US3893623A - Fluid jet deflection by modulation and coanda selection - Google Patents
Fluid jet deflection by modulation and coanda selection Download PDFInfo
- Publication number
- US3893623A US3893623A US427193A US42719373A US3893623A US 3893623 A US3893623 A US 3893623A US 427193 A US427193 A US 427193A US 42719373 A US42719373 A US 42719373A US 3893623 A US3893623 A US 3893623A
- Authority
- US
- United States
- Prior art keywords
- jet
- stream
- fluid
- droplets
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/07—Ink jet characterised by jet control
- B41J2/075—Ink jet characterised by jet control for many-valued deflection
- B41J2/08—Ink jet characterised by jet control for many-valued deflection charge-control type
- B41J2/085—Charge means, e.g. electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/18—Ink recirculation systems
Definitions
- the deflected droplets are caught in a gutter.
- FIG. 3A VOLTAGE RESERVOIR PATENTED m 8191B SHEE'J 2UP 2 FIG. 3A
- This invention relates to ink jet recording and more particularly to means for forming a continual stream of ink droplets from a continuous stream of ink and then deflecting the droplets formed in response to an input signal.
- the electromagnetic and electrostatic deflection equipment require, in addition to excitation or drop formation means, separate equipment for deflection downstream from the orifice such as magnetic coils as deflection plates in addition to a power supply.
- magnetic deflection means provide relatively slow changes in deflection angle.
- variable excitation plus a transverse air current requires a separate source of pneumatic pressure and shows a substantial chain of drops extending beyond the air slot, so that no suggestion is made that individual drops can be selected on a one for one basis. Rather, the dot stream is shown as being either on or off.
- An object of this invention is to provide a new fluid drop selection technique for switching trajectories of a fluid along alternate trajectories.
- a second object of this invention is to provide a fluid drop selection technique wherein alternate drops are routed along separate trajectories without providing any additional deflection force to the system, other than drop formation excitation.
- a fluid jet switching system in which a high speed stream of fluid is deflected by first modulating the diameter of the stream of ink to produce discrete droplets.
- the droplets are sent past a deflecting surface adjacent to the stream and located down stream from the jet at a critical location where it deflects droplets separated from the stream within a predetermined range of distances from the jet in response to a predetermined range of modulation.
- FIG. 1 is a partially schematic sectional view of an ink jet ejection system made in accordance with this invention.
- FIG. 2 shows a waveform of the voltage signals applied to the excitation electrode of the ink jet.
- FIGS. 3A and 3B show a side view or profile of ink drops in response to various voltage levels of excitation applied at the ink jet as the ink drops form and pass the ink deflecting weir.
- FIG. 4 shows an elevational view of ink ejection nozzles taken along line 44 in FIG. 1.
- An ink jet ejection system shown in FIG. 1 includes a pressure regulated variable output pump 10 preferably made of stainless steel supplying ink to a stainless steel manifold 11 connected to an ink jet 12 composed of a block 13 preferably made of quartz secured to the manifold 11.
- An orifice 14 with a diameter of about 0.002 inches is formed in block 13 by electron beam milling or the like.
- the orifice 14 is about 0.050 inch long, extending through block 13. Orifice 14 communicates with manifold 11 through opening 15. Pump 10 supplies ink under pressure from reservoir 16 to manifold 11 through lines 17 at a pressure level of 25-50 psi so that a continuous stream of ink 18 is ejected from the orifree 14. Air under pressure in manifold II and pressure sensor 25 controlling pump 10 via line 26 regulate pressure in manifold 11.
- FIG. 4 several orifices 14 are shown in parallel alignment with printed circuit electrodes 19 formed around them connected to control wires 20 for connection to control circuits 2], which generate a DC. voltage of about 180 Volts and a series of pulses shown in FIG. 2 having an amplitude of about 10-20 volts yielding higher A1 pulses intended to prevent printing and lower A2 pulses intended to produce printing.
- the effect produced by the Al and A2 pulses respectively upon the ink stream is to perturb the ink jet stream by modulating the waveform envelope of the ink. Relatively high voltages cause the ink jet stream to form relatively larger diameter drops transversely with respect to the axis of the ink jet orifice 14.
- a curved surface weir" 22 is located to contact slightly more than tangentially at its apex 23 the path of the drops excited by the larger Al pulses. But apex 23 is spaced away from the path of the drops excited by the smaller A2 pulses.
- the larger drops strike the surface of weir 22 which is curved in such a way that the drops attach to the surface in accordance with the Coanda effect as shown in FIG. 3A. Portions of such drops detach from the wall but their path is deflected to a lower angle to a sufficient degree so they strike the baffle 30 and spill back into the gutter 31 flowing through drain hole 27 to drain line 28 returning to reservoir 28.
- Baffle 30 prevents deflected ink from striking the paper 29.
- FIG. 2 shows a series of Al and A2 pulses from control circuit 21 of 20 and 10 volts respectively on top of a DC. bias of I volts applied to control wire 20.
- the larger Al pulses cause greater perturbations of the ink jet 12 as shown in FIG. 3A in which case the outer amplitude of the wave is larger and the breaking off of drops from the integral stream occurs earlier than for the A2 jet stream of FIG. 2.
- the A2 drop just above weir apex 23 is just barely clearing that surface without touching it or grazing it and like other A2 drops, it will pass over baffle 30 to strike a target 29.
- the Al drops beyond weir apex 23 decline in elevation along the space defined by a line at angle with respect to the usual A2 path of drops towards the target, with portions of the drops hugging the angle 0 line and portions attached to the curved surface of weir 22 as a function of curvature, the kinetic energy contained in the drops, and the surface tension forces within the drops.
