JPS63217192A - Assembly structure of heat exchanger - Google Patents

Assembly structure of heat exchanger

Info

Publication number
JPS63217192A
JPS63217192A JP5113087A JP5113087A JPS63217192A JP S63217192 A JPS63217192 A JP S63217192A JP 5113087 A JP5113087 A JP 5113087A JP 5113087 A JP5113087 A JP 5113087A JP S63217192 A JPS63217192 A JP S63217192A
Authority
JP
Japan
Prior art keywords
helical
tube
heat exchanger
refrigerant
cylindrical case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5113087A
Other languages
Japanese (ja)
Other versions
JPH0731016B2 (en
Inventor
Etsuji Miyata
宮田 悦次
Tetsuo Kosasa
鉄男 小佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62051130A priority Critical patent/JPH0731016B2/en
Publication of JPS63217192A publication Critical patent/JPS63217192A/en
Publication of JPH0731016B2 publication Critical patent/JPH0731016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat exchanging efficiency and remove deposited foreign matter easily by installing an airtight cylindrical case at the open end of which a cover is removably placed and means of fixing both ends of a helical tube on the outer surface of which a helical buffle is placed, on the cover. CONSTITUTION:In the inside of an airtight cylindrical case 1 which is used as a passage for a primary heat exchanging fluid and at the upper open end of which a cover 2 is attached, a cylinder helical tube 3 which is used as a passage for a secondary heat exchanging fluid, is installed. A helical buffle 5 is incorporated into the helical gaps of the tube 3. The presence of this buffle 5 causes water flowing in to flow along a helical flow passage without flowing directly from an inlet to an outlet. Even if foreign matter or microorganism contained in the primary fluid sticks or deposits, the tube 3 is easily taken out with the removable cover. Heat exchanging efficiency equal to that of a double-tube type heat exchanger can be provided and also deposited foreign matter can be removed easily and rapidly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば冷凍装置の圧縮機から吐出されるa温
気相冷媒を液化させる目的などに使用するための水冷式
熱交換2に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a water-cooled heat exchanger 2 for use, for example, in liquefying a warm gas phase refrigerant discharged from a compressor of a refrigeration system.

「従来の技術] 上記の目的に用いるための従来の水冷式熱交換器として
は、内外2重構造のチューブをコイル状に成形し、内(
外)側チューブに冷媒を、外(内)側チl−ブに冷却水
を流す2重管式や、冷媒の流路となる外観が円筒形をし
たコイル巻きチューブを、冷加水の出入口を備えて冷部
水の流路となるケース(シェル)内に納めたシェル・ア
ンドコイル型が知られている。
``Prior art'' A conventional water-cooled heat exchanger used for the above purpose is made by forming a tube with a double structure inside and outside into a coil shape.
A double pipe type where the refrigerant flows through the outside (inner) side tube and cooling water through the outside (inner) side tube, or a coiled tube with a cylindrical appearance that serves as the flow path for the refrigerant, and an inlet/outlet for the chilled water. A shell-and-coil type is known, which is housed in a case (shell) that serves as a flow path for cold water.

[発明が解決しようとする問題点1 上記の2重管式熱交換器は、容積比熱交換効率が高く、
外形を小型化できる特長を備える反面、冷却水流通用チ
ューブ内に水中の不純物や微生物が付着して次第に滞積
しても、その構造上除去が困難なために経時的に熱交換
能力が低トシて来る。
[Problem to be solved by the invention 1 The above double tube heat exchanger has a high volumetric specific heat exchange efficiency,
Although it has the feature of reducing the external size, even if impurities and microorganisms in the water adhere to and accumulate inside the cooling water distribution tube, it is difficult to remove them due to the structure, so the heat exchange capacity decreases over time. I'm coming.

そのため冷凍サイクルの圧縮気相Yr1媒の液化工程部
分の能力だけが局部的に低落して、サイクル全体の冷凍
能力をフルに活用できなくなるうえに、冷媒圧が高[す
る恐れも生ずる。更に熱交換器による冷媒の圧力損失を
少なくするために、冷媒流路を並列状に分岐させようと
しても、2重構造管では加[が繁雑化しすぎて実行困難
である。
As a result, only the capacity of the liquefaction process portion of the compressed gas phase Yr1 medium of the refrigeration cycle is locally reduced, making it impossible to make full use of the refrigeration capacity of the entire cycle, and there is also the possibility that the refrigerant pressure will become high. Furthermore, even if an attempt is made to branch the refrigerant flow paths in parallel in order to reduce the pressure loss of the refrigerant caused by the heat exchanger, it is difficult to carry out with a double structure pipe because the addition becomes too complicated.

