 2, 3. 4 and 5.
- One lead wire I5 is bent and introduced in the groove 9 and is led to the side where the other lead wire 14 extends.
- the switch may be conveniently used in applications where LII lead wires must be taken out in one direction in practical use of the switch.
- the temperature sensitive ferromagnetic body or member may be made of ferrite or other ferromagnetic material having a desired Curie point.
- the permanent magnet may be selected from various known types of magnets.
- thermo-magnetically operated switch comprising:
- an elongated reed switch including: an envelope.
- lead wires which are connected with respective reeds.
- the lead wires being secured and sealed to opposite ends of the envelope and extending therefrom in opposite directions,
- the two permanent magnets and the two ferromagnetic bodies opposite end portions of the enclosure means being made of non-conductive and non-magnetic material and securing and supporting the respective lead wires. and the intermediate portion of the enclosure means between the opposite end portions thereof being made of heatconductive material.
- thermo-magnetically operated switch as claimed in claim 1 wherein said elongated ferromagnetic bodies are magnetic below their respective Curie points. and are non-magnetic above their respective Curie points.
- thermo-magnetically operated switch comprising:
- an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereof overlapped for opening and closing movements relative to one another.
- two permanent magnets having Curie points higher than an operating temperature range ofthe switch and being disposed alongside said reed switch at different axial positions of said reed switch in simil lar polar directions. with respective magnets disposed over the respective reeds but short of the overlapped ends of the reeds.
- a first ferromagnetic body having a predetermined Curie point within the operating temperature range of the switch and disposed over the overlapped ends of the reeds in the axial space between said two magnets such that opposite ends of said first ferromagnetic body engage with adjacent different pole faces of the two magnets.
- second ferromagnetic body means having a predetermined Curie point lower than that of said first ferromagnetic body within the operating temperature range and overlapped and disposed on the two magnets such that said second ferromagnetic body means may be magnetically coupled between the other poles of the magnets opposite the poles thereof engaging said first ferromagnetic body.
- thermo-magnetically operated switch as claimed in claim 3 in which the reed switch includes:
- lead wires which are connected with respective reeds. the lead wires being secured and sealed to opposite ends of the envelope and extending therefrom in opposite directions,
- the two permanent magnets and the two ferromagnetic bodies opposite end portions of the enclosure means being made of non-conductive and non-magnetic material and securing and supporting the respective lead wires, and the intermediate portion of the enclosure means between the opposite end portions thereof being made of heat conductive material.
- thermo-magnetically operated switch as claimed in claim 3, in which the outer surface of said first ferromagnetic body in the radial direction of the reed switch is flush with the outer surfaces of said two magnets at the highest.
- said second ferromagnetic body means comprising a ferromagnetic piece which overlies the outer surfaces of both magnets while straddling the first ferromagnetic body.
- thermo-magnetically operated switch as claimed in claim 3, in which the outer surface of said first ferromagnetic body in the radial direction of the reed switch is beyond the outer surfaces of said two magnets, said second ferromagnetic means comprising first and second ferromagnetic pieces which overlie the respective surfaces of both magnets with an axial end of each of said first and second ferromagnetic pieces engaging with an adjacent axial end of said first ferromagnetic body.
- thermo-magnetically operated switch as claimed in claim 5, in which the permanent magnets and the first ferromagnetic body comprise respective cylindrical bodies and are coaxially disposed about the circumference of the reed switch, the ferromagnetic piece of said second ferromagnetic body means comprising a cylindrical body disposed concentric with and outside the cylindrical magnets and first ferromagnetic body.
- thermo-magnetically operated switch as claimed in claim 6, in which the permanent magnets and the first ferromagnetic body comprise respective cylindrical bodies and are coaxially disposed about the circumference of the reed switch.
- the first and second ferromagnetic pieces of said second ferromagnetic 1 1 body means comprising cylindrical bodies disposed concentric with and outside the cylindrical magnets.
- thermo-magnetically operated switch as claimed in claim 7, in which:
- the reed switch includes two lead wires connected with respective reeds.