- the apex 23 is spaced within a range from 0.040 to 0. l 50 inch, for example, 0.080 inch away from the nozzle at the apex 23 with a radius of curvature of 0.040 inch.
- the angle 6 is selected as 7 to 8.
- the jet velocity is 700 inches/sec.
- the location of the apex 23 is a function of jet velocity, excitation and jet diameter which determine the distance at which the jet separates into drops.
- baffle 30 It is also possible to follow the separation stage beyond baffle 30 with a raster scanning electrostatic or magnetic deflection unit.
- the ink can include an electrolyte such as HCl although it is preferred that the excitation be achieved by electrostatic forces without current flow between electrodes l9 and the ink jet 18.
- an electrolyte such as HCl although it is preferred that the excitation be achieved by electrostatic forces without current flow between electrodes l9 and the ink jet 18.
- the curved surface can be composed of quartz as shown or brass, aluminum, TEFLON (polytetrafluoroethylene) or a porous material pumped down by pumping means into line 28 to provide filtration.
- Embodiment A periodic perturbation of a cylindrical jet of fluid causes it to disintegrate into droplets of uniform size and spacing as shown in FIG. 3A.
- D/2 is about one jet radius.
- the most unstable mode of the jet corresponds to a drop spacing A of about 4 l/2 jet diameters, or, using l to a frequency of perturbation At this frequency, one easily infers that the ratio of the diameter of the unperturbed jet and to the diameter of the drops d is about l/2,
- a capilliary jet or drop strikes a convex solid surface 22 as depicted in FIG. 1, with an impact parameter b of less than one drop radius, then it flattens and adheres to the surface provided the radius of curvature of the target, the drop diameter, and the velocity of the drop or jet are suitably chosen.
- an impact parameter b of about l/6 of a drop diameter is sufficient to cause capture of a drop by a suitable convex target surface.
- the phenomenon of adherence and capture of a capilliary drop or jet described above can be used to capture selectively deflected drops from a jet subjected to a perturbation of fixed frequency and amplitude as depicted in FIG. 1.
- the amount of deflection necessary to capture a drop by this means is about 1/10 the amount required by usual means such as electrostatic deflection. In those cases, what corresponds to the impact parameter b must be one drop diameter plus a margin of clearance.
- the preferred method of capturing an arbitrary subsequence of a uniform drop stream is by modulation of the amplitude of the perturbation of the jet.
- This scheme of capturing drops without any selective deflectionis as follows. Two levels of the amplitude of the perturbation are chosen. To each level there corresponds a drop separation distance, say L and L At a distance L, L L, from the nozzle a convex target is placed such that, at the smaller amplitude, the continuous portion of the jet just grazes the target, or has a slightly negative impact parameter, as in FIG. 38. At the larger amplitude of perturbation the drop detachment point lies between the nozzle and the target as in FIG. 3A. Since the ratio of drop to jet diameters is about 2 at the optimal frequency, a difference in impact parameters of about one drop radius can be achieved by suitable location of the target.
- the throw distance from nozzle to paper can be as small as V4 inch, thus practically eliminating aerodynamic errors in placement accuracy.
- a multiple nozzle printing element operating under this principle must have separately addressable drop generators so that the amplitude of each perturbation can be separately controlled.
- a fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact with an impact parameter sufficient to cause capture of a drop by said convex surface and thereby deflect droplets separated from said stream within a predetermined range of distances from said jet means in response to a predetermined range of modulation.
- a fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact and thereby deflect droplets separated from said stream within a predetermined range of distances from said jet means in response to a predetermined range of modulation, said droplet deflecting surface comprising a curved surface having an apex parallel to the direction of said jet adjacent to the drop detachment point of 6 said jet.
- said means for modulating comprises a source of varying electrical potential with an electrode adjacent the end of said jet means nearest said deflecting surface.
- a fluid jet switching system including jet means for producing a high speed stream of fluid, means for frequency modulating to vary the size and diameter of said stream of fluid to produce discrete droplets with varying diameters, a convex droplet deflecting surface positioned immediately adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact selected droplets with an impact parameter sufficient to cause capture of a drop by said convex surface having a lateral diameter greater when passing said deflecting surface than a predetermined diameter thereby providing a transverse deflection force to said selected droplets, said selected droplets being generated by a predetermined amount of modulation.
- a fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet selection deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact and thereby deflect droplets larger than a predetermined diameter from hitting a target, when said droplets are within a predetermined range of distances from said jet means in response to a predetermined range of modulation, and said contact of droplets being with an impact parameter sufficient to cause capture of said larger diameter droplets by said selection surface.
- said droplet selection deflecting surface comprises a curved surface having an apex parallel to the direction of said jet adjacent to the drop detachment point of said jet.
- said means for modulating comprises a source of varying electrical potential with an electrode adjacent the end of said jet means nearest said deflecting surface.
Landscapes
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
An ink jet recording system emits a stream of ink which is amplitude or frequency modulated to produce discrete droplets. A weir is located adjacent to the trajectory of the droplets, downstream from the jet orifice, and at a critical location near the point of drop formation where it contacts and deflects droplets of larger transverse diameter. Amplitude modulation yields ink drops of basically the same volume which break off before and after the weir, with those which break off earlier being deflected during an initial interval while they have a large transverse diameter. In frequency modulation the actual size of the drops and ultimate diameter are modulated. Such deflected droplets separate from the stream closer to the jet orifice. The deflected droplets are caught in a gutter.
Description
United States Patent [1 1 [111 3,893,623 Toupin July 8, 1975 FLUID JET DEFLECTIO BY Primary Examiner-M. Henson Wood, Jr.
