US3889746A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US3889746A
US3889746A US425025A US42502573A US3889746A US 3889746 A US3889746 A US 3889746A US 425025 A US425025 A US 425025A US 42502573 A US42502573 A US 42502573A US 3889746 A US3889746 A US 3889746A
Authority
US
United States
Prior art keywords
tube
coolant
inner tube
outer tube
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US425025A
Inventor
Ernest Laffranchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US425025A priority Critical patent/US3889746A/en
Application granted granted Critical
Publication of US3889746A publication Critical patent/US3889746A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0042Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for foodstuffs

Definitions

  • the outer tube includes a double walled section that defines a surrounding, annular chamber which extends over a major portion of the length of the outer tube.
  • the outer tube ends include means for coupling the heat exchanger to a product pipe line so that the product canbe cooled as it flows through the pipe line.
  • a coolant intake port and a coolant outlet port are located adjacent ends of the inner tube and extend in a radial direction from the inner tube through the outer tube and the ports.
  • the ports include means for connection to a coolant circulating system. Conduits are provided which permit a flow of the coolant from the inner tube to the annular chambers in the outer tube and from there back to the inner tube for discharge through the outlet port. Ends of the inner tube are shaped to minimize product turbulence and possible product damage and the inner tube further includes flow restricting means to assure the desired distribution of the coolant flow between the inner and the outer tubes.
  • Heat exchangers are well known and have a wide range of applicability.
  • One particular type of heat exchanger is adapted for placement in a pipe line for the product to be heated or cooled (hereinafter cooled. which means heated or cooled).
  • U.S. Pat. No. 1,967,837 describes such a prior art heat exchanger.
  • in line heat exchangers provide a product passage sandwiched between coolant passages.
  • the product passage is an annular passage disposed between concentric cylindrical inner and annular outer coolant passages.
  • the product flows through intricate distribution channels and passages from the heat exchanger intake to the outlet around similarly intricate channels and passages which distribute the coolant from its intake to the inner and outer coolant chambers to the coolant outlet.
  • the construction is complicated and, therefore, renders such heat exchanger expensive.
  • heat exchangers exhibit significant resistance to the flow in the product pipe line and cause substantial product turbulence and agitation. For certain perishable products such as milk, for example, such agitation is highly undesirable because it can cause rancidity. Consequently, prior art in-line heat exchangers are generally unsatisfactory for economic reasons and in particular they are not well suited for use in applications in which the product to be cooled can be injured by turbulence and agitation.
  • the present invention provides an in-line heat exchanger which is simple and, therefore, inexpensive to construct. It is of a unitary construction in which all parts are permanently secured, e.g., welded to each other. and it provides a flow passage for the product to be cooled that is virtually unobstructed and which affords a smooth continuation of the product flow in the pipe line. Consequently. the heat exchanger of the present invention can be cleaned with the pipe line by passing therethrough a suitable cleaning fluid, e.g. water. There is no need for removing the heat exchanger, tediously disassembling it, cleaning it and thereafter reinstalling it as was necessary with prior art in-line heat exchangers.
  • a suitable cleaning fluid e.g. water
  • the present invention provides a jacketed outer tube that is connectable to a product pipe line and which has a smooth inner wall that forms a continuation of the pipe line.
  • An inner tube of lesser diameter than the outer tube wall is concentrically disposed within the outer tube.
  • Radially oriented inlet and outlet ports extend through the outer tube directly into the inner tube to flow a heat exchange medium, hereinafter sometimes referred to as coolant" directly into the inner tube.