−・方シ1ル・アンドコイル♂1熱交換器では、冷媒流
路としての巻き縮められているチューブの全長に対して
、冷却水路の流路長さが短かすぎるために、冷媒と冷却
水の流れ速度に大きな食い違いが生じて熱交換性能を十
分に高められない。
- In the case of the 1-way seal and 1-coil heat exchanger, the length of the cooling water channel is too short compared to the total length of the coiled tube that serves as the refrigerant flow path, so the refrigerant and cooling A large discrepancy occurs in the water flow speed, making it impossible to sufficiently improve heat exchange performance.

対応策としてシェルを大型化したり流水量を増大させれ
ば、装置は大型化せざるを得す、それに伴って1品やコ
ストの面で不利を招くことになる。
If the shell is made larger or the flow rate is increased as a countermeasure, the device will have to be made larger, which will result in disadvantages in terms of product quality and cost.

しかし、流水路の11ヤ除のしやすさの点では2重管式
より格段にすぐれている。
However, it is far superior to the double pipe type in terms of ease of clearing the flow channel.

本発明は、上述の如き、2重管式とシェル・アンドコイ
ル型の2得類の熱交換器の長所を取り入れると共に、そ
れらの短所を極力抑えることのできる構造を備えた熱交
換器の組付構造を提供することを目的とする。
The present invention is a heat exchanger assembly having a structure that incorporates the advantages of the two types of heat exchangers, the double-tube type and the shell-and-coil type, as described above, and minimizes their disadvantages. The purpose is to provide an attached structure.

[問題点を解決するための手段] 上記の目的を達成するために本発明による熱交換器の組
付構造は、以下に列挙した如き構成と機能を与えられた
各部材(a)〜(d)の組合わせからなる構造を採用し
た。
[Means for Solving the Problems] In order to achieve the above object, the heat exchanger assembly structure according to the present invention includes each member (a) to (d) having the configuration and function listed below. ) was adopted.

(a)第1の熱交換流体としての水の熱交換用流路をな
しで、その入口と出口を両筒端部に有すると共に、−・
方の開放筒端に蓋体を着脱可能に取付けた気密筒状ケー
ス。
(a) There is no heat exchange flow path for water as the first heat exchange fluid, and the inlet and outlet thereof are provided at both ends of the cylinder, and -
An airtight cylindrical case with a removable lid attached to the open end of the cylinder.

(b)第2の熱交換流体の流路をなして、前記ケース内
に納められる、円盤状ヘリカルチューブ。
(b) A disc-shaped helical tube that forms a flow path for the second heat exchange fluid and is housed within the case.

(c)該ヘリカルチ1−ブの両筒端部を航記蓋体に挿通
し固定させる固定手段。
(c) Fixing means for inserting and fixing both ends of the helical tube into the navigation lid.

(d)前記ヘリカルチューブの螺旋ピッチと同等のピッ
チを有すると共に、前記筒状ケース内に挿嵌しうる外径
を備えた螺旋状バッフルがその外周面に設けられており
、前記ヘリカルデユープの中空部に納められるバッフル
付中筒。
(d) A helical baffle having a helical pitch equivalent to the helical pitch of the helical tube and having an outer diameter that can be inserted into the cylindrical case is provided on the outer peripheral surface of the helical baffle, and a hollow portion of the helical duplex is provided. A middle cylinder with a baffle that can be stored in.

ここで、蓋体の着脱手段は、筒状ケースの開放筒端と、
蓋体との当接個所に形成させた7ランジ継手などである
。また円筒状ヘリカルチューブは、唯1個だけ組込む他
に、2個以上の円筒状ヘリカルチューブを向応的に組合
わせて用いることもできる。
Here, the means for attaching and detaching the lid body is connected to the open tube end of the cylindrical case,
These include a 7-lunge joint formed at the point of contact with the lid. In addition to incorporating only one cylindrical helical tube, two or more cylindrical helical tubes may be used in combination.