MODULATION AND COANDA SELECTION Assistant ExaminerJohn J. Love [75] Inventor: Richard A. Toupin, Briarcliff Attorney Agent or Firm-Graham Jones n Manor, NY.
[73] Assignee: International Business Machines [57] ABSTRACT 'p m Armonk, An ink jet recording system emits a stream of ink [22] Filed: 21, 1973 which is amplitude or frequency modulated to produce discrete droplets. A weir is located adjacent to pp No.: 427,193 the trajectory of the droplets, downstream from the jet orifice, and at a critical location near the point of drop 52 vs. C]. 239/102; 239/523; 346/75 formation Where it Contacts and deflects droplets of 51 Int. Cl B05!) 1/08 larger transverse diameter Amplitude modulation 58 Field of Search 346/75; 239/15, 101, 102, yields ink drops of basically the same volume which 239/122 124, DIG 7 DIG 3 5 break off before and after the weir, with those which break off earlier being deflected during an initial inter- [56] References Cited val while thdeyI htave ahlarge transvers: ckiliargeter. lndfriquency mo u a ion t e actua size 0 t e rops an u UNITED STATES PATENTS timate diameter are modulated. Such deflected drop- 3,5l2,l73 5/1970 Damouth 346/75 lets separate from the stream closer to the j Orifice.
The deflected droplets are caught in a gutter.
7 Claims, 5 Drawing Figures I 0.0. Pom SUPPLY I PULSE GENERATOR 1{ PIJIP RESERVOlR PATENTFPJLIL 8 I975 saw 10F 2 I *1 I 0.0. POWER SUPPLY ww I PULSE GENERATOR L FIG.1
VOLTAGE RESERVOIR PATENTED m 8191B SHEE'J 2UP 2 FIG. 3A
FIG. 3B
4 m In FLUID JET DEFLECTION BY MODULATION AND COANDA SELECTION BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to ink jet recording and more particularly to means for forming a continual stream of ink droplets from a continuous stream of ink and then deflecting the droplets formed in response to an input signal.
2. Description of the Prior Art In the prior art, deflection of an ink jet stream has been effected by control of electrostatic, and electromagnetic deflection. In addition, aerodynamic switching has been provided by variation of stimulation energy combined with provision of a transverse air flow as shown by Robertson U.S. Pat. No. 3,709,432 in which a fluid stream is deflected to a catcher, but separate drops are deflected less and reach the target.
The electromagnetic and electrostatic deflection equipment require, in addition to excitation or drop formation means, separate equipment for deflection downstream from the orifice such as magnetic coils as deflection plates in addition to a power supply. In addition magnetic deflection means provide relatively slow changes in deflection angle.
The use of variable excitation plus a transverse air current as shown in U.S. Pat. No. 3,709,432 requires a separate source of pneumatic pressure and shows a substantial chain of drops extending beyond the air slot, so that no suggestion is made that individual drops can be selected on a one for one basis. Rather, the dot stream is shown as being either on or off.
The use of a curved surface to carry drops of ink into a catcher after they have hit the surface 70 of the catcher is shown in U.S. Pat. No. 3,777,307 of Duffield. The drops hitting surface 70 are given an electrical charge during formation and then deflected by an electrical field applied between a deflection ribbon and the catchers. The deflection away from the stream is completed by the time the drop intercepts the catcher, and is independent of drop diameter.
SUMMARY OF THE INVENTION An object of this invention is to provide a new fluid drop selection technique for switching trajectories of a fluid along alternate trajectories.
A second object of this invention is to provide a fluid drop selection technique wherein alternate drops are routed along separate trajectories without providing any additional deflection force to the system, other than drop formation excitation.
In accordance with this invention a fluid jet switching system is provided in which a high speed stream of fluid is deflected by first modulating the diameter of the stream of ink to produce discrete droplets. The droplets are sent past a deflecting surface adjacent to the stream and located down stream from the jet at a critical location where it deflects droplets separated from the stream within a predetermined range of distances from the jet in response to a predetermined range of modulation.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially schematic sectional view of an ink jet ejection system made in accordance with this invention.
FIG. 2 shows a waveform of the voltage signals applied to the excitation electrode of the ink jet.
FIGS. 3A and 3B show a side view or profile of ink drops in response to various voltage levels of excitation applied at the ink jet as the ink drops form and pass the ink deflecting weir.
FIG. 4 shows an elevational view of ink ejection nozzles taken along line 44 in FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT An ink jet ejection system shown in FIG. 1 includes a pressure regulated variable output pump 10 preferably made of stainless steel supplying ink to a stainless steel manifold 11 connected to an ink jet 12 composed of a block 13 preferably made of quartz secured to the manifold 11. An orifice 14 with a diameter of about 0.002 inches is formed in block 13 by electron beam milling or the like.
The orifice 14 is about 0.050 inch long, extending through block 13. Orifice 14 communicates with manifold 11 through opening 15. Pump 10 supplies ink under pressure from reservoir 16 to manifold 11 through lines 17 at a pressure level of 25-50 psi so that a continuous stream of ink 18 is ejected from the orifree 14. Air under pressure in manifold II and pressure sensor 25 controlling pump 10 via line 26 regulate pressure in manifold 11.
