US3894545A - Filters for tobacco smoke - Google Patents

Filters for tobacco smoke Download PDF

Info

Publication number
US3894545A
US3894545A US413348A US41334873A US3894545A US 3894545 A US3894545 A US 3894545A US 413348 A US413348 A US 413348A US 41334873 A US41334873 A US 41334873A US 3894545 A US3894545 A US 3894545A
Authority
US
United States
Prior art keywords
carbon
filter
smoke
charge
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US413348A
Inventor
Robin A Crellin
Henry G Horewell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brown and Williamson Holdings Inc
Original Assignee
Brown and Williamson Tobacco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brown and Williamson Tobacco Corp filed Critical Brown and Williamson Tobacco Corp
Application granted granted Critical
Publication of US3894545A publication Critical patent/US3894545A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/04Tobacco smoke filters characterised by their shape or structure

Definitions

  • ABSTRACT The invention relates to a tobacco-smoke filter comprising regions extending substantially longitudinally of the filter and separated by a diaphragm or diaphragms of vapour-porous material into at least one region providing a through path for smoke and at least one region which is filled with carbon and is closed against smoke flow through the filter
  • the regions may be formed by two co-axial tubes, an inner diaphragm tube of the porous material and an outer tube of substantially smoke-impervious material
  • the carbon may be contained in one or more closed bags or envelopes of the porous material enclosed within an outer tube providing a through path for the smoke.
  • a tobacco-smoke filter comprises regions extending longitudinally of the filter and separated by a diaphragm or diaphragms of vapour-porous material, for example highly porous paper, into at least one region providing a through path for smoke and at least one region which is filled with carbon, possibly in the form of activated charcoal, and is closed against smoke flow through the filter.
  • a diaphragm or diaphragms of vapour-porous material for example highly porous paper
  • the diaphragm may be tubular and the said regions located one within another.
  • Such a filter may comprise two concentric tubes, an inner tube of the vapour porous material and an outer tube of substantially smoke-impervious material, the annular space between the tubes being filled with carbon granules or powder and being blocked at each end, while the inner tube, without a carbon filling, is open at both ends to afford a smoke channel.
  • the ratio of the diameter of the inner tube to that of the outer tube may be of the order of from 1:4 to 1:2.
  • the inner tube may be filled with carbon and blocked similarly at each end, the outer tube being spaced from the inner tube, possibly by longitudinal ribs, to leave an open-ended annular smoke channel.
  • the tube-diameter ratio may be of the order from 5:10 to 9:l0.
  • the packing of the carbon particles may be significant in that the greater the surface area available, the more favourable are conditions for the diffusion and thus the removal of the vapour constituents.
  • the particle size is preferably within a range of 12 to 150 British Standard Specification mesh.
  • the porosity of the porous material should be at least 1000 cm/min/l0cm per l0 cm water-gauge pressure and is preferably within the range of 32,000 to 600,000.
  • Such a filter is preferably used as a centre section between two end sections of fibrous material, such as cellulose acetate or paper, or in dual filter adjacent to the tobacco rod.
  • the whole filter may be enclosed within a customary sleeve of tipping paper and attached to a cigarette in conventional manner.
  • the smoke particles pass through the smoke path, the inner tube or annular space as the case may be, without flowing through the carbon.
  • Analysis of the smoke shows that a reduction in the amount of volatile constituents, particularly aldehydes and hydrogen sulphide is obtained, although the taste of the smoke is unaffected.
  • the reduction is achieved because volatile constituents diffuse through the inner tube into the carbon-filled region in which they are adsorbed.
  • the particulate matter does not diffuse through this tube.
  • the carbon is prevented from being contaminated by smoke particles and carbon/particle interactions do not occur.
  • a further advantageous effect observed is that the proportion of total volatile constituents remains more uniform, from puff to puff, than is the case if the smoke flows through a carbon bed.
  • FIG. I is a longitudinal section through a cigarette filter with an annular carbon-filled region
  • FIG. 2 a similar view of a filter with a central carbonfilled region
  • FIG. 3 a similar view of a filter with a bag-like carbon-filled region
  • FIGS. 3a and 3b being opposite end views of the filter
  • FIG. 4 a graphical representation of filter-efficiency results obtained
  • FIG. 5 a perspective view of a carbon-filled bag
  • FIG. 6 a perspective view of a filter section comprising three such bags
  • FIGS. 7 and 8 are a cross section and a longitudinal section, on the line VIIlVIll in FIG. 7, of a filter with a rolled, carbon filled, bag.
  • cigarettes with filters having an outer-tube diameter of 8 mm were smoked under standard conditions of l puff of 2 seconds duration every minute and 35 ml volume.
  • the measured filtration efficiency for total volatile aldehydes was taken as an index of the effectiveness with which the carbon removed vapour-phase constituents from cigarette smoke.
  • the triple filter illustrated in FIG. 1 comprises a section 1 in accordance with the present invention interposed between filter-plug sections 2 and 3 of cellulose acetate at the mouth end and adjoining the tobacco rod 4 respectively, all enclosed within a smoke-impervious wrapper tube 5.
  • the section 1 comprises an inner tube 6 of highly vapour-porous paper which extends coaxially within the tube 5 and bounds a central smoke channel 7 the annular space 7' between the tubes being filled with carbon particles and being blocked at both ends by impervious annular closures 8.
  • These closures may be produced from a plastics material, for example a polyvinyl acetate adhesive, used as a sealing compound or by discs of smoke-impervious material having a central hole in register with the tube 6.
  • the overall length of the filter was 71 mm.
  • the tube 5 was made of smoke-impervious paper and the tube 6 of a paper having a porosity of 34,000 cm /min/lcm per 10cm watergauge pressure.
  • the tube 6 was 58 mm in length and 4.5 mm in diameter.
  • the space 7' between the tubes and 6 con tained 720 mg of a granular carbon known as grade 2038 (available from Sutcliffe Speakman Ltd).
  • the total pressure drop of the filter was 7.1 cm water gauge.
  • the filte. removed 45 percent of the total volatile aldehydes from the smoke.
  • cigarettes were prepared with filters which contained a bed of 50 mg of the carbon granules positioned between two cellulose acetate sections and designed to remove the same proportion of volatile aldehydes from the smoke.
  • Cigarettes with the two kinds of filters were offered to a panel of smokers with particular experience of evaluating the flavour characteristics of carbonfilter cigarettes.
  • the panel found that the comparison, granular-bed, filter produced a high level of the undesirable off-flavour characteristic of carbon-filter cigarettes, whilst the other filter, with the porous inner tube 6, produced none of this flavour.
  • Example 2 The filter construction of FIG. 2 differs from that of FIG. 1 in that the granular carbon is disposed in the space 9' within the tube 6. This space is blocked at both ends, at 10, whereas the annular smoke channel 9 is open at both ends.
  • the outer tube 5 was made of a plastics material.
  • the inner tube was made of paper having a porosity of 200,000 cm /min/10cm per 10 cm water gauge. it was 40 mm in length and 4.5 mm in diameter and was filled with 282 mg of the same granular carbon as in Example 1.
  • the filter whose pressure drop was 3.2 cm water gauge, removed 48 percent of the total volatile aldehydes from the smoke.
  • Example 3 In the filter of FIG. 3, the granular carbon is contained in a porous bag ll disposed within the tube 5. The ends of the bag 11 are sealed along straight lines 12,13 at right angles to each other, as shown in FIGS, 3a and 3b, producing fin-like formations 14 which support the bag 11 within the tube 5 and assist in ensuring favourable smoke-flow around the bag.
  • the tube 5 was of impervious paper.