  • a pair of conduits provide a flow passage from the inner tube to the annular coolant jacket of the outer tube so that coolant can be circulated through the inlet to the inner tube, from there the flow is separated into a first portion along the inner tube and the second portion into the outer jacket and the outer jacket flow is returned to the inner tube for the discharge of all coolant through the outlet port.
  • the ports and conduits between the inner tube and the outerjacket are all radially arranged and face in the same radial direction, In this manner a minimal obstruction of the product flow is obtained and the product passage is virtually unobstructed and free of tortuous passages, hidden crevices, and the like, which so frequently trap debris and which are almost impossible to clean unless direct access to them can be provided.
  • inventions are constructed of areadily cleanable mate-;.
  • the heat exchanger of the present invention is readily installed in a product pipe line and need not be removed for cleaning the pipe line since it is automatically cleaned each time the pipe line is washed.
  • the lightweight construction ofthe heat exchanger, its constant inside diameter and its outer diameter which is only insignificantly larger than the diameter of the pipe line make it possible to install it in an existing pipe line without the need for additional support or hanging equipment.
  • the unit can be employed as an efficient, low cost back-up system for existing bulk coolers for the product.
  • the smooth product flow passage through the heat exchanger minimizes product agitation and turbulence.
  • it is ideally suited for handling products such as milk which cannot be subjected to excessive agitation.
  • FIG. 1 is a perspective elevational view, in section and with parts broken away illustrating the heat exchanger of the present invention
  • FIG. 2 is an enlarged end view, in section, and is taken on line 22 of FIG. 1;
  • FIG. 3 is a view similar to FIG. 2 but is taken on line 33 of FIG. 1..
  • a heat exchanger 2 such as a cooling unit for milkin a milk processing plant generally comprises an elongate outer tubeihaving a smooth, cylindrical inner wall6 and terminating in end flanges 8 that are constructed so that they can be coupled to a standard pipe fitting for installation of the unit in a milk'pipe line, for example.
  • the outer tube has a diameter only slightly larger than the diameter of the pipe line in which'it is installed.
  • An inner tube 10 is concentrically disposed within and has a slightly lesser length than the outer tube. Ends 12 of the inner tube are closed and the inner-tube has a diameter less than that of'wall 6 ofjthe outer tube to define an annular flow passage -14 for the product, e.g. milk, to be cooled.
  • An outlet' 'port 22 is "adjacent the other end of inner tube IO a'nd isdefined by another tubular member 18 provided with an internal pipe thread 20 which also exten'dsradially 'away from the inner tube and which is further "longitudinally aligned with the intake port; in
  • Outer tube 4 includes a casing 24 that extends over a major'po'rtion of the length of the tube, which ties into inner wall 6 adjacent flanges 8 to define an annular jacket -26 which surrounds the annular product flow passage" 14.
  • Two slanted cylindrical tubular conduits 28 communicate the jacket with interior space 30 ofinner tube'10.
  • -Slanted tubes are disposed between and to adjacent inlet and outlet ports 16, 22 and they face in the same radialdirection as the port tubes 18 so that the ports-and the slanted tubes are in mutual alignment in the product flow direction. It will be observed that tubes 18 and conduits 28 define the sole connections between the inner and the outer tubes and mount the tubes to each other. Additional mounting of structure over and above the necessary coolant conduit, which would only obstruct the product flow passages are not necessary.
  • a flow restrictor 32 is provided.
  • the flow restrictor is defined by a disc 34 that has an outline slightly less than the cross-section of inner space as is best seen in FIG. 3.
  • the disc is posi- I tioned just upstream (in the flow direction of coolant) thereby forces the disc in a downward direction, (clockwise as viewed in FIG. 1) to open the remaining flow passage and interior space 10 and thus facilitate the ready and even passage of coolant without undue pressure build-ups and the like.
  • the backside of the disc can be provided with a suitable brace to limit the maximum extent to which the disc can be pivoted downwardly.