In FIG. 4, several orifices 14 are shown in parallel alignment with printed circuit electrodes 19 formed around them connected to control wires 20 for connection to control circuits 2], which generate a DC. voltage of about 180 Volts and a series of pulses shown in FIG. 2 having an amplitude of about 10-20 volts yielding higher A1 pulses intended to prevent printing and lower A2 pulses intended to produce printing. The effect produced by the Al and A2 pulses respectively upon the ink stream is to perturb the ink jet stream by modulating the waveform envelope of the ink. Relatively high voltages cause the ink jet stream to form relatively larger diameter drops transversely with respect to the axis of the ink jet orifice 14. A curved surface weir" 22 is located to contact slightly more than tangentially at its apex 23 the path of the drops excited by the larger Al pulses. But apex 23 is spaced away from the path of the drops excited by the smaller A2 pulses. Thus the larger drops strike the surface of weir 22 which is curved in such a way that the drops attach to the surface in accordance with the Coanda effect as shown in FIG. 3A. Portions of such drops detach from the wall but their path is deflected to a lower angle to a sufficient degree so they strike the baffle 30 and spill back into the gutter 31 flowing through drain hole 27 to drain line 28 returning to reservoir 28. Baffle 30 prevents deflected ink from striking the paper 29.
FIG. 2 shows a series of Al and A2 pulses from control circuit 21 of 20 and 10 volts respectively on top of a DC. bias of I volts applied to control wire 20. The larger Al pulses cause greater perturbations of the ink jet 12 as shown in FIG. 3A in which case the outer amplitude of the wave is larger and the breaking off of drops from the integral stream occurs earlier than for the A2 jet stream of FIG. 2. Note in FIG. 3A that the A2 drop just above weir apex 23 is just barely clearing that surface without touching it or grazing it and like other A2 drops, it will pass over baffle 30 to strike a target 29. The Al drops beyond weir apex 23 decline in elevation along the space defined by a line at angle with respect to the usual A2 path of drops towards the target, with portions of the drops hugging the angle 0 line and portions attached to the curved surface of weir 22 as a function of curvature, the kinetic energy contained in the drops, and the surface tension forces within the drops.
Preferably the apex 23 is spaced within a range from 0.040 to 0. l 50 inch, for example, 0.080 inch away from the nozzle at the apex 23 with a radius of curvature of 0.040 inch. The angle 6 is selected as 7 to 8. The jet velocity is 700 inches/sec. However, the location of the apex 23 is a function of jet velocity, excitation and jet diameter which determine the distance at which the jet separates into drops.
It is also possible to follow the separation stage beyond baffle 30 with a raster scanning electrostatic or magnetic deflection unit.
The ink can include an electrolyte such as HCl although it is preferred that the excitation be achieved by electrostatic forces without current flow between electrodes l9 and the ink jet 18.
The curved surface can be composed of quartz as shown or brass, aluminum, TEFLON (polytetrafluoroethylene) or a porous material pumped down by pumping means into line 28 to provide filtration.
Physical Concepts Applied in Embodiment A periodic perturbation of a cylindrical jet of fluid causes it to disintegrate into droplets of uniform size and spacing as shown in FIG. 3A. The frequency of the perturbation f, the velocity v of the jet, and the drop spacing A are in the relation L=v(ln 2a )3. (2)
where D/2 is about one jet radius. The most unstable mode of the jet corresponds to a drop spacing A of about 4 l/2 jet diameters, or, using l to a frequency of perturbation At this frequency, one easily infers that the ratio of the diameter of the unperturbed jet and to the diameter of the drops d is about l/2,
d 2 (at optimal frequency) At a fixed amplitude of perturbation, there is a portion of the convex curve of tangency to the modulated jet which is exponentially increasing in amplitude to distance L and by varying the amplitude of the modulation the drop separation point can be shifted'between the boundaries of this exponential rise. The above properties of capilliary jets are well known and easily demonstrated.
Less familiar but equally demonstrable is the fact that if a capilliary jet or drop strikes a convex solid surface 22 as depicted in FIG. 1, with an impact parameter b of less than one drop radius, then it flattens and adheres to the surface provided the radius of curvature of the target, the drop diameter, and the velocity of the drop or jet are suitably chosen. In general, an impact parameter b of about l/6 of a drop diameter is sufficient to cause capture of a drop by a suitable convex target surface.
The phenomenon of adherence and capture of a capilliary drop or jet described above can be used to capture selectively deflected drops from a jet subjected to a perturbation of fixed frequency and amplitude as depicted in FIG. 1.
The amount of deflection necessary to capture a drop by this means is about 1/10 the amount required by usual means such as electrostatic deflection. In those cases, what corresponds to the impact parameter b must be one drop diameter plus a margin of clearance.
There are two means in accordance with this invention of capturing capilliary drops which do not require any selective deflection whatever. The first is by fre quency modulation" and the second is by amplitude modulation of the perturbation a.
A. Frequency Modulation If the frequency of the perturbation is changed by a factor of 2 and the velocity is held constant, the diameters of the resulting drops are in the ratio Thus, if the target is disposed relative to the nozzle at some distance larger than the drop separation length L, and such that the smaller (high freq.) drops graze the target and are not captured, the larger (low freq.) drops will have an impact parameter b of about .l25d By this method, two or more drops in sequence may be abstracted from a uniform stream of drops of the smaller size. Printing in this scheme is achieved by blanks corresponding to removal of an even number of drops.
B. Amplitude Modulation The preferred method of capturing an arbitrary subsequence of a uniform drop stream is by modulation of the amplitude of the perturbation of the jet. This scheme of capturing drops without any selective deflectionis as follows. Two levels of the amplitude of the perturbation are chosen. To each level there corresponds a drop separation distance, say L and L At a distance L, L L, from the nozzle a convex target is placed such that, at the smaller amplitude, the continuous portion of the jet just grazes the target, or has a slightly negative impact parameter, as in FIG. 38. At the larger amplitude of perturbation the drop detachment point lies between the nozzle and the target as in FIG. 3A. Since the ratio of drop to jet diameters is about 2 at the optimal frequency, a difference in impact parameters of about one drop radius can be achieved by suitable location of the target.