  • the bag 11 of paper of 200,000 cm /min/l0 cm per 10 cm water gauge porosity, was 40 mm in length and 4.5 mm diameter. It was filled with 235 mg of granular carbon, grade BPL available from Pittsburgh Activated Carbon Co. The pressure drop of the filter was 4.5 cm water gauge. On smoking under standard conditions, a reduction of 40 percent of the total volatile aldehydes was observed. When compared by the panel with cigarettes with a granular-bed filter having 70 mg of carbon giving the same filtration efficiency, cigarettes having filters as described with reference to FIG. 3 did not produce the off-flavour imparted by the carbon-bed filter.
  • Example 4 Further filters were prepared as described in Example 3, but with the bag 30 mm long and containing 150 mg of the same carbon, the overall pressure drop being 3.0 cm water gauge.
  • the total volatile aldehyde filtration efficiency was determined on a puff by puff basis for these filters (A) and for a conventional filter (B), containing a 50 mg bed of carbon, which removed substantially the same average percentage (29 percent) of the volatile aldehydes.
  • the puff by puff results, given in the following table, are shown in FIG. 4 as efficiency n plotted against the puff number PN.
  • Fi tration Efficiency Filter A removed a similar fraction of the total volatile aldehydes for each puff.
  • filter B removed a very high fraction of the aldehydes from the first puff, but rapidly declined in performance, removing none of the aldehydes from the final three puffs.
  • Example 5 Filters were prepared as described in Example 3, but the bag 11 was made of porous paper which had been so perforated that the overall porosity was raised to 600,000 cm /min/l0 cm per 10 cm water gauge. The bag, 30 mm long, contained l6l mg of carbon of the same grade. The filter had a total pressure drop of 2.9 cm water gauge and removed 3i percent of the total volatile aldehydes.
  • Example 6 Filters were prepared as described in Example 3, but the bag 11, 30 mm in length and 6 mm in diameter, was filled with 259 mg of carbon of the same grade. The pressure drop of the filter was 3.l cm water gauge. These filters removed 32 percent of total volatile aldehydes without producing the off-flavour, as detected from comparison filters having granular beds of 54 mg of carbon.
  • Example 7 Filters were produced as in Example 3, but containing 3 bags, each of 2.75 mm diameter and 30 mm length and each filled with 51 mg of carbon of the same grade.
  • Example 8 Further filters were prepared as described in Example 3. The annulus between the bag 11 and the tube 5 was filled with: (a) 1,700 mg of inert granules of unglazed porcelain, known as anti-bumping granules, or (b) open-cell polyethylene foam supplied by Monsanto Chemicals Ltd, or (c) bloomed cellulose-acetate tow. The bag 11 was 30 mm long and contained mg of carbon of the same grade. The pressure-drops for the complete filters were 3.5, 5.7 and 4.8 cm water gauge and the total volatile aldehyde filtration efficiencies 46 percent, 32 percent and 43 percent respectively.
  • Example 9 Filters were prepared as described in Example 3.
  • the off-flavour was absent from these filters.
  • Example 10 Further filters were prepared as described in Example 3, but using polyethylene for the outer tube 5. The tube was ventilated near the cellulose-acetate section 2 at the mouth end by making holes in the tube 5 and then wrapping the whole filter in a porous tipping paper, supplied by Papeteries de Malaucene.
  • the ventilation reduced the cigarette pressure drop by 55 percent.
  • the porous bag 30 mm long and 4.5 mm in diameter, contained 149 mg of the same grade of carbon as in Example 3.
  • the combination of ventilation and porous bag reduced the delivery of total volatile aldehydes by 73 percent.
  • Comparable carbon-bed, non-ventilated, filters containing 183 mg of the same carbon produced high levels of the characteristic offflavour, which was absent with the former filters.
  • Example 1 1 To prepare the filter illustrated by FIGS.
  • carbon powder (52-100 British Standard Specification mesh) of the grade AC45 referred to above was placed on a sheet of paper of porosity 200,000 cm /min/l0 cm per 10 cm water gauge and the sheet was folded over to the form of a bag and sealed down the longitudinal edge 16 and at both ends 16'.
  • the three bags 15 were assembled in a triangular configuration (FIG. 6) between two cellulose acetate sections (not shown), within an impervious paper tube 5.
  • the filter which had a pressure drop of 2.7 cm water gauge, removed 55 percent of total volatile aldehydes from the smoke.
  • a comparable cigarette with a granular-bed filter containing 79 mg of the same carbon was found to produce a high level of the characteristic off flavour, which was absent from cigarettes with filters prepared as described.
  • Example 12 For the filter illustrated in FIGS. 7 and 8, l 15 mg of carbon powder (100-150 British Standard Speciification mesh) of the aforesaid grade AC45 was laid between two 100 mm X 25 mm sheets of very porous paper (porosity 200,000 cm /min/l0 cm per l0 cm water gauge). All of the edges of the two sheets were glued together to form a closed bag 17 containing the carbon 18.
  • the bag 17 was rolled from the flat form to the spiral form shown in FIG. 7 and as in previous examples, was placed between cellulose-acetate sections 2, 3 to form a 25 mm long filter, enclosed in an impervious paper tube 5, with a pressure drop of 3.5 cm water gauge.
  • the filter removed 57 percent of total volatile aldehydes from the smoke.
  • a comparable cigarette with a granular-bed filter containing 84 mg of the same grade of carbon produced high levels of the characteristic off flavour, which was absent from the filter of the Example.
  • the bag 17 is rolled with a sheet of longitudinally corrugated paper in the spiral space 19 be tween the turns of the rolled bag. This will ensure that different parts of the bag do not come into contact with one another, thus increasing the effective area of bag surface through which smoke constituents can diffuse and also the number of smoke passage ways.
  • the same end can be achieved by making the bag 17 itself from corrugated porous paper. Contact between different parts of the paper is then limited to a number of points. The corrugations also increase the surface area for a given length of bag.
  • a bag or bags produced in one of the ways described in Example 12 may be disposed in the filter otherwise than in a single spiral form, as seen in cross section.
  • a bag may be rolled in the form of a C with both free ends further rolled inwardly.
  • the bag may be incorporated in the filter with a random disposition in the cross section.
  • a bag may be rolled or folded into the filter together with a longitudinally extending filter material, such as a cellulose acetate tow or paper.
  • the smoke channel or channels may be packed with a filtering material (not carbon) for the removal of pan ticulate matter, for example with fibrous or filamentary cellulose acetate, paper or the like.
  • the smoke channel may be packed with an inert granular material, as described in Example 8, or with glass spheres or chippings.
  • Such a packing will provide more intimate contact between the smoke and the porous paper, thus assisting the diffusion of volatile smoke constituents into the carbon.
  • the filtration efficiency of the filter for volatile constituents can thereby be enhanced above the value obtained for the filter without such a packing, again without adverse effect on the taste.
  • the carbon is in the form of loose granules or powder.
  • Carbon may be bonded by a resin such a polyethylene, an organic material such as paraffin wax or an inorganic material such as trisodium phosphate.
  • a filter for a smokeable article intended to be disposed downstream from a smokeable charge comprising a smoke treating chamber formed by a substantially cylindrical outer wall of the filter eiement in close proximity to the downstream end of a smokeable charge, a longitudinally oriented vapor porous membrane mounted within said cylinder, said membrane containing a charge of particulate carbon, the upstream and downstream ends of said carbon charged membrane being effectively sealed or biocked against the passage of smoke, the space not occupied by said membrane defining longitudinally extending continuous and uninterrupted passageway or passageways extending for a length at least equal to that of the contained carbon charge, such that the smoke emerging from the downstream end of a smokeable charge preferentially courses through the said continuous and uninterrupted passageways without being forced through said contained carbon charge.
  • a filter according to claim 1 disposed as a centre section between two end sections of fibrous material.
  • vapor porous membrane is made of highly porous paper with a porosity of at least 32,000 cm Imin/ 10 cm per 10 cm water gauge pressure.