[作用] 上記の組イ1け構造を備える熱交換器は、筒状ケースの
内周面と、このケース内に向応的に組み込まれたバッフ
ル付中筒の外周面との間に、第1の熱交換流体である水
を流すための円筒状流路が形成される。この流路には螺
旋状バッフルが介在することによって、流入した水はそ
の入口から出口に向けて直行することなく螺旋状の流路
をたどらされる。
[Function] The heat exchanger having the above-mentioned set-up structure has a second structure between the inner circumferential surface of the cylindrical case and the outer circumferential surface of the baffled middle cylinder that is responsively incorporated into the case. A cylindrical channel is formed through which water, which is one heat exchange fluid, flows. Since a helical baffle is interposed in this flow path, the inflowing water is forced to follow the spiral flow path without going straight from the inlet to the outlet.

第2の熱交換流体の流路をなすヘリカルチコープの螺旋
ピッチと、螺旋状バッフルのピッチ巾とは同等に設定さ
れているので、第1と第2の熱交換流体の流路の延長長
さは等しくなる。
Since the helical pitch of the helical pipe forming the flow path of the second heat exchange fluid and the pitch width of the helical baffle are set to be equal, the extension length of the flow path of the first and second heat exchange fluids is set to be the same. are equal.

従って本発明による熱交換器の組イNJ構j告は、基本
的には従来のシェル・アンドコイル型でありながら、同
時に機能的には従来の2重管式と同等の熱交換能力を生
ずる。
Therefore, although the heat exchanger assembly according to the present invention is basically a conventional shell-and-coil type, it also produces a heat exchange capacity functionally equivalent to that of a conventional double-tube type. .

熱交換器の使用中に、筒状ケース内に第1の熱交換流体
中に含まれる水中の異物や微生物などが次第に付着し滞
積して来れば、着脱手段による蓋体の締結状態を解いで
蓋体イ」きのヘリカルチューブを取り出したうえ、バッ
フル付中筒の下端をねじることによって、この中筒はヘ
リカルチューブの螺旋状間隙から6Sに央き取ることが
できる。
During use of the heat exchanger, if foreign objects or microorganisms in the water contained in the first heat exchange fluid gradually adhere and accumulate inside the cylindrical case, the lid may be unfastened by the attachment/detachment means. By removing the helical tube from the lid and twisting the lower end of the baffled middle tube, this middle tube can be centered at 6S from the helical gap of the helical tube.

このため筒状ケース内に滞積した、あるいはへリカルチ
l−ブや螺旋状バッフルの表面に付着した水中の異物ヤ
微1・物は筒中に取り取り除くことができる。
Therefore, foreign matter in the water that has accumulated inside the cylindrical case or adhered to the surface of the helical tube or spiral baffle can be removed into the cylindrical case.

[発明の効果] イ)従来の2重管式熱交換器と同等の熱交換性能を与え
ることができる。
[Effects of the invention] a) It is possible to provide heat exchange performance equivalent to that of a conventional double-pipe heat exchanger.

口)第1の熱交換流体がもたらしてケース内に付着しあ
るいは滞積した異物を、従来のシェル・アンドコイルを
熱交換器同様に筒中迅速に取り除くことができる。
A) Foreign matter that has adhered or accumulated in the case due to the first heat exchange fluid can be quickly removed from the cylinder in the same way as a conventional shell-and-coil heat exchanger.

[実施例] 以下に図に示す実施例に基づいて本発明の構成を具体的
に説明する。
[Example] The configuration of the present invention will be specifically described below based on an example shown in the drawings.

第1図〜第6図はいずれも本発明の・一実施例としての
、船舶用空気調和装置に用いるための、水冷式冷媒凝縮
器にかかわる図であって、第1図は側断面図、第2図は
第1図の(イ)−(イ)断面図、第3図は分解図、第4
図へ・第6図はバッフル付き中空筒の形状・構造の説明
図である。なお第3図の熱交換器は、筒状ケースの形状
が第1図に示したそれとは幾分相違している。
1 to 6 are views relating to a water-cooled refrigerant condenser for use in a marine air conditioner as an embodiment of the present invention, and FIG. 1 is a side sectional view; Figure 2 is a cross-sectional view taken along line (A)-(A) in Figure 1, Figure 3 is an exploded view, and Figure 4 is a cross-sectional view taken from Figure 1.
Figure 6 is an explanatory diagram of the shape and structure of the baffled hollow cylinder. Note that the heat exchanger shown in FIG. 3 is somewhat different from that shown in FIG. 1 in the shape of the cylindrical case.