Advantages of this method of drop shuttering are a. No electrostatic fields, electrodes or other deflecting means are necessary.
b. The throw distance from nozzle to paper can be as small as V4 inch, thus practically eliminating aerodynamic errors in placement accuracy.
c. The only electronic circuits needed are for the drop formation generator.
d. The only material property of the fluid relevant to the process is its surface tension and even this does not have to be controlled too closely.
A multiple nozzle printing element operating under this principle must have separately addressable drop generators so that the amplitude of each perturbation can be separately controlled. Several schemes for achieving this seem possible.
What is claimed is:
l. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact with an impact parameter sufficient to cause capture of a drop by said convex surface and thereby deflect droplets separated from said stream within a predetermined range of distances from said jet means in response to a predetermined range of modulation.
2. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact and thereby deflect droplets separated from said stream within a predetermined range of distances from said jet means in response to a predetermined range of modulation, said droplet deflecting surface comprising a curved surface having an apex parallel to the direction of said jet adjacent to the drop detachment point of 6 said jet.
3. Apparatus in accordance with claim 1 wherein said means for modulating comprises a source of varying electrical potential with an electrode adjacent the end of said jet means nearest said deflecting surface.
4. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for frequency modulating to vary the size and diameter of said stream of fluid to produce discrete droplets with varying diameters, a convex droplet deflecting surface positioned immediately adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact selected droplets with an impact parameter sufficient to cause capture of a drop by said convex surface having a lateral diameter greater when passing said deflecting surface than a predetermined diameter thereby providing a transverse deflection force to said selected droplets, said selected droplets being generated by a predetermined amount of modulation.
5. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet selection deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact and thereby deflect droplets larger than a predetermined diameter from hitting a target, when said droplets are within a predetermined range of distances from said jet means in response to a predetermined range of modulation, and said contact of droplets being with an impact parameter sufficient to cause capture of said larger diameter droplets by said selection surface.
6. Apparatus in accordance with claim 5 wherein said droplet selection deflecting surface comprises a curved surface having an apex parallel to the direction of said jet adjacent to the drop detachment point of said jet.
7. Apparatus in accordance with claim 5 wherein said means for modulating comprises a source of varying electrical potential with an electrode adjacent the end of said jet means nearest said deflecting surface.
Claims (7)
1. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact with an impact parameter sufficient to cause capture of a drop by said convex surface and thereby deflect droplets separated from said stream within a predetermined range of distances from said jet means in response to a predetermined range of modulation.
2. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location Adapted to contact and thereby deflect droplets separated from said stream within a predetermined range of distances from said jet means in response to a predetermined range of modulation, said droplet deflecting surface comprising a curved surface having an apex parallel to the direction of said jet adjacent to the drop detachment point of said jet.
3. Apparatus in accordance with claim 1 wherein said means for modulating comprises a source of varying electrical potential with an electrode adjacent the end of said jet means nearest said deflecting surface.
4. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for frequency modulating to vary the size and diameter of said stream of fluid to produce discrete droplets with varying diameters, a convex droplet deflecting surface positioned immediately adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact selected droplets with an impact parameter sufficient to cause capture of a drop by said convex surface having a lateral diameter greater when passing said deflecting surface than a predetermined diameter thereby providing a transverse deflection force to said selected droplets, said selected droplets being generated by a predetermined amount of modulation.
5. A fluid jet switching system including jet means for producing a high speed stream of fluid, means for modulating the diameter of said stream of fluid to produce discrete droplets, a droplet selection deflecting surface adjacent to said stream of fluid located downstream from said jet means at a critical location adapted to contact and thereby deflect droplets larger than a predetermined diameter from hitting a target, when said droplets are within a predetermined range of distances from said jet means in response to a predetermined range of modulation, and said contact of droplets being with an impact parameter sufficient to cause capture of said larger diameter droplets by said selection surface.
6. Apparatus in accordance with claim 5 wherein said droplet selection deflecting surface comprises a curved surface having an apex parallel to the direction of said jet adjacent to the drop detachment point of said jet.
7. Apparatus in accordance with claim 5 wherein said means for modulating comprises a source of varying electrical potential with an electrode adjacent the end of said jet means nearest said deflecting surface.