  • tube end 12 can be constructed of flat end plates to assure low cost they are preferably dished to define convex end surfaces 38. Such end surfaces facilitate the product flow and help reduce flow turbulence and agitation.
  • heat exchanger 2 As already briefly referred to, all components of heat exchanger 2 are permanently attached to each other by welding, brazing or the like. Consequently, the various members such as outer tube 4 including inner wall 6, casing 24, inner tube 10, in and outlet ports 16, 22 and slanted tubes 28 can be constructed of thin walled tubular members of deformed sheet metal. Close manufacturing tolerancesare not required since none of the surfaces require close tolerance sealing fits. Where seals are required, the parts are welded or brazed together: At other points of the heat exchanger slight variations in the dimensions do not affect its operation. Accordingly, the heat exchanger of the present invention can be constructed with little-or no machining and of lightweight wall sections to enhance its efficiency.
  • the heat exchanger of the present invention is installed in product pipe line e.g. milk pipe line in which fresh, still warm milk is transferred to a holding and cooling tank.
  • product pipe line e.g. milk pipe line in which fresh, still warm milk is transferred to a holding and cooling tank.
  • End flanges 8 of outer tube 4 are engaged with matching couplers at the ends of the pipe line and the couplers are tightened.
  • Intake and outlet port 16, 22 are connected to a coolant circulating system 40.
  • the circulating system might be a fresh water supply.
  • ice water or a conventional coolant such as freon may be passed through heat exchanger 2. ln the latter instance suitable expansion valves and reduced diameter conduits for the ports and the slanted tubes are provided.
  • a heat exchanger for fluid food products comprising an outer tube having an inner diameter and a concentric inner tube having an outer diameter less than inner tube, extending to the exterior ofthe outertube,
  • each member including an interior thread extending from the outer end of the member towards the other end thereof for threadably connecting the members to a coolant circulating system, and generally radially disposed, cylindrical coolant passages disposed upstream and downstream of the inlet and outlet ports, respectively, for flowing a portion of the coolant from the inner tube tothe annular space in the outer tube and back tothe inner tube before discharge from the heat exchanger, through the outlet port.
  • a heat exchanger for perishable liquid food product comprising a first outer tube having a cylindrical inner wall and ends adapted to be connected to a pipe line for the product for flowing the product through the tube, the outer tube including means defining an annular coolant flow space surrounding the cylindrical inner wall of the tube.
  • a second cylindrical inner tube having a lesser diameter than the diameter of the inner wall and being concentrically disposed within the outer tube to define a continuous, annular flow passage for the product between the inner and the outer tubes, first ra dially extending conduits adjacent and spaced from ends of the inner tube extending from the inner tube through thefouter tube for communicating an interior space ofthe inner tube with the exterior for circulating a fluid coolant through the inner tube, a second radially oriented conduit adjacent each first conduit communicatingthe inner spaeeof the first tube with the annular coolant space of the outer tubeto define a coolant flow passage from the inner tube to the annular space inthe outertube and back to the innertube, and means in the inner tube positioned adjacent the second conduit proximate the inlet port for restricting the coolant flow therein and facilitating the diversion of a portion of the coolant flow to the annular coolant space in the outer tube, the flow restricting means including means directing a portion of the coolant flow in the inner tube towards such second conduit.
  • a heat exchanger according to claim 2 wherein the flow restricting means comprises a disc-shaped member disposed within the inner tube and having an outline less than a cross-section of the tube, and including means resiliently positioning the disc adjacent the proximate second conduit generally transversely with respect to the length of the inner tube.