Abstract

The invention relates to a tobacco-smoke filter comprising regions extending substantially longitudinally of the filter and separated by a diaphragm or diaphragms of vapour-porous material into at least one region providing a through path for smoke and at least one region which is filled with carbon and is closed against smoke flow through the filter. The regions may be formed by two co-axial tubes, an inner diaphragm tube of the porous material and an outer tube of substantially smoke-impervious material. Alternatively the carbon may be contained in one or more closed bags or envelopes of the porous material enclosed within an outer tube providing a through path for the smoke.

Description

United States Patent Crellin et a1.
FILTERS FOR TOBACCO SMOKE Inventors: Robin A. Crellin, Romsey; Henry G.
Horewell. Totton, both of England [73] Assignee: Brown & Williamson Tobacco Corporation, Louisville Ky.
[22] Filed: Nov. 6, 1973 [21] Appl.No1:413,348
[52] US. Cl 131/2613; 131/105; 131/207; 131/266 [51] Int. Cl A2411 15/02 [581 Field 01 Search 131/11), 10.1-10.9 l3l/26l269. 202. 200 207 [56] References Cited UNITED STATES PATENTS 1.009.792 11/1911 Salusbury n 131/207 2.235.100 3/1941 Deutsch 131/207 X 3.388(707 6/1968 Harris 131/261 B 3,621 851 11/1971 Heskett et al .1 131/105 FOREIGN PATENTS OR APPLlCATlONS 287.594 11/1966 Australia .r 131/106 51 July 15, 1975 823,690 11/1959 United Kingdom 131/261 B Primary Examiner-Melvin D1 Rein Atrorney, Agent. or Firm-Vance A. Smith [57] ABSTRACT The invention relates to a tobacco-smoke filter comprising regions extending substantially longitudinally of the filter and separated by a diaphragm or diaphragms of vapour-porous material into at least one region providing a through path for smoke and at least one region which is filled with carbon and is closed against smoke flow through the filter The regions may be formed by two co-axial tubes, an inner diaphragm tube of the porous material and an outer tube of substantially smoke-impervious material Alternatively the carbon may be contained in one or more closed bags or envelopes of the porous material enclosed within an outer tube providing a through path for the smoke.
8 Claims. 9 Drawing Figures SHEET FILTERS FOR TOBACCO SMOKE Many forms of filters for tobacco smoke are known which remove the particulate phase of the smoke by mechanical means. These filters, composed for example of filamentary or fibrous materials, have, however, a low efficiency for the retention of volatile constituents of tobacco smoke. It is known that such constituents in vapour form can be removed from the smoke to some extent by adsorption on a suitable surface or by chemical reaction. An effective material for this purpose is, for example, carbon, possibly in the form of activated charcoal. The material may be provided as a granular bed between two filter plugs of fibrous or filamentary filtering material or may be dispersed in or on other filtering material. It is, however, known that carbon, thus used, may have an adverse effect on the taste of the tobacco smoke by producing a so-called off flavour. It is an object of the invention to provide a filter containing carbon which removes the volatile or vapour-phase constituents to an acceptable degree, but which has little or no adverse effect on the taste of the smoke. More particularly, it is an object to provide a filter in which the carbon is protected against the deposition of smoke particles, while allowing the adsorption of vapours.
According to the invention, a tobacco-smoke filter comprises regions extending longitudinally of the filter and separated by a diaphragm or diaphragms of vapour-porous material, for example highly porous paper, into at least one region providing a through path for smoke and at least one region which is filled with carbon, possibly in the form of activated charcoal, and is closed against smoke flow through the filter. Conveniently the diaphragm may be tubular and the said regions located one within another.
Thus such a filter may comprise two concentric tubes, an inner tube of the vapour porous material and an outer tube of substantially smoke-impervious material, the annular space between the tubes being filled with carbon granules or powder and being blocked at each end, while the inner tube, without a carbon filling, is open at both ends to afford a smoke channel. Suitably the ratio of the diameter of the inner tube to that of the outer tube may be of the order of from 1:4 to 1:2.
Alternatively, the inner tube may be filled with carbon and blocked similarly at each end, the outer tube being spaced from the inner tube, possibly by longitudinal ribs, to leave an open-ended annular smoke channel. Suitably the tube-diameter ratio may be of the order from 5:10 to 9:l0.
The packing of the carbon particles may be significant in that the greater the surface area available, the more favourable are conditions for the diffusion and thus the removal of the vapour constituents. Defined in terms of weight per unit length of filter a range of lO-l 50 mg/cm, preferably 40-100 mg/cm, is suitable. The particle size is preferably within a range of 12 to 150 British Standard Specification mesh.
The porosity" of the porous material, preferably paper, should be at least 1000 cm/min/l0cm per l0 cm water-gauge pressure and is preferably within the range of 32,000 to 600,000.
Such a filter is preferably used as a centre section between two end sections of fibrous material, such as cellulose acetate or paper, or in dual filter adjacent to the tobacco rod. The whole filter may be enclosed within a customary sleeve of tipping paper and attached to a cigarette in conventional manner.
On smoking a cigarette through such a filter, the smoke particles pass through the smoke path, the inner tube or annular space as the case may be, without flowing through the carbon. Analysis of the smoke shows that a reduction in the amount of volatile constituents, particularly aldehydes and hydrogen sulphide is obtained, although the taste of the smoke is unaffected. The reduction is achieved because volatile constituents diffuse through the inner tube into the carbon-filled region in which they are adsorbed. The particulate matter does not diffuse through this tube. Substantially, therefore, the carbon is prevented from being contaminated by smoke particles and carbon/particle interactions do not occur. A further advantageous effect observed is that the proportion of total volatile constituents remains more uniform, from puff to puff, than is the case if the smoke flows through a carbon bed.
Examples of ways of carrying out the invention and of results thereby achieved will now be more fully described with reference to the accompanying diagrammatic drawings, in which:
FIG. I is a longitudinal section through a cigarette filter with an annular carbon-filled region,
FIG. 2 a similar view of a filter with a central carbonfilled region,
FIG. 3 a similar view of a filter with a bag-like carbon-filled region,
FIGS. 3a and 3b being opposite end views of the filter,
FIG. 4 a graphical representation of filter-efficiency results obtained,
FIG. 5 a perspective view of a carbon-filled bag,
FIG. 6 a perspective view of a filter section comprising three such bags, and
FIGS. 7 and 8 are a cross section and a longitudinal section, on the line VIIlVIll in FIG. 7, of a filter with a rolled, carbon filled, bag.
In all of the following examples, cigarettes with filters having an outer-tube diameter of 8 mm were smoked under standard conditions of l puff of 2 seconds duration every minute and 35 ml volume. The measured filtration efficiency for total volatile aldehydes was taken as an index of the effectiveness with which the carbon removed vapour-phase constituents from cigarette smoke.