この熱交換器の概略の構成は、第3図にみられるように
、第1の熱交換流体としての冷却水の通路となり、上部
の開放筒端に蓋体2を取り付けた気密な筒状ケース1内
に、第2の熱交換流体としての冷媒の冷却用流路となる
、円筒状ヘリカルブ1−13が納められている。このヘ
リカルチ・ニー13の内空部には、螺旋状バッフル5を
外周面に設けたバッフル付中筒4が、ヘリカルチューブ
3の螺旋間隙にねじ込むようにして組込まれている。
As shown in Fig. 3, the general structure of this heat exchanger is an airtight cylindrical case that serves as a passage for cooling water as the first heat exchange fluid, and has a lid 2 attached to the open end of the upper cylinder. A cylindrical helical tube 1-13 is housed within the helical tube 1, which serves as a cooling flow path for a refrigerant as a second heat exchange fluid. A baffled middle tube 4 having a helical baffle 5 provided on its outer circumferential surface is installed in the inner cavity of the helical knee 13 so as to be screwed into the helical gap of the helical tube 3.

ヘリカルチューブ3の両管端部3Aと3Bは、蓋体2に
挿通したうえこの蓋体に固定されている。
Both ends 3A and 3B of the helical tube 3 are inserted through the lid 2 and fixed to the lid.

蓋体2は、その着脱手段としてのボルト12およびプツ
ト13を用いて、筒状ケース1開放筒端に設けたフラン
ジ11に締結されている。
The lid body 2 is fastened to a flange 11 provided at the open end of the cylindrical case 1 using bolts 12 and puts 13 as attachment/detachment means.

第1図に示した筒状ケース1は、塩化ヴイニールなどの
硬質合成樹脂製の円筒体を所定寸法に裁断したうえ、底
端側間口に硬質合成樹脂製の底板10を嵌め込み、接着
などにより気密シールする方法によって作成されている
The cylindrical case 1 shown in FIG. 1 is made by cutting a cylindrical body made of hard synthetic resin such as vinyl chloride to a predetermined size, and then fitting a bottom plate 10 made of hard synthetic resin into the opening on the bottom end to make the case airtight by gluing or the like. It is created by a sealing method.

筒状ケース1の外周壁の下端近くには冷却水の入口とな
るチューブ8が、また上端近くには冷却水の出口となる
チューブ9がそれぞれ取付けられている。更に筒状ケー
ス1の頂端部には、ケース1と同じ材質の円環状7ラン
ジ11を第1図に示されているように外嵌し、接着や熱
融着などの方法によって固着させている。
A tube 8 serving as an inlet for cooling water is attached near the lower end of the outer peripheral wall of the cylindrical case 1, and a tube 9 serving as an outlet for the cooling water is attached near the upper end. Further, as shown in FIG. 1, an annular seven flange 11 made of the same material as the case 1 is fitted onto the top end of the cylindrical case 1, and fixed by a method such as adhesive or heat fusion. .

筒状ケース1の頂面側の開放筒端aを気密に封止するた
めの蓋体2は、この筒端部に形成させたフランジ11と
同一の外径寸法もった円板体であって、筒状ケース1と
同じ合成樹脂または金属で作られている。
The lid body 2 for airtightly sealing the open cylinder end a on the top surface side of the cylindrical case 1 is a disc body having the same outer diameter as the flange 11 formed on this cylinder end. , made of the same synthetic resin or metal as the cylindrical case 1.

蓋体2の外周縁部には、適宜の間隔をへだでて、複数個
所にボルト12の挿通用ボルト孔2Aを設け、また7ラ
ンジ11には、このボルト孔2Aに対応する位はにボル
ト孔11Aを穿つと共に、蓋体2の気密封止用ガスケッ
ト17の装着用溝を設けている。
Bolt holes 2A for inserting bolts 12 are provided at multiple locations on the outer peripheral edge of the lid 2 at appropriate intervals, and the 7 flange 11 has holes corresponding to the bolt holes 2A. A bolt hole 11A is bored and a groove for mounting an airtight sealing gasket 17 of the lid body 2 is provided.

円筒状ヘリカルチューブ3は、アルミニウムや銅などで
作られたチューブを第3図に描かれているように螺旋状
に曲げ加工して作成されている。
The cylindrical helical tube 3 is made by bending a tube made of aluminum, copper, etc. into a spiral shape as shown in FIG.