Abstract

A heat exchanger defined by a pair of concentrically arranged inner and outer tubes which define between them an annular flow passage for a product to be cooled or warmed. The outer tube includes a double walled section that defines a surrounding, annular chamber which extends over a major portion of the length of the outer tube. The outer tube ends include means for coupling the heat exchanger to a product pipe line so that the product can be cooled as it flows through the pipe line. A coolant intake port and a coolant outlet port are located adjacent ends of the inner tube and extend in a radial direction from the inner tube through the outer tube and the ports. The ports include means for connection to a coolant circulating system. Conduits are provided which permit a flow of the coolant from the inner tube to the annular chambers in the outer tube and from there back to the inner tube for discharge through the outlet port. Ends of the inner tube are shaped to minimize product turbulence and possible product damage and the inner tube further includes flow restricting means to assure the desired distribution of the coolant flow between the inner and the outer tubes.

Description

United States Patent 11 1 Laffranchi HEAT EXCHANGER [76] Inventor: Ernest Laffranchi, PO. Box 455, Ferndale, Calif. 95536 [22] Filed: Dec. 14,1973
[2l] Appl. No.: 425,025
51 Int. Cl. .rzsa 7/10 [58] Field of Search 165/154, 155, 156, 141, 165/66 [56] 1 References Cited UNITED STATES PATENTS 2,218,097 10/1940 Rhodes l65/l55 2,600,595 6/1952 Wilson 165/155 Primary Examiner-Charles Sukalo Attorney, Agent, or Firm-Townsend and Townsend 157 5 ABSTRACT A heat exchanger defined by a pair of concentrically 1451 June 17, 1975 arranged inner and outer tubes which define between them an annular flow passage for a product to be cooled or warmed. The outer tube includes a double walled section that defines a surrounding, annular chamber which extends over a major portion of the length of the outer tube. The outer tube ends include means for coupling the heat exchanger to a product pipe line so that the product canbe cooled as it flows through the pipe line. A coolant intake port and a coolant outlet port are located adjacent ends of the inner tube and extend in a radial direction from the inner tube through the outer tube and the ports. The ports include means for connection to a coolant circulating system. Conduits are provided which permit a flow of the coolant from the inner tube to the annular chambers in the outer tube and from there back to the inner tube for discharge through the outlet port. Ends of the inner tube are shaped to minimize product turbulence and possible product damage and the inner tube further includes flow restricting means to assure the desired distribution of the coolant flow between the inner and the outer tubes.
3 Claims, 3 Drawing Figures NT ClRCULATlNG sYsTEM HEAT EXCHANGER BACKGROUND OF THE INVENTION Heat exchangers are well known and have a wide range of applicability. One particular type of heat exchanger is adapted for placement in a pipe line for the product to be heated or cooled (hereinafter cooled. which means heated or cooled). U.S. Pat. No. 1,967,837 describes such a prior art heat exchanger.
Generally speaking, in line" heat exchangers provide a product passage sandwiched between coolant passages. Normally, and as is described in the abovereferenced US. Patent, the product passage is an annular passage disposed between concentric cylindrical inner and annular outer coolant passages. The product flows through intricate distribution channels and passages from the heat exchanger intake to the outlet around similarly intricate channels and passages which distribute the coolant from its intake to the inner and outer coolant chambers to the coolant outlet. The construction is complicated and, therefore, renders such heat exchanger expensive. Moreover, such heat exchangers exhibit significant resistance to the flow in the product pipe line and cause substantial product turbulence and agitation. For certain perishable products such as milk, for example, such agitation is highly undesirable because it can cause rancidity. Consequently, prior art in-line heat exchangers are generally unsatisfactory for economic reasons and in particular they are not well suited for use in applications in which the product to be cooled can be injured by turbulence and agitation.
In addition, the heretofore necessary intricate passageways to guide the product and the coolant around each other made it necessary to construct prior art inline coolers of readily demountable parts so that they can be individually cleaned since the many corners, crevices and the like accumulate dirt, debris, and products that could not be simply washed off with a wash water flow through the heat exchanger. Such a construction greatly increases the bulk of the heat exchanger and further increases its initial cost. In addition, operating and maintenance costs increase because individual parts may and frequently do fail and since each cleaning of the line necessitates the disassembly of the heat exchanger, the cleaning of the individual parts, a reassembly of the parts and finally the reinstallation of the heat exchanger.
Thus. prior art in-line heat exchangers are cumbersome to operate and were frequently abandoned in favor of more conventional bulk cooling equipment. Bulk cooling equipment. however, is expensive and can become overloaded so that the product is not sufficiently cooled. It became therefore necessary to provide a second back-up system which is placed in operation if and when the need therefor arises. For expensive equipment such use is economically inefficient and undesirable.
SUMMARY OF THE INVENTION The present invention provides an in-line heat exchanger which is simple and, therefore, inexpensive to construct. It is of a unitary construction in which all parts are permanently secured, e.g., welded to each other. and it provides a flow passage for the product to be cooled that is virtually unobstructed and which affords a smooth continuation of the product flow in the pipe line. Consequently. the heat exchanger of the present invention can be cleaned with the pipe line by passing therethrough a suitable cleaning fluid, e.g. water. There is no need for removing the heat exchanger, tediously disassembling it, cleaning it and thereafter reinstalling it as was necessary with prior art in-line heat exchangers.