EXAMPLE I The triple filter illustrated in FIG. 1 comprises a section 1 in accordance with the present invention interposed between filter- plug sections 2 and 3 of cellulose acetate at the mouth end and adjoining the tobacco rod 4 respectively, all enclosed within a smoke-impervious wrapper tube 5. The section 1 comprises an inner tube 6 of highly vapour-porous paper which extends coaxially within the tube 5 and bounds a central smoke channel 7 the annular space 7' between the tubes being filled with carbon particles and being blocked at both ends by impervious annular closures 8. These closures may be produced from a plastics material, for example a polyvinyl acetate adhesive, used as a sealing compound or by discs of smoke-impervious material having a central hole in register with the tube 6.
In a specific instance, the overall length of the filter was 71 mm. The tube 5 was made of smoke-impervious paper and the tube 6 of a paper having a porosity of 34,000 cm /min/lcm per 10cm watergauge pressure. The tube 6 was 58 mm in length and 4.5 mm in diameter. The space 7' between the tubes and 6 con tained 720 mg of a granular carbon known as grade 2038 (available from Sutcliffe Speakman Ltd). The total pressure drop of the filter was 7.1 cm water gauge. The filte. removed 45 percent of the total volatile aldehydes from the smoke. For comparison purposes, cigarettes were prepared with filters which contained a bed of 50 mg of the carbon granules positioned between two cellulose acetate sections and designed to remove the same proportion of volatile aldehydes from the smoke.
Cigarettes with the two kinds of filters were offered to a panel of smokers with particular experience of evaluating the flavour characteristics of carbonfilter cigarettes. The panel found that the comparison, granular-bed, filter produced a high level of the undesirable off-flavour characteristic of carbon-filter cigarettes, whilst the other filter, with the porous inner tube 6, produced none of this flavour.
Example 2 The filter construction of FIG. 2 differs from that of FIG. 1 in that the granular carbon is disposed in the space 9' within the tube 6. This space is blocked at both ends, at 10, whereas the annular smoke channel 9 is open at both ends. With one filter of this kind, 53 mm long, the outer tube 5 was made of a plastics material. The inner tube was made of paper having a porosity of 200,000 cm /min/10cm per 10 cm water gauge. it was 40 mm in length and 4.5 mm in diameter and was filled with 282 mg of the same granular carbon as in Example 1. The filter, whose pressure drop was 3.2 cm water gauge, removed 48 percent of the total volatile aldehydes from the smoke. A comparison filter was prepared in the same manner as in Example 1, but with a 55 mg carbon bed expected to have the same aldehydefiltration efficiency. The panel of smokers again noted a high level of the characteristic off-flavour from the comparison cigarettes, but none from the cigarettes with filters containing carbon within the porous tube. Example 3 In the filter of FIG. 3, the granular carbon is contained in a porous bag ll disposed within the tube 5. The ends of the bag 11 are sealed along straight lines 12,13 at right angles to each other, as shown in FIGS, 3a and 3b, producing fin-like formations 14 which support the bag 11 within the tube 5 and assist in ensuring favourable smoke-flow around the bag.
With one filter of this kind, 53 mm long, the tube 5 was of impervious paper. The bag 11, of paper of 200,000 cm /min/l0 cm per 10 cm water gauge porosity, was 40 mm in length and 4.5 mm diameter. It was filled with 235 mg of granular carbon, grade BPL available from Pittsburgh Activated Carbon Co. The pressure drop of the filter was 4.5 cm water gauge. On smoking under standard conditions, a reduction of 40 percent of the total volatile aldehydes was observed. When compared by the panel with cigarettes with a granular-bed filter having 70 mg of carbon giving the same filtration efficiency, cigarettes having filters as described with reference to FIG. 3 did not produce the off-flavour imparted by the carbon-bed filter. Example 4 Further filters were prepared as described in Example 3, but with the bag 30 mm long and containing 150 mg of the same carbon, the overall pressure drop being 3.0 cm water gauge. The total volatile aldehyde filtration efficiency was determined on a puff by puff basis for these filters (A) and for a conventional filter (B), containing a 50 mg bed of carbon, which removed substantially the same average percentage (29 percent) of the volatile aldehydes. The puff by puff results, given in the following table, are shown in FIG. 4 as efficiency n plotted against the puff number PN.
Fi tration Efficiency Filter A removed a similar fraction of the total volatile aldehydes for each puff. In contrast, filter B removed a very high fraction of the aldehydes from the first puff, but rapidly declined in performance, removing none of the aldehydes from the final three puffs. Example 5 Filters were prepared as described in Example 3, but the bag 11 was made of porous paper which had been so perforated that the overall porosity was raised to 600,000 cm /min/l0 cm per 10 cm water gauge. The bag, 30 mm long, contained l6l mg of carbon of the same grade. The filter had a total pressure drop of 2.9 cm water gauge and removed 3i percent of the total volatile aldehydes. Compared with control filters containing 50 mg of carbon and having similar filtration efficiency, the former filters did not produce the offflavour observed with the latter filters. Example 6 Filters were prepared as described in Example 3, but the bag 11, 30 mm in length and 6 mm in diameter, was filled with 259 mg of carbon of the same grade. The pressure drop of the filter was 3.l cm water gauge. These filters removed 32 percent of total volatile aldehydes without producing the off-flavour, as detected from comparison filters having granular beds of 54 mg of carbon. Example 7 Filters were produced as in Example 3, but containing 3 bags, each of 2.75 mm diameter and 30 mm length and each filled with 51 mg of carbon of the same grade. These filters, which had a pressure drop of 3.3 cm water gauge removed 34 percent of the total volatile aldehydes. A panel could not detect the off-flavour found with comparison filters having granular beds of 59 mg of carbon. Example 8 Further filters were prepared as described in Example 3. The annulus between the bag 11 and the tube 5 was filled with: (a) 1,700 mg of inert granules of unglazed porcelain, known as anti-bumping granules, or (b) open-cell polyethylene foam supplied by Monsanto Chemicals Ltd, or (c) bloomed cellulose-acetate tow. The bag 11 was 30 mm long and contained mg of carbon of the same grade. The pressure-drops for the complete filters were 3.5, 5.7 and 4.8 cm water gauge and the total volatile aldehyde filtration efficiencies 46 percent, 32 percent and 43 percent respectively.
Granular-bed filters, of comparable efficiency, containing 82 mg, 51 mg and 74 mg of carbon respectively produced high levels of the characteristic carbon flavour, which was absent with the former filters. Example 9 Filters were prepared as described in Example 3. The bags 11, 30 mm long and 4.5 mm in diameter, contained other grades of carbon, namely (a) 140 mg of MF3, supplied by Chemviron Ltd, and (b) 114 mg of AC45, supplied by The British C.E,C.A. Co. Ltd, the pressure drops being 2.8 and 3.0 cm water gauge and the total aldehyde-filtration efficiency 30 percent and 33 percent respectively. The off-flavour was absent from these filters. Comparable granular-bed filters containing 36 mg of MF3 and 40 mg of AC45 carbon respectively produced high levels of the off-flavour. Example 10 Further filters were prepared as described in Example 3, but using polyethylene for the outer tube 5. The tube was ventilated near the cellulose-acetate section 2 at the mouth end by making holes in the tube 5 and then wrapping the whole filter in a porous tipping paper, supplied by Papeteries de Malaucene.