- said cylindrical ferromagnetic piece of said second ferromagnetic body means has a groove on the outer surface thereof. which groove axially extends across the axial length of said cylindrical ferromag netic piece, one of two lead wires of the reed switch being bent and introduced along said cylindrical ferromagnetic piece in said groove to the side where the other lead wire is led out.
- thermo-magnetically operated switch as claimed in claim 8. in which:
- the reed switch includes two lead wires connected with respective reeds and a groove is provided on the outer surfaces of the first cylindrical ferromagnetic body and the two cylindrical ferromagnetic pieces, the groove axially extending over the axial lengths of the first cylindrical ferromagnetic body and the two cylindrical ferromagnetic pieces.
- one of two lead wires of the reed switch being bent and introduced along the first cylindrical ferromagnetic body and the two cylindrical ferromagnetic pieces in said groove to the side where the other lead wire is led out.
- thermo-magnetically operated switch comprising:
- an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereof overlapped for opening and closing movements relative to one another.
- two elongated permanent magnets having Curie points higher than an operating temperature range of the switch and being disposed alongside said reed switch at different axial positions of said reed switch in reverse polar directions. with respective magnets disposed over the respective reeds but short of the overlapped ends of the reeds,
- a first ferromagnetic body having a predetermined Curie point within the operating temperature range of the switch and disposed in the axial space between said two magnets with one end thereof engaging with the adjacent pole face of one magnet. and the other end thereof being short of the overlapped ends of the reeds,
- a second ferromagnetic body having a predetermined Curie point lower than that of said first ferromagnetic body within the operating temperature range and disposed in the axial space between said first ferromagnetic body and the other magnet with one end thereof engaging with the adjacent pole face of said other magnet, and the other end thereof overlying the overlapped ends of the reed and engaging with the other end of said first ferromagnetic body.
- thermo-magnetically operated switch as claimed in claim 11, in which the reed switch includes: two lead wires which are connected with respective reeds, the lead wires being secured and sealed to opposite ends of the envelope and extending therefrom in opposite directions and an enclosure means containing the reed switch.
- thermo-magnetically operated switch as claimed in claim 11. in which the two permanent magnets, the first ferromagnetic body and the second ferromagnetic body are cylindrical and are disposed on a common axis.
- thermo-magnetically operated switch as claimed in claim 13, in which:
- the reed switch includes two lead wires connected with respective reeds,
- a groove is provided on the outer surfaces of the two cylindrical permanent magnets and the first and second cylindrical ferromagnetic bodies, the groove axially extending over the axial lengths of the two cylindrical magnets and the first and second cylindrical ferromagnetic bodies, one of two lead wires of the reed switch being bent and introduced along the cylindrical bodies in said groove to the side where the other lead wire is led out.
- thermo-magnetically operated switch as claimed in claim 11, in which the two permanent magnets are cylindrical. and including a non-magnetic member mounted between said cylindrical magnets to form a cylindrical body in cooperation with the first and second ferromagnetic bodies.
- thermo-magnetically operated switch comprising:
- an elongated reed switch comprising an envelope and a pair of ferromagnetic reeds hermetically sealed in said envelope with free ends thereof overlapped for opening and closing movements relative to one another.
- two elongated permanent magnets having Curie points higher than an operating temperature range of the switch and being disposed alongside said reed switch at different axial positions of said reed switch in similar polar directions, with respective magnets disposed over the respective reeds but short of the overlapped ends of the reeds,
- a first ferromagnetic body having a predetermined Curie point within the operating temperature range of the switch and disposed in the axial space between said two magnets with one end thereof engaging with the adjacent pole face of one magnet, and the other end thereof being just adjacent the overlapped ends of the reeds,
- a second ferromagnetic body having a predetermined Curie point lower than that of said first ferromagnetic body within the operating temperature range and disposed in the axial space between said first ferromagnetic body and the other magnet with one end thereof engaging with the adjacent pole face of said other magnet, and the other end thereof being adjacent the overlapped ends of the reeds and engaging with the other end of said first ferromagnetic body.