In its broadest aspects the present invention provides a jacketed outer tube that is connectable to a product pipe line and which has a smooth inner wall that forms a continuation of the pipe line. An inner tube of lesser diameter than the outer tube wall is concentrically disposed within the outer tube. Radially oriented inlet and outlet ports extend through the outer tube directly into the inner tube to flow a heat exchange medium, hereinafter sometimes referred to as coolant" directly into the inner tube. A pair of conduits provide a flow passage from the inner tube to the annular coolant jacket of the outer tube so that coolant can be circulated through the inlet to the inner tube, from there the flow is separated into a first portion along the inner tube and the second portion into the outer jacket and the outer jacket flow is returned to the inner tube for the discharge of all coolant through the outlet port.
The ports and conduits between the inner tube and the outerjacket are all radially arranged and face in the same radial direction, In this manner a minimal obstruction of the product flow is obtained and the product passage is virtually unobstructed and free of tortuous passages, hidden crevices, and the like, which so frequently trap debris and which are almost impossible to clean unless direct access to them can be provided.
All components of the heat exchanger of the present.
invention are constructed of areadily cleanable mate-;.
rial, e.g. stainless steel, and they are permanently secured, e.g. welded together. This greatly reduces manu;- facturing costs since it eliminates expensive machining of parts that must closelyfit so that seals can be obtained between the demountable parts. Moreover.v since no machining and no tight tolerances need to he met by the components of the heat exchanger of the present invention. they can be constructed of readily formed, thin walled material. This reduces the weight and material consumption and greatly enhances the efficiency with which heat is transferred between the product and the cooler, thereby rendering the heat exchanger of the present invention more effective than the prior art devices since the latter require heavier wall thicknesses to establish and maintain the necessary dimensional tolerances.
In addition. the heat exchanger of the present invention is readily installed in a product pipe line and need not be removed for cleaning the pipe line since it is automatically cleaned each time the pipe line is washed.
The lightweight construction ofthe heat exchanger, its constant inside diameter and its outer diameter which is only insignificantly larger than the diameter of the pipe line make it possible to install it in an existing pipe line without the need for additional support or hanging equipment.
Thus, the unit can be employed as an efficient, low cost back-up system for existing bulk coolers for the product. Furthermore, the smooth product flow passage through the heat exchanger minimizes product agitation and turbulence. Thus, it is ideally suited for handling products such as milk which cannot be subjected to excessive agitation.
, BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective elevational view, in section and with parts broken away illustrating the heat exchanger of the present invention;
FIG. 2 is an enlarged end view, in section, and is taken on line 22 of FIG. 1;
FIG. 3 is a view similar to FIG. 2 but is taken on line 33 of FIG. 1..
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to-the drawings, a heat exchanger 2 such as a cooling unit for milkin a milk processing plant generally comprises an elongate outer tubeihaving a smooth, cylindrical inner wall6 and terminating in end flanges 8 that are constructed so that they can be coupled to a standard pipe fitting for installation of the unit in a milk'pipe line, for example. The outer tube has a diameter only slightly larger than the diameter of the pipe line in which'it is installed. An inner tube 10 is concentrically disposed within and has a slightly lesser length than the outer tube. Ends 12 of the inner tube are closed and the inner-tube has a diameter less than that of'wall 6 ofjthe outer tube to define an annular flow passage -14 for the product, e.g. milk, to be cooled.
The inner=tube iscylindrical and includes an intake port 16, which extends radially away from the tube adjacent one end thereof and which is defined by tubular member l8 provided with an internal pipe thread 20. An =outlet' 'port 22 is "adjacent the other end of inner tube IO a'nd isdefined by another tubular member 18 provided with an internal pipe thread 20 which also exten'dsradially 'away from the inner tube and which is further "longitudinally aligned with the intake port; in
other 'words,both ports extend in the same radial direction'for purposes more fully set forth hereinafter.
Outer tube 4 includes a casing 24 that extends over a major'po'rtion of the length of the tube, which ties into inner wall 6 adjacent flanges 8 to define an annular jacket -26 which surrounds the annular product flow passage" 14. Two slanted cylindrical tubular conduits 28 communicate the jacket with interior space 30 ofinner tube'10.-Slanted tubesare disposed between and to adjacent inlet and outlet ports 16, 22 and they face in the same radialdirection as the port tubes 18 so that the ports-and the slanted tubes are in mutual alignment in the product flow direction. It will be observed that tubes 18 and conduits 28 define the sole connections between the inner and the outer tubes and mount the tubes to each other. Additional mounting of structure over and above the necessary coolant conduit, which would only obstruct the product flow passages are not necessary.