The ventilation reduced the cigarette pressure drop by 55 percent. The porous bag, 30 mm long and 4.5 mm in diameter, contained 149 mg of the same grade of carbon as in Example 3. The combination of ventilation and porous bag reduced the delivery of total volatile aldehydes by 73 percent. Comparable carbon-bed, non-ventilated, filters containing 183 mg of the same carbon produced high levels of the characteristic offflavour, which was absent with the former filters. Example 1 1 To prepare the filter illustrated by FIGS. 5 and 6, carbon powder (52-100 British Standard Specification mesh) of the grade AC45 referred to above was placed on a sheet of paper of porosity 200,000 cm /min/l0 cm per 10 cm water gauge and the sheet was folded over to the form of a bag and sealed down the longitudinal edge 16 and at both ends 16'. Three such bags, 30 mm long and approximately 7 mm wide each contained 40 mg of carbon. The three bags 15 were assembled in a triangular configuration (FIG. 6) between two cellulose acetate sections (not shown), within an impervious paper tube 5. The filter, which had a pressure drop of 2.7 cm water gauge, removed 55 percent of total volatile aldehydes from the smoke. In smokingpanel tests, a comparable cigarette with a granular-bed filter containing 79 mg of the same carbon was found to produce a high level of the characteristic off flavour, which was absent from cigarettes with filters prepared as described.
Example 12 For the filter illustrated in FIGS. 7 and 8, l 15 mg of carbon powder (100-150 British Standard Speciification mesh) of the aforesaid grade AC45 was laid between two 100 mm X 25 mm sheets of very porous paper (porosity 200,000 cm /min/l0 cm per l0 cm water gauge). All of the edges of the two sheets were glued together to form a closed bag 17 containing the carbon 18. The bag 17 was rolled from the flat form to the spiral form shown in FIG. 7 and as in previous examples, was placed between cellulose- acetate sections 2, 3 to form a 25 mm long filter, enclosed in an impervious paper tube 5, with a pressure drop of 3.5 cm water gauge. The filter removed 57 percent of total volatile aldehydes from the smoke. A comparable cigarette with a granular-bed filter containing 84 mg of the same grade of carbon produced high levels of the characteristic off flavour, which was absent from the filter of the Example.
Preferably, the bag 17 is rolled with a sheet of longitudinally corrugated paper in the spiral space 19 be tween the turns of the rolled bag. This will ensure that different parts of the bag do not come into contact with one another, thus increasing the effective area of bag surface through which smoke constituents can diffuse and also the number of smoke passage ways.
The same end can be achieved by making the bag 17 itself from corrugated porous paper. Contact between different parts of the paper is then limited to a number of points. The corrugations also increase the surface area for a given length of bag.
A bag or bags produced in one of the ways described in Example 12 may be disposed in the filter otherwise than in a single spiral form, as seen in cross section. For example, such a bag may be rolled in the form of a C with both free ends further rolled inwardly. lndeed, the bag may be incorporated in the filter with a random disposition in the cross section.
The bag or bags need not occupy the entire cross section within the tube 5. A bag may be rolled or folded into the filter together with a longitudinally extending filter material, such as a cellulose acetate tow or paper.
Indeed, in all cases, the smoke channel or channels, whether central and/or peripheral, may be packed with a filtering material (not carbon) for the removal of pan ticulate matter, for example with fibrous or filamentary cellulose acetate, paper or the like.
Alternatively, the smoke channel may be packed with an inert granular material, as described in Example 8, or with glass spheres or chippings. Such a packing will provide more intimate contact between the smoke and the porous paper, thus assisting the diffusion of volatile smoke constituents into the carbon. The filtration efficiency of the filter for volatile constituents can thereby be enhanced above the value obtained for the filter without such a packing, again without adverse effect on the taste.
Preferably and as described above, the carbon is in the form of loose granules or powder. However it could alternatively be used in the form of a charcoal or other carbon rod or tube disposed as previously described. Carbon may be bonded by a resin such a polyethylene, an organic material such as paraffin wax or an inorganic material such as trisodium phosphate.
We claim:
1. A filter for a smokeable article intended to be disposed downstream from a smokeable charge, comprising a smoke treating chamber formed by a substantially cylindrical outer wall of the filter eiement in close proximity to the downstream end of a smokeable charge, a longitudinally oriented vapor porous membrane mounted within said cylinder, said membrane containing a charge of particulate carbon, the upstream and downstream ends of said carbon charged membrane being effectively sealed or biocked against the passage of smoke, the space not occupied by said membrane defining longitudinally extending continuous and uninterrupted passageway or passageways extending for a length at least equal to that of the contained carbon charge, such that the smoke emerging from the downstream end of a smokeable charge preferentially courses through the said continuous and uninterrupted passageways without being forced through said contained carbon charge.
2. A filter according to claim 1 wherein the porous membrane is tubular and the carbon charge is contained within.
3. A filter according to claim 1 wherein the porous membrane is tubular and the carbon charge is contained within the space between the tube and said outer wall.
4. A filter according to claim 1 wherein the carbon charge is contained within at least one closed envelope of porous membrane enclosed within said outer wallv 5. A filter according to claim 4 wherein a plurality of said envelopes are disposed in a triangular form within said outer wall.
6. A filter according to claim 1 wherein the carbon charge is contained in at least one closed envelope of porous membrane, said envelope being folded within and longitudinally of said outer wall.
7. A filter according to claim 1, disposed as a centre section between two end sections of fibrous material.
8. A filter according to claim 1, wherein the vapor porous membrane is made of highly porous paper with a porosity of at least 32,000 cm Imin/ 10 cm per 10 cm water gauge pressure.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 894, 545 Dat d July 15, 1975 Invent0r(s) Robin A. Crellin, Henry G. Horsewell It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
On the first page of the printed patent correct inventor '5 name from "Horewell" to --Horsewe1l-.
0n the first page of the printed patent insert:
--Foreign Application Priority Data: November 13, 1972 Great Britain N0. 52348/72 Col. 4, line 26, change "for" to --from-.
Engncd and Scaled this eighreenrh Day Of .\"urember 1975 {SEAL} RUTH C. MASON C. MARSHALL DANN Ilium)? (H Hc'e'r (umnusxmm'r n! lulz'nrs um] Trmlvmurln