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL6818587A NL6818587A (en) | 1967-12-28 | 1968-12-24 | |
US427193A US3893623A (en) | 1967-12-28 | 1973-12-21 | Fluid jet deflection by modulation and coanda selection |
FR7441889A FR2255112B1 (en) | 1973-12-21 | 1974-10-22 | |
GB4668274A GB1446269A (en) | 1973-12-21 | 1974-10-29 | Ink jet recording |
DE2453036A DE2453036C3 (en) | 1973-12-21 | 1974-11-08 | Inkjet printer |
JP12965674A JPS5518626B2 (en) | 1973-12-21 | 1974-11-12 | |
IT29425/74A IT1025690B (en) | 1973-12-21 | 1974-11-14 | SYSTEM FOR THE FORMATION AND DEFLE SION OF DROPS IN PARTICULAR FOR INK JET PRINTERS |
CA214,169A CA1014592A (en) | 1973-12-21 | 1974-11-19 | Fluid jet deflection by modulation and coanda selection |
CH1536574A CH572397A5 (en) | 1973-12-21 | 1974-11-19 | |
YU3223/74A YU35853B (en) | 1973-12-21 | 1974-12-06 | Marker with ink jet |
NL7416099A NL7416099A (en) | 1973-12-21 | 1974-12-11 | DROP SELECTION DEVICE. |
ES432831A ES432831A1 (en) | 1973-12-21 | 1974-12-12 | Ink jet recording |
SE7415971A SE403842B (en) | 1973-12-21 | 1974-12-19 | DEVICE FOR LIQUID RAY DETECTION |
BE151787A BE823683A (en) | 1973-12-21 | 1974-12-20 | SWITCHING DEVICE FOR FLUID DROPS |
CS748844A CS203902B2 (en) | 1973-12-21 | 1974-12-20 | System for record by the ink ray |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69426467A | 1967-12-28 | 1967-12-28 | |
US427193A US3893623A (en) | 1967-12-28 | 1973-12-21 | Fluid jet deflection by modulation and coanda selection |
Publications (1)
Publication Number | Publication Date |
---|---|
US3893623A true US3893623A (en) | 1975-07-08 |
Family
ID=27027322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US427193A Expired - Lifetime US3893623A (en) | 1967-12-28 | 1973-12-21 | Fluid jet deflection by modulation and coanda selection |
Country Status (2)
Country | Link |
---|---|
US (1) | US3893623A (en) |
NL (1) | NL6818587A (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949410A (en) * | 1975-01-23 | 1976-04-06 | International Business Machines Corporation | Jet nozzle structure for electrohydrodynamic droplet formation and ink jet printing system therewith |
US4035811A (en) * | 1976-07-12 | 1977-07-12 | The Mead Corporation | Ink jet recorder and catcher therefor |
US4070679A (en) * | 1975-06-30 | 1978-01-24 | International Business Machines Corporation | Method and apparatus for recording information on a recording surface by the use of magnetic ink |
US4138686A (en) * | 1977-04-06 | 1979-02-06 | Graf Ronald E | Electrostatic neutral ink printer |
US4175266A (en) * | 1975-05-13 | 1979-11-20 | Nippon Telegraph And Telephone Public Corporation | Grooved deflection electrodes in an ink jet system printer |
US4242688A (en) * | 1978-10-27 | 1980-12-30 | U.S. Philips Corporation | Ink jet printer |
US4249188A (en) * | 1979-02-27 | 1981-02-03 | Graf Ronald E | Uncharged ink drop rastering, monitoring, and control |
US4253103A (en) * | 1976-03-12 | 1981-02-24 | Siemens Aktiengesellschaft | Ink supply container for ink writing systems |
US4264910A (en) * | 1979-04-20 | 1981-04-28 | Graf Ronald E | Electrostatically controlled and segmented liquid ribbon |
US4336547A (en) * | 1979-09-28 | 1982-06-22 | Sharp Kabushiki Kaisha | Pump synchronization in an ink jet system printer |
US4442440A (en) * | 1982-04-05 | 1984-04-10 | Xerox Corporation | Ink jet gutter method and apparatus |
WO1988001572A1 (en) * | 1986-08-28 | 1988-03-10 | Commonwealth Scientific And Industrial Research Or | Liquid stream deflection printing method and apparatus |
US4757328A (en) * | 1987-02-06 | 1988-07-12 | Eastman Kodak Company | Ink jet charging plant and drop-catcher assembly |
WO1988006525A1 (en) * | 1987-03-02 | 1988-09-07 | Commonwealth Scientific And Industrial Research Or | Stream deflection jet body for liquid jet printers |
AU593140B2 (en) * | 1986-08-28 | 1990-02-01 | Commonwealth Scientific And Industrial Research Organisation | Liquid stream deflection printing method and apparatus |
AU602760B2 (en) * | 1987-03-02 | 1990-10-25 | Commonwealth Scientific And Industrial Research Organisation | Stream deflection jet body for liquid jet printers |
FR2698584A1 (en) * | 1992-11-30 | 1994-06-03 | Imaje Sa | Ink recovery appts in printer head |
US5922247A (en) * | 1997-07-28 | 1999-07-13 | Green Clouds Ltd. | Ultrasonic device for atomizing liquids |
EP0911161A3 (en) * | 1997-10-17 | 1999-12-08 | Eastman Kodak Company | Continuous ink jet printer with micromechanical actuator drop deflection |
US6012805A (en) * | 1997-10-17 | 2000-01-11 | Eastman Kodak Company | Continuous ink jet printer with variable contact drop deflection |
EP1013425A3 (en) * | 1998-12-14 | 2000-08-23 | SCITEX DIGITAL PRINTING, Inc. | Print window improvement for continous ink jet printer |
US6213595B1 (en) | 1998-12-28 | 2001-04-10 | Eastman Kodak Company | Continuous ink jet print head having power-adjustable segmented heaters |
US6217163B1 (en) | 1998-12-28 | 2001-04-17 | Eastman Kodak Company | Continuous ink jet print head having multi-segment heaters |
EP1110732A3 (en) * | 1999-12-22 | 2002-06-12 | Eastman Kodak Company | Deflection enhancement for continuous ink jet printers |
US6536873B1 (en) | 2000-06-30 | 2003-03-25 | Eastman Kodak Company | Drop-on-demand ink jet printer capable of directional control of ink drop ejection and method of assembling the printer |