垂直に上方に立ち上がらせた両管端部のうちの一方は冷
媒人口3Aをなし、他方は出口3Bをなして、それぞれ
蓋体2に設けたチューブ挿通用穴2Bまたは2Cを貫い
て筒状ケース1の外に突出している。6と7は、このチ
ューブの挿通間隙を気密に封止すると共に、ヘリカルチ
ューブ3の両管端部を蓋体2に固定させるための、ユニ
オン継手に類する構成を備えたチ1−ブ固定用部材であ
る。
One of the ends of the two tubes raised vertically upward forms a refrigerant port 3A, and the other forms an outlet 3B, which pass through the tube insertion hole 2B or 2C provided in the lid body 2, respectively, and are inserted into the cylindrical case. It stands out beyond 1. Reference numerals 6 and 7 refer to tube fixing tubes having a structure similar to a union joint for airtightly sealing the insertion gap of this tube and fixing both ends of the helical tube 3 to the lid body 2. It is a member.

また14と15は、ヘリカルチ1−13の両端部を冷凍
装置の冷媒循環用配管系に接続するためのユニオン継手
のコニオンナツトである。
Further, 14 and 15 are conion nuts of a union joint for connecting both ends of the helical arch 1-13 to the refrigerant circulation piping system of the refrigeration equipment.

バッフル付中筒4は、第3図に示した如き形状が得られ
るように、ABS樹脂やポリプロピレン樹脂などを素材
として、射出成形方法によって螺旋状バックル5と−・
体をなして成形されている。
The baffled middle cylinder 4 is made of ABS resin, polypropylene resin, or the like, and formed with a spiral buckle 5 by an injection molding method so that the shape shown in FIG. 3 can be obtained.
It is shaped like a body.

第4図にその部分縦断面を示した。バッフル5には型扱
きを可能にするためのくさび形断面形状を与えている。
Fig. 4 shows a partial longitudinal section. The baffle 5 is given a wedge-shaped cross-sectional shape to enable mold handling.

バッフル付中筒4の別の作成方法としては、第5図に描
かれているように、塩化ヴイニールなどで何られだバイ
ブ4の外周面に、6葭に応じて螺旋状溝すを設けたうえ
、同じく塩化ヴイニールなどで作られて円周方向の1箇
所に切れ口C@設けた円環板5Aの複数個を、ねじり形
状を5えながら連続的に外嵌させ、一連の螺旋状バッフ
ル5を形成させ、第6図に示した完成品を作ることがで
きる。隣接円環板5Aの相q間と、円環板5Aと中筒4
の)a触面とは、接着や熱融着法などによって接合させ
る。
Another method for making the baffled inner cylinder 4 is to provide a spiral groove in the outer circumferential surface of the vibrator 4 made of vinyl chloride or the like in accordance with the six blades, as shown in Fig. 5. Moreover, a plurality of annular plates 5A made of vinyl chloride or the like and having a cut C@ at one point in the circumferential direction are fitted continuously while twisting the shape to form a series of spiral baffles. 5 to form the finished product shown in FIG. Between the phases q of adjacent annular plates 5A, and between the annular plates 5A and the middle cylinder 4
The contact surface (a) is joined by adhesion, heat fusion, or the like.

バッフル付中筒4の上下両筒端には、この中筒を筒状ケ
ース1内で安定に固定させるための固定手段としてのフ
ランジ4Aと4Bを、中筒4に外嵌させるか、または中
筒4と−・体をなして形成させている。筒状ケース1の
蓋体2と底板10の中心部には、それぞれこれらのフラ
ンジ4Aまたは4Bを嵌合させるための浅いくぼみ部を
設けるようにしてしよい。
Flanges 4A and 4B, which serve as fixing means for stably fixing the middle tube within the cylindrical case 1, are fitted on the upper and lower ends of the middle tube 4 with baffles, or It is formed integrally with the cylinder 4. Shallow recesses may be provided in the centers of the lid 2 and the bottom plate 10 of the cylindrical case 1, respectively, into which the flanges 4A or 4B are fitted.