- thermo-magnetically operated switch as claimed in claim 16, in which the reed switch includes: two lead wires which are connected with respective reeds. the lead wires being secured and sealed to opposite ends of the envelope and extending there from in opposite directions.
- the two permanent magnets and the two ferromagnetic bodies opposite end portions of the enclosure means being made of non-conductive and non-magnetic material and securing and supporting the respective lead wires. and the intermediate portion of enclosure means between the opposite end portions thereof being made of heatconductive material.
- thermo-magnetically operated switch as claimed in claim 16, in which the two permanent magnets.
- the first ferromagnetic body and the second ferromagnetic body are cylindrical and are disposed on a common axis.
- thermo-magnetically operated switch as claimed in claim 18, in which:
- the reed switch includes two lead wires connected with respective reeds. and a groove is provided on the outer surfaces of the two cylindrical magnets and the first and second cylindrical ferromagnetic bodies, the groove axially extending over the axial lengths of the two cylindrical magnets and the first and second cylindrical ferromagnetic bodies.
- one of the two lead wires of the reed switch being bent and introduced along the cylindrical bodies in said groove to the side where the other lead wire is led out of the reed switch.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Switches That Are Operated By Magnetic Or Electric Fields (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13706372U JPS5330674Y2 (enExample) | 1972-11-30 | 1972-11-30 | |
| JP13706372 | 1972-11-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3895328A true US3895328A (en) | 1975-07-15 |
Family
ID=26470489
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US420086A Expired - Lifetime US3895328A (en) | 1972-11-30 | 1973-11-29 | Thermo-magnetically operated switches |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3895328A (enExample) |
| DE (1) | DE2359581A1 (enExample) |
| FR (1) | FR2209198B1 (enExample) |
| GB (1) | GB1452304A (enExample) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4023128A (en) * | 1975-10-23 | 1977-05-10 | TDK Electric Co., Ltd. | Temperature responsive reed switch |
| US4092586A (en) * | 1975-10-20 | 1978-05-30 | General Electric Company | Temperature-sensing circuit |
| US4121184A (en) * | 1975-10-20 | 1978-10-17 | General Electric Company | Electromagnetically controlled, temperature-sensitive (ECTS) reed switch with substantially hystersis free operation |
| DE3018284A1 (de) * | 1979-05-14 | 1981-01-15 | Tohoku Metal Ind Ltd | Thermomagnetisch betaetigter schalter |
| US4389628A (en) * | 1980-06-02 | 1983-06-21 | Tohoku Metal Industries, Ltd. | Thermo-magnetically operated switches having two different operating temperatures |
| US4449094A (en) * | 1981-06-10 | 1984-05-15 | Westinghouse Electric Corp. | Temperature compensated magnetic damping assembly for induction meters |
| US4509029A (en) * | 1984-03-09 | 1985-04-02 | Midwest Components, Inc. | Thermally actuated switch |
| US4703296A (en) * | 1985-02-07 | 1987-10-27 | Tdk Corporation | Thermal reed switch assembly |
| US4837537A (en) * | 1987-02-06 | 1989-06-06 | Nippon Aleph Corporation | Reed switch device |
| US5168545A (en) * | 1991-02-13 | 1992-12-01 | Robertshaw Controls Company | Temperature operated control system, control device therefor, and methods of making the same |
| US20060210393A1 (en) * | 2005-03-18 | 2006-09-21 | Dooley Kevin A | Eddy current heating for reducing transient thermal stresses in a rotor of a gas turbine engine |