EP1314567A1 (en) * | 2001-11-02 | 2003-05-28 | Eastman Kodak Company | Continuous ink jet catcher having delimiting edge and ink accumulation border |
US6986566B2 (en) | 1999-12-22 | 2006-01-17 | Eastman Kodak Company | Liquid emission device |
US20070064068A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US20080158327A1 (en) * | 2007-01-03 | 2008-07-03 | Robert P. Siegel | Portable system for large area printing |
US20090033727A1 (en) * | 2007-07-31 | 2009-02-05 | Anagnostopoulos Constantine N | Lateral flow device printhead with internal gutter |
US20100039465A1 (en) * | 2004-10-04 | 2010-02-18 | Steiner Thomas W | Non-conductive fluid droplet characterizing apparatus and method |
US20100208013A1 (en) * | 2007-10-12 | 2010-08-19 | Jerzy Zaba | Ink jet printing |
US20100271436A1 (en) * | 2009-04-24 | 2010-10-28 | Piatt Michael J | Printhead with liquid flow through device |
US20100277552A1 (en) * | 2009-04-29 | 2010-11-04 | Yonglin Xie | Jet directionality control using printhead delivery channel |
US20100277522A1 (en) * | 2009-04-29 | 2010-11-04 | Yonglin Xie | Printhead configuration to control jet directionality |
US20100277529A1 (en) * | 2009-04-29 | 2010-11-04 | Yonglin Xie | Jet directionality control using printhead nozzle |
US20120026261A1 (en) * | 2010-07-27 | 2012-02-02 | Yonglin Xie | Moving liquid curtain catcher |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3512173A (en) * | 1967-12-28 | 1970-05-12 | Xerox Corp | Alphanumeric ink droplet recorder |
-
1968
- 1968-12-24 NL NL6818587A patent/NL6818587A/xx unknown
-
1973
- 1973-12-21 US US427193A patent/US3893623A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3512173A (en) * | 1967-12-28 | 1970-05-12 | Xerox Corp | Alphanumeric ink droplet recorder |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949410A (en) * | 1975-01-23 | 1976-04-06 | International Business Machines Corporation | Jet nozzle structure for electrohydrodynamic droplet formation and ink jet printing system therewith |
US4175266A (en) * | 1975-05-13 | 1979-11-20 | Nippon Telegraph And Telephone Public Corporation | Grooved deflection electrodes in an ink jet system printer |
US4070679A (en) * | 1975-06-30 | 1978-01-24 | International Business Machines Corporation | Method and apparatus for recording information on a recording surface by the use of magnetic ink |
US4253103A (en) * | 1976-03-12 | 1981-02-24 | Siemens Aktiengesellschaft | Ink supply container for ink writing systems |
US4035811A (en) * | 1976-07-12 | 1977-07-12 | The Mead Corporation | Ink jet recorder and catcher therefor |
US4138686A (en) * | 1977-04-06 | 1979-02-06 | Graf Ronald E | Electrostatic neutral ink printer |
US4242688A (en) * | 1978-10-27 | 1980-12-30 | U.S. Philips Corporation | Ink jet printer |
US4249188A (en) * | 1979-02-27 | 1981-02-03 | Graf Ronald E | Uncharged ink drop rastering, monitoring, and control |
US4264910A (en) * | 1979-04-20 | 1981-04-28 | Graf Ronald E | Electrostatically controlled and segmented liquid ribbon |
US4336547A (en) * | 1979-09-28 | 1982-06-22 | Sharp Kabushiki Kaisha | Pump synchronization in an ink jet system printer |
US4442440A (en) * | 1982-04-05 | 1984-04-10 | Xerox Corporation | Ink jet gutter method and apparatus |
WO1988001572A1 (en) * | 1986-08-28 | 1988-03-10 | Commonwealth Scientific And Industrial Research Or | Liquid stream deflection printing method and apparatus |
AU593140B2 (en) * | 1986-08-28 | 1990-02-01 | Commonwealth Scientific And Industrial Research Organisation | Liquid stream deflection printing method and apparatus |
US4757328A (en) * | 1987-02-06 | 1988-07-12 | Eastman Kodak Company | Ink jet charging plant and drop-catcher assembly |
WO1988006525A1 (en) * | 1987-03-02 | 1988-09-07 | Commonwealth Scientific And Industrial Research Or | Stream deflection jet body for liquid jet printers |
AU602760B2 (en) * | 1987-03-02 | 1990-10-25 | Commonwealth Scientific And Industrial Research Organisation | Stream deflection jet body for liquid jet printers |
FR2698584A1 (en) * | 1992-11-30 | 1994-06-03 | Imaje Sa | Ink recovery appts in printer head |
US5922247A (en) * | 1997-07-28 | 1999-07-13 | Green Clouds Ltd. | Ultrasonic device for atomizing liquids |
EP0911161A3 (en) * | 1997-10-17 | 1999-12-08 | Eastman Kodak Company | Continuous ink jet printer with micromechanical actuator drop deflection |
US6012805A (en) * | 1997-10-17 | 2000-01-11 | Eastman Kodak Company | Continuous ink jet printer with variable contact drop deflection |
EP0911165A3 (en) * | 1997-10-17 | 2000-06-14 | Eastman Kodak Company | Continuous ink jet printer with variable contact drop deflection |
EP1013425A3 (en) * | 1998-12-14 | 2000-08-23 | SCITEX DIGITAL PRINTING, Inc. | Print window improvement for continous ink jet printer |
US6213595B1 (en) | 1998-12-28 | 2001-04-10 | Eastman Kodak Company | Continuous ink jet print head having power-adjustable segmented heaters |
US6217163B1 (en) | 1998-12-28 | 2001-04-17 | Eastman Kodak Company | Continuous ink jet print head having multi-segment heaters |
EP1110732A3 (en) * | 1999-12-22 | 2002-06-12 | Eastman Kodak Company | Deflection enhancement for continuous ink jet printers |
US6761437B2 (en) | 1999-12-22 | 2004-07-13 | Eastman Kodak Company | Apparatus and method of enhancing fluid deflection in a continuous ink jet printhead |