To assure an adequate coolant flow from interior spac'e'30 to the annular jacket 26 a flow restrictor 32 is provided. The flow restrictor is defined by a disc 34 that has an outline slightly less than the cross-section of inner space as is best seen in FIG. 3. The disc is posi- I tioned just upstream (in the flow direction of coolant) thereby forces the disc in a downward direction, (clockwise as viewed in FIG. 1) to open the remaining flow passage and interior space 10 and thus facilitate the ready and even passage of coolant without undue pressure build-ups and the like. If desired the backside of the disc can be provided with a suitable brace to limit the maximum extent to which the disc can be pivoted downwardly.
Although tube end 12 can be constructed of flat end plates to assure low cost they are preferably dished to define convex end surfaces 38. Such end surfaces facilitate the product flow and help reduce flow turbulence and agitation.
As already briefly referred to, all components of heat exchanger 2 are permanently attached to each other by welding, brazing or the like. Consequently, the various members such as outer tube 4 including inner wall 6, casing 24, inner tube 10, in and outlet ports 16, 22 and slanted tubes 28 can be constructed of thin walled tubular members of deformed sheet metal. Close manufacturing tolerancesare not required since none of the surfaces require close tolerance sealing fits. Where seals are required, the parts are welded or brazed together: At other points of the heat exchanger slight variations in the dimensions do not affect its operation. Accordingly, the heat exchanger of the present invention can be constructed with little-or no machining and of lightweight wall sections to enhance its efficiency.
Turning now to the operation of the heat exchanger of the present invention, it is installed in product pipe line e.g. milk pipe line in which fresh, still warm milk is transferred to a holding and cooling tank. End flanges 8 of outer tube 4 are engaged with matching couplers at the ends of the pipe line and the couplers are tightened. Intake and outlet port 16, 22 are connected to a coolant circulating system 40. In the milk cooling example the circulating system might be a fresh water supply. Alternatively, ice water or a conventional coolant such as freon may be passed through heat exchanger 2. ln the latter instance suitable expansion valves and reduced diameter conduits for the ports and the slanted tubes are provided. When milk begins to flow it enters the heat exchanger adjacent one end and continues essentially unidirectionally, and opposite to the coolant flow to and through annular flow passage 14 for discharge from the heat exchanger at the other end thereof. At no time is the milk required to change its flow direction so that it is subjected to virtually no agitation. The ports and the tubes connecting the inner tube with the outer annual cooling jacket are aligned in the direction of the milk flow to minimize their respective flow resistances and flow turbulences caused thereby.
After the pipe line is shut down it is cleaned by flowing therethrough suitable cleansing solutions and cleansing water. The same water completely cleanses all-surfaces of heat exchanger 2 coming into contact with the milk. The surfaces are smooth and there are no hidden passages, crevices and the like in which debris and/or milk particles cannot be cleansed away -by the flow of wash water. Consequently, the heretofore necessary removal of the heat exchanger, disassembly, cleaning and reinstallation is eliminated.
I claim:
l. A heat exchanger for fluid food products comprising an outer tube having an inner diameter and a concentric inner tube having an outer diameter less than inner tube, extending to the exterior ofthe outertube,
and communicating an interiorof the innertube with the exterior of the outer tube, each member including an interior thread extending from the outer end of the member towards the other end thereof for threadably connecting the members to a coolant circulating system, and generally radially disposed, cylindrical coolant passages disposed upstream and downstream of the inlet and outlet ports, respectively, for flowing a portion of the coolant from the inner tube tothe annular space in the outer tube and back tothe inner tube before discharge from the heat exchanger, through the outlet port. t
2. A heat exchanger for perishable liquid food product comprising a first outer tube having a cylindrical inner wall and ends adapted to be connected to a pipe line for the product for flowing the product through the tube, the outer tube including means defining an annular coolant flow space surrounding the cylindrical inner wall of the tube. a second cylindrical inner tube having a lesser diameter than the diameter of the inner wall and being concentrically disposed within the outer tube to define a continuous, annular flow passage for the product between the inner and the outer tubes, first ra dially extending conduits adjacent and spaced from ends of the inner tube extending from the inner tube through thefouter tube for communicating an interior space ofthe inner tube with the exterior for circulating a fluid coolant through the inner tube, a second radially oriented conduit adjacent each first conduit communicatingthe inner spaeeof the first tube with the annular coolant space of the outer tubeto define a coolant flow passage from the inner tube to the annular space inthe outertube and back to the innertube, and means in the inner tube positioned adjacent the second conduit proximate the inlet port for restricting the coolant flow therein and facilitating the diversion of a portion of the coolant flow to the annular coolant space in the outer tube, the flow restricting means including means directing a portion of the coolant flow in the inner tube towards such second conduit.
3. A heat exchanger according to claim 2 wherein the flow restricting means comprises a disc-shaped member disposed within the inner tube and having an outline less than a cross-section of the tube, and including means resiliently positioning the disc adjacent the proximate second conduit generally transversely with respect to the length of the inner tube.