| US20060219706A1 (en) * | 2005-03-18 | 2006-10-05 | Dooley Kevin A | Curie temperature thermostat for a eddy current heating device and method |
| US20090230335A1 (en) * | 2008-03-14 | 2009-09-17 | Schlumberger Technology Corporation | Temperature triggered actuator |
| US20090229824A1 (en) * | 2008-03-14 | 2009-09-17 | Schlumberger Technology Corporation | Temperature triggered actuator for subterranean control systems |
| CN102360973A (zh) * | 2011-10-09 | 2012-02-22 | 陆明岳 | 一种常开型温敏磁控开关的制造方法 |
| US20150068216A1 (en) * | 2012-03-27 | 2015-03-12 | Siemens Aktiengesellschaft | System for inductive heating of turbine rotor disks |
| CN105047475A (zh) * | 2015-08-12 | 2015-11-11 | 佛山市川东磁电股份有限公司 | 一种复合磁管及一种温敏磁控开关 |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5822655B2 (ja) * | 1976-12-29 | 1983-05-10 | トヨタ自動車株式会社 | 自動変速機の油圧制御装置 |
| RU2179350C1 (ru) * | 2000-08-02 | 2002-02-10 | Общество с ограниченной ответственностью Научно-производственная коммерческая фирма "Комплектстройсервис" | Термочувствительный датчик |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3008019A (en) * | 1957-04-09 | 1961-11-07 | Int Standard Electric Corp | Reed-contact thermo relay |
| US3534306A (en) * | 1967-05-02 | 1970-10-13 | Gen Electric | Solid state temperature sensor |
| US3649936A (en) * | 1969-08-26 | 1972-03-14 | Nippon Denso Co | Temperature switch |
| US3812441A (en) * | 1971-12-03 | 1974-05-21 | Nippon Automation Kk | Reed switch mechanism making use of heat-sensitive ferrite |
-
1973
- 1973-11-29 DE DE2359581A patent/DE2359581A1/de active Pending
- 1973-11-29 US US420086A patent/US3895328A/en not_active Expired - Lifetime
- 1973-11-30 GB GB5569073A patent/GB1452304A/en not_active Expired
- 1973-11-30 FR FR7342904A patent/FR2209198B1/fr not_active Expired
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3008019A (en) * | 1957-04-09 | 1961-11-07 | Int Standard Electric Corp | Reed-contact thermo relay |
| US3534306A (en) * | 1967-05-02 | 1970-10-13 | Gen Electric | Solid state temperature sensor |
| US3649936A (en) * | 1969-08-26 | 1972-03-14 | Nippon Denso Co | Temperature switch |
| US3812441A (en) * | 1971-12-03 | 1974-05-21 | Nippon Automation Kk | Reed switch mechanism making use of heat-sensitive ferrite |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4092586A (en) * | 1975-10-20 | 1978-05-30 | General Electric Company | Temperature-sensing circuit |
| US4121184A (en) * | 1975-10-20 | 1978-10-17 | General Electric Company | Electromagnetically controlled, temperature-sensitive (ECTS) reed switch with substantially hystersis free operation |
| US4023128A (en) * | 1975-10-23 | 1977-05-10 | TDK Electric Co., Ltd. | Temperature responsive reed switch |
| DE3018284A1 (de) * | 1979-05-14 | 1981-01-15 | Tohoku Metal Ind Ltd | Thermomagnetisch betaetigter schalter |
| US4325042A (en) * | 1979-05-14 | 1982-04-13 | Tohoku Metal Industries, Ltd. | Thermo-magnetically operated switches having two different operating temperatures |
| US4389628A (en) * | 1980-06-02 | 1983-06-21 | Tohoku Metal Industries, Ltd. | Thermo-magnetically operated switches having two different operating temperatures |
| US4449094A (en) * | 1981-06-10 | 1984-05-15 | Westinghouse Electric Corp. | Temperature compensated magnetic damping assembly for induction meters |
| US4509029A (en) * | 1984-03-09 | 1985-04-02 | Midwest Components, Inc. | Thermally actuated switch |
| US4703296A (en) * | 1985-02-07 | 1987-10-27 | Tdk Corporation | Thermal reed switch assembly |