US6986566B2 (en) | 1999-12-22 | 2006-01-17 | Eastman Kodak Company | Liquid emission device |
US6497510B1 (en) | 1999-12-22 | 2002-12-24 | Eastman Kodak Company | Deflection enhancement for continuous ink jet printers |
US6536873B1 (en) | 2000-06-30 | 2003-03-25 | Eastman Kodak Company | Drop-on-demand ink jet printer capable of directional control of ink drop ejection and method of assembling the printer |
EP1314567A1 (en) * | 2001-11-02 | 2003-05-28 | Eastman Kodak Company | Continuous ink jet catcher having delimiting edge and ink accumulation border |
US6820970B2 (en) | 2001-11-02 | 2004-11-23 | Eastman Kodak Company | Continuous ink jet catcher having delimiting edge and ink accumulation border |
US20100039465A1 (en) * | 2004-10-04 | 2010-02-18 | Steiner Thomas W | Non-conductive fluid droplet characterizing apparatus and method |
US8220907B2 (en) | 2004-10-04 | 2012-07-17 | Kodak Graphic Communications Canada Company | Non-conductive fluid droplet characterizing apparatus and method |
US20070064068A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US20080122900A1 (en) * | 2005-09-16 | 2008-05-29 | Piatt Michael J | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US7364276B2 (en) * | 2005-09-16 | 2008-04-29 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US20080158327A1 (en) * | 2007-01-03 | 2008-07-03 | Robert P. Siegel | Portable system for large area printing |
US20090033727A1 (en) * | 2007-07-31 | 2009-02-05 | Anagnostopoulos Constantine N | Lateral flow device printhead with internal gutter |
WO2009017611A1 (en) * | 2007-07-31 | 2009-02-05 | Eastman Kodak Company | Lateral flow device printhead with integral gutter |
US20100208013A1 (en) * | 2007-10-12 | 2010-08-19 | Jerzy Zaba | Ink jet printing |
US8366252B2 (en) * | 2007-10-12 | 2013-02-05 | Videojet Technologies Inc. | Ink jet printing |
US7850283B2 (en) | 2009-04-24 | 2010-12-14 | Eastman Kodak Company | Printhead with liquid flow through device |
US20100271436A1 (en) * | 2009-04-24 | 2010-10-28 | Piatt Michael J | Printhead with liquid flow through device |
US20100277529A1 (en) * | 2009-04-29 | 2010-11-04 | Yonglin Xie | Jet directionality control using printhead nozzle |
US7938517B2 (en) | 2009-04-29 | 2011-05-10 | Eastman Kodak Company | Jet directionality control using printhead delivery channel |
US8091983B2 (en) | 2009-04-29 | 2012-01-10 | Eastman Kodak Company | Jet directionality control using printhead nozzle |
US20100277522A1 (en) * | 2009-04-29 | 2010-11-04 | Yonglin Xie | Printhead configuration to control jet directionality |
US20100277552A1 (en) * | 2009-04-29 | 2010-11-04 | Yonglin Xie | Jet directionality control using printhead delivery channel |
US20120026261A1 (en) * | 2010-07-27 | 2012-02-02 | Yonglin Xie | Moving liquid curtain catcher |
US8382258B2 (en) * | 2010-07-27 | 2013-02-26 | Eastman Kodak Company | Moving liquid curtain catcher |
Also Published As
Publication number | Publication date |
---|---|
NL6818587A (en) | 1969-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3893623A (en) | Fluid jet deflection by modulation and coanda selection | |
US8104879B2 (en) | Printing by differential ink jet deflection | |
EP1219428B1 (en) | Ink jet apparatus having amplified asymmetric heating drop deflection | |
US4346387A (en) | Method and apparatus for controlling the electric charge on droplets and ink-jet recorder incorporating the same | |
US3877036A (en) | Precise jet alignment for ink jet printer | |
US5489929A (en) | Liquid-projection method and device for high-resolution printing in a continuous ink-jet printer | |
US4220958A (en) | Ink jet electrohydrodynamic exciter | |
WO1990014233A1 (en) | Liquid jet recording process and apparatus therefore | |
US8740359B2 (en) | Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths | |
JPH11216867A (en) | Continuous ink jet printer with binary electrostatic deflection | |
US3928855A (en) | Method and apparatus for controlling satellites in an ink jet printing system | |
US5049899A (en) | Method of high resolution printing using satellite ink drops in a continuous ink jet printer | |
US5070341A (en) | Liquid stream deflection printing method and apparatus | |
JPH08501997A (en) | Droplet display method and system and drop deflector for use therewith | |
US3656174A (en) | Fluid drop marking apparatus | |
EP1221373B1 (en) | Ink drop deflection amplifier mechanism and method of increasing ink drop divergence | |
US4286272A (en) | Ink jet printer and start up method therefor | |
US8714676B2 (en) | Drop formation with reduced stimulation crosstalk | |
US4314258A (en) | Ink jet printer including external deflection field | |
US4897667A (en) | Ink jet printer | |
US4027309A (en) | Ink jet printer apparatus and method of printing | |
DE2621336C2 (en) | Inkjet printhead | |
CS203902B2 (en) | System for record by the ink ray | |
US4897666A (en) | Continuous ink jet stimulation adjustment using improved overdrive detection | |
US8684483B2 (en) | Drop formation with reduced stimulation crosstalk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IBM INFORMATION PRODUCTS CORPORATION, 55 RAILROAD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:005678/0098 Effective date: 19910326 Owner name: MORGAN BANK Free format text: SECURITY INTEREST;ASSIGNOR:IBM INFORMATION PRODUCTS CORPORATION;REEL/FRAME:005678/0062 Effective date: 19910327 |