Claims (3)

1. A heat exchanger for fluid food products comprising an outer tube having an inner diameter and a concentric inner tube having an outer diameter less than the inner diameter to define an annular product flow space between the two tubes, the outer tube including at its ends means for coupling it to a product pipe line and having an outer diameter only insignificantly larger than the pipe line diameter, the outer tube further including means defining an annular, concentric coolant flow space surrounding the product flow space and extending over a portion of the total length of the outer tube, radially oriented coolant inlet and outlet ports defined by hollow cylindrical members connected to the inner tube, extending to the exterior of the outer tube, and communicating an interior of the inner tube with the exterior of the outer tube, each member including an interior thread extending from the outer end of the member towards the other end thereof for threadably connecting thE members to a coolant circulating system, and generally radially disposed, cylindrical coolant passages disposed upstream and downstream of the inlet and outlet ports, respectively, for flowing a portion of the coolant from the inner tube to the annular space in the outer tube and back to the inner tube before discharge from the heat exchanger through the outlet port.
2. A heat exchanger for perishable liquid food product comprising a first outer tube having a cylindrical inner wall and ends adapted to be connected to a pipe line for the product for flowing the product through the tube, the outer tube including means defining an annular coolant flow space surrounding the cylindrical inner wall of the tube, a second cylindrical inner tube having a lesser diameter than the diameter of the inner wall and being concentrically disposed within the outer tube to define a continuous, annular flow passage for the product between the inner and the outer tubes, first radially extending conduits adjacent and spaced from ends of the inner tube extending from the inner tube through the outer tube for communicating an interior space of the inner tube with the exterior for circulating a fluid coolant through the inner tube, a second radially oriented conduit adjacent each first conduit communicating the inner space of the first tube with the annular coolant space of the outer tube to define a coolant flow passage from the inner tube to the annular space in the outer tube and back to the inner tube, and means in the inner tube positioned adjacent the second conduit proximate the inlet port for restricting the coolant flow therein and facilitating the diversion of a portion of the coolant flow to the annular coolant space in the outer tube, the flow restricting means including means directing a portion of the coolant flow in the inner tube towards such second conduit.
3. A heat exchanger according to claim 2 wherein the flow restricting means comprises a disc-shaped member disposed within the inner tube and having an outline less than a cross-section of the tube, and including means resiliently positioning the disc adjacent the proximate second conduit generally transversely with respect to the length of the inner tube.
US425025A 1973-12-14 1973-12-14 Heat exchanger Expired - Lifetime US3889746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US425025A US3889746A (en) 1973-12-14 1973-12-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US425025A US3889746A (en) 1973-12-14 1973-12-14 Heat exchanger

Publications (1)

Publication Number Publication Date
US3889746A true US3889746A (en) 1975-06-17

Family

ID=23684833

Family Applications (1)

Application Number Title Priority Date Filing Date
US425025A Expired - Lifetime US3889746A (en) 1973-12-14 1973-12-14 Heat exchanger

Country Status (1)

Country Link
US (1) US3889746A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005150A1 (en) * 1986-12-30 1988-07-14 W. Schmidt Gmbh & Co. Kg Heat exchanger
US4834172A (en) * 1988-01-12 1989-05-30 W. Schmidt Gmbh & Co. Kg Heat exchanger
US5107919A (en) * 1991-06-03 1992-04-28 Pioneer Air Systems, Inc. Air dryer for pneumatic systems
DE10213544A1 (en) * 2001-11-30 2003-07-10 Hartmut Koenig Heat transfer device has heat exchange surface formed by set of hollow bodies one inside other with fluids flowing through them
US20040108103A1 (en) * 2000-05-18 2004-06-10 Stefan Zikeli Fluid guidance piece with internal temperature equalisation
NL1024996C2 (en) * 2003-12-11 2005-06-14 Campina Bv Cooler for a food.
EP1388720A3 (en) * 2002-08-08 2006-09-13 MAHLE Filter Systems Japan Corporation Triple-tube type heat exchanger and method of producing same
US7864527B1 (en) * 2004-03-31 2011-01-04 Google Inc. Systems and methods for close coupled cooling
US20130062447A1 (en) * 2011-09-12 2013-03-14 Siemens Industry, Inc. Modular Coolant Jacket for Rolling Mills
US8549869B1 (en) 2003-12-30 2013-10-08 Google Inc. Modular data center
DE102013100886A1 (en) * 2013-01-29 2014-07-31 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
US10228190B2 (en) * 2014-12-11 2019-03-12 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US10240813B2 (en) 2014-12-11 2019-03-26 Fulton Group N.A., Inc. Fully-wetted, refractory-free tubeless fluid heating system with negligible thermal expansion stress
US10935332B2 (en) * 2018-08-09 2021-03-02 Rheem Manufacturing Company Fluid flow guide insert for heat exchanger tubes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218097A (en) * 1939-03-22 1940-10-15 Lee A Rhodes Heat exchanger
US2600595A (en) * 1950-01-13 1952-06-17 Hanlon & Wilson Co Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218097A (en) * 1939-03-22 1940-10-15 Lee A Rhodes Heat exchanger
US2600595A (en) * 1950-01-13 1952-06-17 Hanlon & Wilson Co Heat exchanger