Claims (8)

1. A filter for a smokeable article intended to be disposed downstream from a smokeable charge, comprising a smoke treating chamber formed by a substantially cylindrical outer wall of the filter element in close proximity to the downstream end of a smokeable charge, a longitudinally oriented vapor porous membrane mounted within said cylinder, said membrane containing a charge of particulate carbon, the upstream and downstream ends of said carbon charged membrane being effectively sealed or blocked against the passage of smoke, the space not occupied by said membrane defining longitudinally extending continuous and uninterrupted passageway or passageways extending for a length at least equal to that of the contained carbon charge, such that the smoke emerging from the downstream end of a smokeable charge preferentially courses through the said continuous and uninterrupted passageways without being forced through said contained carbon charge.
2. A filter according to claim 1 wherein the porous membrane is tubular and the carbon charge is contained within.
3. A filter according to claim 1 wherein the porous membrane is tubular and the carbon charge is contained within the space between the tube and said outer wall.
4. A filter according to claim 1 wherein the carbon charge is contained within at least one closed envelope of porous membrane enclosed within said outer wall.
5. A filter according to claim 4 wherein a plurality of said envelopes are disposed in a triangular form within said outer wall.
6. A filter according to claim 1 wherein the carbon charge is contained in at least one closed envelope of porous membrane, said envelope being folded within and longitudinally of said outer wall.
7. A filter according to claim 1, disposed as a centre section between two end sections of fibrous material.
8. A filter according to claim 1, wherein the vapor porous membrane is made of highly porous paper with a porosity of at least 32,000 cm3/min/10 cm2 per 10 cm water gauge pressure.
US413348A 1972-11-13 1973-11-06 Filters for tobacco smoke Expired - Lifetime US3894545A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5234872A GB1410048A (en) 1972-11-13 1972-11-13 Filters for tobacco smoke

Publications (1)

Publication Number Publication Date
US3894545A true US3894545A (en) 1975-07-15

Family

ID=10463572

Family Applications (1)

Application Number Title Priority Date Filing Date
US413348A Expired - Lifetime US3894545A (en) 1972-11-13 1973-11-06 Filters for tobacco smoke

Country Status (12)