| US4837537A (en) * | 1987-02-06 | 1989-06-06 | Nippon Aleph Corporation | Reed switch device |
| US5168545A (en) * | 1991-02-13 | 1992-12-01 | Robertshaw Controls Company | Temperature operated control system, control device therefor, and methods of making the same |
| US20060210393A1 (en) * | 2005-03-18 | 2006-09-21 | Dooley Kevin A | Eddy current heating for reducing transient thermal stresses in a rotor of a gas turbine engine |
| US20060219706A1 (en) * | 2005-03-18 | 2006-10-05 | Dooley Kevin A | Curie temperature thermostat for a eddy current heating device and method |
| US7258526B2 (en) | 2005-03-18 | 2007-08-21 | Pratt & Whitney Canada Corp. | Eddy current heating for reducing transient thermal stresses in a rotor of a gas turbine engine |
| US7323667B2 (en) | 2005-03-18 | 2008-01-29 | Pratt & Whitney Canada Corp. | Curie temperature thermostat for a eddy current heating device and method |
| US20090230335A1 (en) * | 2008-03-14 | 2009-09-17 | Schlumberger Technology Corporation | Temperature triggered actuator |
| US20090229824A1 (en) * | 2008-03-14 | 2009-09-17 | Schlumberger Technology Corporation | Temperature triggered actuator for subterranean control systems |
| US7950590B2 (en) * | 2008-03-14 | 2011-05-31 | Schlumberger Technology Corporation | Temperature triggered actuator |
| US8322417B2 (en) | 2008-03-14 | 2012-12-04 | Schlumberger Technology Corporation | Temperature triggered actuator for subterranean control systems |
| CN102360973A (zh) * | 2011-10-09 | 2012-02-22 | 陆明岳 | 一种常开型温敏磁控开关的制造方法 |
| US20150068216A1 (en) * | 2012-03-27 | 2015-03-12 | Siemens Aktiengesellschaft | System for inductive heating of turbine rotor disks |
| CN105047475A (zh) * | 2015-08-12 | 2015-11-11 | 佛山市川东磁电股份有限公司 | 一种复合磁管及一种温敏磁控开关 |
| CN105047475B (zh) * | 2015-08-12 | 2017-11-10 | 佛山市川东磁电股份有限公司 | 一种复合磁管及一种温敏磁控开关 |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2359581A1 (de) | 1974-07-18 |
| GB1452304A (en) | 1976-10-13 |
| FR2209198A1 (enExample) | 1974-06-28 |
| FR2209198B1 (enExample) | 1977-09-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3895328A (en) | Thermo-magnetically operated switches | |
| US3223898A (en) | Variable magnet | |
| US3205323A (en) | Magnetic reed proximity switch | |
| US3504315A (en) | Electrical solenoid devices | |
| US3305805A (en) | Proximity switch | |
| US4243899A (en) | Linear motor with ring magnet and non-magnetizable end caps | |
| US3755766A (en) | Bistable electromagnetic actuator | |
| US4088977A (en) | Contactless linear position sensor | |
| US3903492A (en) | Temperature operated switch of a variable operating temperature | |
| US2585974A (en) | Electrical indicating device | |
| US3198902A (en) | Proximity magnetic reed switch assembly | |
| GB898948A (en) | Improvements in and relating to control devices | |
| US3140431A (en) | Magnetic visual indicating device | |
| US4325042A (en) | Thermo-magnetically operated switches having two different operating temperatures | |
| US4065739A (en) | Reversible direction solenoid assembly | |
| US3264424A (en) | Magnetically actuated switch | |
| US3750064A (en) | Temperature-operated switch | |
| US3419829A (en) | Dry reed contact relay with permanent magnet | |
| US4509029A (en) | Thermally actuated switch | |
| US3976962A (en) | Dual threshold magnetic proximity switch | |
| US3634794A (en) | Current level sensor | |
| SU597353A3 (ru) | Электромагнитное реле | |
| RU187013U1 (ru) | Поляризованное магнитоуправляемое коммутационное устройство для определения угла наклона/поворота датчика | |
| US3214646A (en) | Torque motor | |
| US3250955A (en) | Magnetically operated switch for ignition system |