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005150A1 (en) * 1986-12-30 1988-07-14 W. Schmidt Gmbh & Co. Kg Heat exchanger
EP0276521A1 (en) * 1986-12-30 1988-08-03 W. Schmidt GmbH & Co. KG Heat exchanger
US4834172A (en) * 1988-01-12 1989-05-30 W. Schmidt Gmbh & Co. Kg Heat exchanger
US5107919A (en) * 1991-06-03 1992-04-28 Pioneer Air Systems, Inc. Air dryer for pneumatic systems
US20040108103A1 (en) * 2000-05-18 2004-06-10 Stefan Zikeli Fluid guidance piece with internal temperature equalisation
US6997249B2 (en) * 2000-05-18 2006-02-14 Zimmer A.G. Fluid guidance piece with internal temperature equalization
DE10213544A1 (en) * 2001-11-30 2003-07-10 Hartmut Koenig Heat transfer device has heat exchange surface formed by set of hollow bodies one inside other with fluids flowing through them
EP1388720A3 (en) * 2002-08-08 2006-09-13 MAHLE Filter Systems Japan Corporation Triple-tube type heat exchanger and method of producing same
NL1024996C2 (en) * 2003-12-11 2005-06-14 Campina Bv Cooler for a food.
WO2005057117A1 (en) * 2003-12-11 2005-06-23 Campina B.V. Method for preparing a foodstuff
US8549869B1 (en) 2003-12-30 2013-10-08 Google Inc. Modular data center
US9565783B1 (en) 2003-12-30 2017-02-07 Google Inc. Modular data center
US7864527B1 (en) * 2004-03-31 2011-01-04 Google Inc. Systems and methods for close coupled cooling
US20130062447A1 (en) * 2011-09-12 2013-03-14 Siemens Industry, Inc. Modular Coolant Jacket for Rolling Mills
US9897387B2 (en) * 2012-05-01 2018-02-20 Benteler Automobiltechnik Gmbh Heat exchanger with double-walled tubes
US20150107806A1 (en) * 2012-05-01 2015-04-23 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
JP2015517086A (en) * 2012-05-01 2015-06-18 ベンテラー・アウトモビールテヒニク・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Double wall heat exchanger pipe
DE102013100886B4 (en) * 2013-01-29 2015-01-08 Benteler Automobiltechnik Gmbh Heat exchanger for a motor vehicle with a double-walled heat exchanger tube
DE102013100886A1 (en) * 2013-01-29 2014-07-31 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
US10228190B2 (en) * 2014-12-11 2019-03-12 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US10240813B2 (en) 2014-12-11 2019-03-26 Fulton Group N.A., Inc. Fully-wetted, refractory-free tubeless fluid heating system with negligible thermal expansion stress
US11441846B2 (en) * 2014-12-11 2022-09-13 Fulton Group N.A., Inc. Tubeless heat exchanger for fluid heating systems
US20230017453A1 (en) * 2014-12-11 2023-01-19 Fulton Group N.A., Inc. Ribbed tubeless heat exchanger for fluid heating systems including a rib component and methods of manufacture thereof
US11835302B2 (en) * 2014-12-11 2023-12-05 Fulton Group N.A., Inc. Tubeless heat exchanger for fluid heating systems
US10935332B2 (en) * 2018-08-09 2021-03-02 Rheem Manufacturing Company Fluid flow guide insert for heat exchanger tubes

Similar Documents

Publication Publication Date Title
US3889746A (en) Heat exchanger
US2362985A (en) Heat exchanger
US7213639B2 (en) Heat exchanger exhaust gas recirculation cooler
US4694894A (en) Heat exchangers
US3804161A (en) Non-metallic heat exchanger
US2729433A (en) Heat exchanger with removable tube banks
RU2137078C1 (en) Heat exchanger
DE3163038D1 (en) Annular heat exchanger
RU2005105584A (en) HIGH PRESSURE EXCHANGER
US5174369A (en) Sanitary concentric tube heat exchanger
US3507324A (en) Heat exchanger conduit
US2552635A (en) Heat exchanger for cooling liquids
JPS63217192A (en) Assembly structure of heat exchanger
US5509470A (en) Molded or cast short radius return bends for horizontal shell and tube vessel
JP3491229B2 (en) Multi-tube heat exchanger
WO2000071956A1 (en) Wind tunnel and heat exchanger therefor
CN211782895U (en) Efficient shell-and-tube heat exchanger
AU752390B2 (en) A heat exchanger
FR2445502A1 (en) IC engine oil cooling heat exchanger - has bayonet pipe couplings allowing limited relative movement in axial direction
JPH04306492A (en) Structure of coupling for inlet port and outlet port of heat exchanger
JPH0229425Y2 (en)
JPH0238234Y2 (en)
RU95120593A (en) HEAT EXCHANGER
RU2011943C1 (en) Multipass heat exchanger
AU647963B2 (en) Bayonet heat exchanger