Country Link
US (1) US3894545A (en)
JP (1) JPS5615226B2 (en)
AU (1) AU477145B2 (en)
BE (1) BE807245A (en)
BR (1) BR7308860D0 (en)
CA (1) CA992830A (en)
CH (1) CH586026A5 (en)
DE (1) DE2355493A1 (en)
FI (1) FI56616C (en)
GB (1) GB1410048A (en)
NL (1) NL7315175A (en)
ZA (1) ZA738411B (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062368A (en) * 1974-06-24 1977-12-13 Brown & Williamson Tobacco Corporation Tobacco-smoke filters
US4942887A (en) * 1987-06-15 1990-07-24 Fabriques De Tabac Reunies, S.A. Filter mouthpiece for a smoking article
US5261425A (en) * 1990-05-24 1993-11-16 R. J. Reynolds Tobacco Company Cigarette
US5271419A (en) * 1989-09-29 1993-12-21 R. J. Reynolds Tobacco Company Cigarette
US5404890A (en) * 1993-06-11 1995-04-11 R. J. Reynolds Tobacco Company Cigarette filter
US5549125A (en) * 1992-07-04 1996-08-27 British-American Tobacco Company Limited Relating to smoking articles
US5718250A (en) * 1994-10-07 1998-02-17 R. J. Reynolds Tobacco Company Low gas phase filter for cigarettes
WO2002069745A1 (en) 2001-02-22 2002-09-12 Philip Morris Products, Inc. Cigarette and filter with downstream flavor addition
US20030005940A1 (en) * 2000-11-28 2003-01-09 Dyakonov Alexander J. Smoking article including a selective carbon monoxide pump
WO2004086888A2 (en) * 2003-04-02 2004-10-14 Philip Morris Products S.A. Filters including segmented monolithic sorbent for gas-phase filtration
US20040231684A1 (en) * 2003-05-20 2004-11-25 Zawadzki Michael A. Smoking article and smoking article filter
WO2005023026A1 (en) * 2003-07-10 2005-03-17 British American Tobacco (Investments) Limited Improvements relating to smoking article filters
US20050066982A1 (en) * 2003-09-30 2005-03-31 Clark Melissa Ann Filtered cigarette incorporating an adsorbent material
US20050066984A1 (en) * 2003-09-30 2005-03-31 Crooks Evon Llewellyn Filtered cigarette incorporating an adsorbent material
US20050066983A1 (en) * 2003-09-30 2005-03-31 Clark Melissa Ann Filtered cigarette incorporating an adsorbent material
US20050066981A1 (en) * 2003-09-30 2005-03-31 Crooks Evon Llewellyn Filtered cigarette incorporating an adsorbent material
US20050066980A1 (en) * 2003-09-30 2005-03-31 Crooks Evon Llewellyn Filtered cigarette incorporating an adsorbent material
WO2005032287A2 (en) * 2003-09-30 2005-04-14 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US20050121044A1 (en) * 2003-12-09 2005-06-09 Banerjee Chandra K. Catalysts comprising ultrafine particles
US20070056600A1 (en) * 2005-09-14 2007-03-15 R. J. Reynolds Tobacco Company Filtered smoking article
US20070261706A1 (en) * 2004-12-15 2007-11-15 Ashesh Banerjea Cigarette with carbon on tow filter
US20090293894A1 (en) * 2008-06-02 2009-12-03 Philip Morris Usa Inc. Smoking article with transparent section
US20100000552A1 (en) * 2004-11-02 2010-01-07 Woodson Beverley C Temperature Sensitive Powder for Enhanced Flavor Delivery in Smoking Articles
CN103222682A (en) * 2013-04-09 2013-07-31 红云红河烟草(集团)有限责任公司 Binary compound filter rod for tobacco as well as processing method and equipment thereof
US8739802B2 (en) 2006-10-02 2014-06-03 R.J. Reynolds Tobacco Company Filtered cigarette
US10070664B2 (en) 2014-07-17 2018-09-11 Nicoventures Holdings Limited Electronic vapor provision system
US11039642B2 (en) 2011-12-30 2021-06-22 Philip Morris Products S.A. Smoking article with front-plug and aerosol-forming substrate and method
CN113197342A (en) * 2021-05-31 2021-08-03 云南中烟工业有限责任公司 Method for reducing smoke temperature and ensuring smoke amount
US11140916B2 (en) 2012-02-13 2021-10-12 Philip Morris Products S.A. Aerosol-generating article having an aerosol-cooling element
US11272731B2 (en) 2011-12-30 2022-03-15 Philip Morris Products S.A. Aerosol-generating article for use with an aerosol-generating device
US11278052B2 (en) 2012-06-21 2022-03-22 Philip Morris Products S.A. Smoking article for use with an internal heating element
US11571017B2 (en) 2012-05-31 2023-02-07 Philip Morris Products S.A. Flavoured rods for use in aerosol-generating articles
US11582998B2 (en) 2011-12-30 2023-02-21 Philip Morris Products S.A. Smoking article with front-plug and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI67478C (en) * 1979-11-13 1985-04-10 British American Tobacco Co FILTER FOER TOBAKSROEK
IN172374B (en) * 1988-05-16 1993-07-10 Reynolds Tobacco Co R
DE4205658A1 (en) * 1992-02-25 1993-08-26 Reemtsma H F & Ph VENTILATED FILTER CIGARETTE
US7914622B2 (en) * 2005-12-21 2011-03-29 Philip Morris Usa Inc. Smoking article having flavorant materials retained in hollow heat conductive tubes
DE202012103319U1 (en) 2012-08-31 2012-10-11 Lehmann Tabak - Logistik - Fulfillment UG (haftungsbeschränkt) Filter device, flue, their use and system for this purpose
CN107348561B (en) 2016-05-10 2021-11-02 韩力 Micro-explosion microcapsule for smoking article and smoking article comprising same
CN114983015A (en) * 2022-05-24 2022-09-02 云南中烟工业有限责任公司 Interlayer filled hollow triangular filter rod and processing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1009792A (en) * 1909-06-03 1911-11-28 Thomas Walters Salusbury Tobacco-pipe.
US2235100A (en) * 1939-01-09 1941-03-18 George J Deutsch Tobacco pipe
US3388707A (en) * 1965-05-17 1968-06-18 Harris Walter Tobacco smoke filter
US3621851A (en) * 1969-11-26 1971-11-23 Kata Mfg & Filtering Co Filter for smoker's article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1009792A (en) * 1909-06-03 1911-11-28 Thomas Walters Salusbury Tobacco-pipe.
US2235100A (en) * 1939-01-09 1941-03-18 George J Deutsch Tobacco pipe
US3388707A (en) * 1965-05-17 1968-06-18 Harris Walter Tobacco smoke filter
US3621851A (en) * 1969-11-26 1971-11-23 Kata Mfg & Filtering Co Filter for smoker's article

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062368A (en) * 1974-06-24 1977-12-13 Brown & Williamson Tobacco Corporation Tobacco-smoke filters
US4942887A (en) * 1987-06-15 1990-07-24 Fabriques De Tabac Reunies, S.A. Filter mouthpiece for a smoking article
US5271419A (en) * 1989-09-29 1993-12-21 R. J. Reynolds Tobacco Company Cigarette
US5261425A (en) * 1990-05-24 1993-11-16 R. J. Reynolds Tobacco Company Cigarette
US5549125A (en) * 1992-07-04 1996-08-27 British-American Tobacco Company Limited Relating to smoking articles
CN1054271C (en) * 1992-07-04 2000-07-12 英美烟草公司 Improvements relating to smoking articles
US5404890A (en) * 1993-06-11 1995-04-11 R. J. Reynolds Tobacco Company Cigarette filter
US5568819A (en) * 1993-06-11 1996-10-29 R. J. Reynolds Tobacco Company Cigarette filter
US5718250A (en) * 1994-10-07 1998-02-17 R. J. Reynolds Tobacco Company Low gas phase filter for cigarettes
US20030005940A1 (en) * 2000-11-28 2003-01-09 Dyakonov Alexander J. Smoking article including a selective carbon monoxide pump
US20020166563A1 (en) * 2001-02-22 2002-11-14 Richard Jupe Cigarette and filter with downstream flavor addition
US6761174B2 (en) 2001-02-22 2004-07-13 Philip Morris Incorporated Cigarette and filter with downstream flavor addition
US20040187881A1 (en) * 2001-02-22 2004-09-30 Richard Jupe Cigarette and filter with downstream flavor addition
WO2002069745A1 (en) 2001-02-22 2002-09-12 Philip Morris Products, Inc. Cigarette and filter with downstream flavor addition
CZ301372B6 (en) * 2001-02-22 2010-02-03 Philip Morris Products, Inc. Cigarette and aromatic filter located downstream of smoke draught
KR100908752B1 (en) * 2001-02-22 2009-07-22 필립모리스 프로덕츠 인코포레이티드 Cigarettes and filters with added flavoring downstream
US7484511B2 (en) 2001-02-22 2009-02-03 Philip Morris Usa Inc. Cigarette and filter with downstream flavor addition
WO2004086888A3 (en) * 2003-04-02 2005-05-12 Philip Morris Prod Filters including segmented monolithic sorbent for gas-phase filtration
WO2004086888A2 (en) * 2003-04-02 2004-10-14 Philip Morris Products S.A. Filters including segmented monolithic sorbent for gas-phase filtration
US6814786B1 (en) * 2003-04-02 2004-11-09 Philip Morris Usa Inc. Filters including segmented monolithic sorbent for gas-phase filtration
US20040231684A1 (en) * 2003-05-20 2004-11-25 Zawadzki Michael A. Smoking article and smoking article filter
US8141559B2 (en) * 2003-07-10 2012-03-27 British American Tobacco (Investments) Limited Relating to smoking article filters
AU2004269948B2 (en) * 2003-07-10 2008-07-24 British American Tobacco (Investments) Limited Improvements relating to smoking article filters
CN1819780B (en) * 2003-07-10 2011-12-14 英美烟草(投资)有限公司 Improvements relating to smoking article filters
EA011263B1 (en) * 2003-07-10 2009-02-27 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Smoking article filters
AU2004269948B9 (en) * 2003-07-10 2008-09-11 British American Tobacco (Investments) Limited Improvements relating to smoking article filters
WO2005023026A1 (en) * 2003-07-10 2005-03-17 British American Tobacco (Investments) Limited Improvements relating to smoking article filters
US20060219253A1 (en) * 2003-07-10 2006-10-05 Branton Peter J Relating to smoking article filters
US20050066984A1 (en) * 2003-09-30 2005-03-31 Crooks Evon Llewellyn Filtered cigarette incorporating an adsorbent material
US7827997B2 (en) 2003-09-30 2010-11-09 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US9554594B2 (en) 2003-09-30 2017-01-31 R.J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US20050066980A1 (en) * 2003-09-30 2005-03-31 Crooks Evon Llewellyn Filtered cigarette incorporating an adsorbent material
WO2005032287A2 (en) * 2003-09-30 2005-04-14 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US8066011B2 (en) 2003-09-30 2011-11-29 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US20050066983A1 (en) * 2003-09-30 2005-03-31 Clark Melissa Ann Filtered cigarette incorporating an adsorbent material
US7856990B2 (en) 2003-09-30 2010-12-28 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US7240678B2 (en) 2003-09-30 2007-07-10 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
WO2005032287A3 (en) * 2003-09-30 2005-10-06 Reynolds Tobacco Co R Filtered cigarette incorporating an adsorbent material
US20050066981A1 (en) * 2003-09-30 2005-03-31 Crooks Evon Llewellyn Filtered cigarette incorporating an adsorbent material
US20050066982A1 (en) * 2003-09-30 2005-03-31 Clark Melissa Ann Filtered cigarette incorporating an adsorbent material
US7669604B2 (en) 2003-09-30 2010-03-02 R.J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US7237558B2 (en) 2003-09-30 2007-07-03 R. J. Reynolds Tobacco Company Filtered cigarette incorporating an adsorbent material
US20050121044A1 (en) * 2003-12-09 2005-06-09 Banerjee Chandra K. Catalysts comprising ultrafine particles
US20100000552A1 (en) * 2004-11-02 2010-01-07 Woodson Beverley C Temperature Sensitive Powder for Enhanced Flavor Delivery in Smoking Articles
US8286642B2 (en) * 2004-11-02 2012-10-16 Philip Morris Usa Inc. Temperature sensitive powder for enhanced flavor delivery in smoking articles
US20070261706A1 (en) * 2004-12-15 2007-11-15 Ashesh Banerjea Cigarette with carbon on tow filter
US20070056600A1 (en) * 2005-09-14 2007-03-15 R. J. Reynolds Tobacco Company Filtered smoking article
US8739802B2 (en) 2006-10-02 2014-06-03 R.J. Reynolds Tobacco Company Filtered cigarette
US8393334B2 (en) 2008-06-02 2013-03-12 Philip Morris Usa Inc. Smoking article with transparent section
US20090293894A1 (en) * 2008-06-02 2009-12-03 Philip Morris Usa Inc. Smoking article with transparent section
US11039642B2 (en) 2011-12-30 2021-06-22 Philip Morris Products S.A. Smoking article with front-plug and aerosol-forming substrate and method
US11272731B2 (en) 2011-12-30 2022-03-15 Philip Morris Products S.A. Aerosol-generating article for use with an aerosol-generating device
US11582998B2 (en) 2011-12-30 2023-02-21 Philip Morris Products S.A. Smoking article with front-plug and method
US11140916B2 (en) 2012-02-13 2021-10-12 Philip Morris Products S.A. Aerosol-generating article having an aerosol-cooling element
US11571017B2 (en) 2012-05-31 2023-02-07 Philip Morris Products S.A. Flavoured rods for use in aerosol-generating articles
US11278052B2 (en) 2012-06-21 2022-03-22 Philip Morris Products S.A. Smoking article for use with an internal heating element
CN103222682A (en) * 2013-04-09 2013-07-31 红云红河烟草(集团)有限责任公司 Binary compound filter rod for tobacco as well as processing method and equipment thereof
US10070664B2 (en) 2014-07-17 2018-09-11 Nicoventures Holdings Limited Electronic vapor provision system
CN113197342A (en) * 2021-05-31 2021-08-03 云南中烟工业有限责任公司 Method for reducing smoke temperature and ensuring smoke amount
CN113197342B (en) * 2021-05-31 2022-07-12 云南中烟工业有限责任公司 Method for reducing smoke temperature and ensuring smoke quantity

Also Published As

Publication number Publication date
AU6215173A (en) 1975-05-08
CA992830A (en) 1976-07-13
JPS5615226B2 (en) 1981-04-09
JPS49133599A (en) 1974-12-21
FI56616C (en) 1980-03-10
CH586026A5 (en) 1977-03-31
BE807245A (en) 1974-03-01
NL7315175A (en) 1974-05-15
DE2355493A1 (en) 1974-05-22
ZA738411B (en) 1974-09-25
FI56616B (en) 1979-11-30
GB1410048A (en) 1975-10-15
BR7308860D0 (en) 1974-09-05
AU477145B2 (en) 1976-10-14

Similar Documents

Publication Publication Date Title
US3894545A (en) Filters for tobacco smoke
US5549125A (en) Relating to smoking articles
US5718250A (en) Low gas phase filter for cigarettes
CA1169326A (en) Tipping assembly for elongate smoking article
CA2049364C (en) Smoking article
KR101291472B1 (en) Slim Cigarette
US20070181140A1 (en) Smoking article having flavorant materials retained in hollow heat conductive tubes
US20110220134A1 (en) Filter For A Smoking Article
EA007110B1 (en) Ventilated smoking article
US8905037B2 (en) Enhanced subjective activated carbon cigarette
RU2585247C2 (en) Tobacco smoking filter
MX2013015099A (en) Smoking article filter and insertable filter unit therefor.
EA006748B1 (en) Activated carbon fiber cigarette filter
ZA200600187B (en) Improvements relating to smoking article filters
CA1259009A (en) Ventilated cigarette filter
WO2008043988A1 (en) Tobacco smoke filter
GB2090117A (en) Ventilated cigarette tip
US4219033A (en) Tobacco-smoke filters
NO165014B (en) ROEKEARTIKKEL.
CA1045496A (en) Filters for smoking articles
EP0102247B1 (en) Tipping assembly for an elongate smoking article
GB2271709A (en) Cigarette filter