筒状ケース1内にヘリ力ルヂ1−73とバッフル付中筒
4とを、第1図に示されているように組込んだ状態のも
とでは、第1図の(イ)−(イ)所面図としての第2図
に見られるように、螺旋状バッフル5の外周面と筒状ケ
ース1の内周面との間に、ヘリカルチューブ3の両管端
の垂直立ち上がり部分3Aと3Bが位置することになる
。従ってこの内外両周面の間には、ヘリカルチューブ3
の外径に相当する厚みをもった円筒状空隙が残存される
ことになるが、この空隙部分をそのまま数回したのでは
、螺旋状バッフル5の螺旋ピッチ閤の聞隙部相〃間は上
記の空隙部を介して連通されてしまう。この状態のもと
では螺旋状バッフル5に与えられた役割としての、螺旋
状の冷加水流路を形成させることができなくなる1、そ
こでこの実施例では、上記の空隙部を円筒状スペーサ1
Gで埋める方法によって、螺旋状流水路Bを形成させて
いる。円筒状スベーリ1Gは合成樹脂や独立気泡構造を
備えた発泡合成樹脂などで作られており、6費に応じて
2以上に分割して作成し、接着剤などを用いて筒状ケー
ス1の内壁面に固肴させる。
When the helical force lever 1-73 and the baffled middle cylinder 4 are assembled in the cylindrical case 1 as shown in FIG. b) As seen in FIG. 2 as a top view, there are vertically rising portions 3A at both ends of the helical tube 3 between the outer circumferential surface of the spiral baffle 5 and the inner circumferential surface of the cylindrical case 1. 3B will be located. Therefore, there is a helical tube 3 between the inner and outer circumferential surfaces.
A cylindrical gap with a thickness equivalent to the outer diameter of the helical baffle 5 will remain. However, if this gap part is repeated several times as it is, the gap phase of the helical pitch pitch of the helical baffle 5 will be as described above. communication occurs through the gap between the two. In this state, it becomes impossible to form a spiral cooling water flow path, which is the role given to the spiral baffle 5.Therefore, in this embodiment, the above-mentioned gap is replaced by a cylindrical spacer 1.
A spiral flow channel B is formed by filling the channel with G. The cylindrical suberi 1G is made of synthetic resin or foamed synthetic resin with a closed-cell structure, and is made by dividing it into two or more parts according to the cost, and then using adhesive etc. to attach the inside of the cylindrical case 1. Hang it on the wall.

第3図に描かれている筒状ケース1Aは、第1図に示し
た筒状ケース1とは異なって、上記の円筒状スペーサ1
6を王政化できる形状が与えられている。即ちこのケー
ス1Aの内径は螺旋状バラノル5の外径よりわずかに大
きく設定してあり、ヘリカルチューブ3の両管喘立ち上
がり部分3Aと3Bとを筒状ケース1内に位置させるた
めの膨出部1Dおよび1Eを、筒状ケース1の射出成形
時に−・体内に形成させている。その際にフランジ11
も同時成形することができる。
The cylindrical case 1A depicted in FIG. 3 differs from the cylindrical case 1 shown in FIG.
A shape is given that allows 6 to become a monarchy. That is, the inner diameter of the case 1A is set to be slightly larger than the outer diameter of the spiral balanol 5, and a bulge is provided for positioning the rising portions 3A and 3B of the helical tube 3 inside the cylindrical case 1. 1D and 1E are formed inside the body during injection molding of the cylindrical case 1. At that time, flange 11
can also be molded at the same time.

第7図は上記実施例に示した構造を備える2雄の熱交換
器A1とA2を、それぞれ高温気相冷媒の液化用凝縮器
と、い(プす(魚槽)60の水温低下用の水冷却器(冷
媒蒸発器)として使用する場合の、冷凍サイクルの模式
的説明図である。なお熱交換器A1とA2は共に、2重
構造のヘリカルコイルを用いているので、2組の冷媒人
口3Aと出口3Bを備えている9゜ 冷凍サイクルの全体構成は、気相冷媒の液化用の圧縮1
130の冷媒1出「1と吸入口との間を結ぶ、冷媒往路
配管31と帰路配管32に、上記の凝縮5A1と上記の
水冷却器へ2を介在させている。
FIG. 7 shows two male heat exchangers A1 and A2 having the structure shown in the above embodiment, respectively, as a condenser for liquefying a high-temperature vapor phase refrigerant and a condenser for lowering the water temperature of a fish tank 60. It is a schematic explanatory diagram of a refrigeration cycle when used as a water cooler (refrigerant evaporator).Since both heat exchangers A1 and A2 use double-structured helical coils, two sets of refrigerant The overall configuration of the 9° refrigeration cycle, which is equipped with an inlet 3A and an outlet 3B, consists of a compressor 1 for liquefaction of gaseous refrigerant;
2 is interposed between the refrigerant outgoing pipe 31 and the return pipe 32 connecting the refrigerant 1 output 130 and the suction port to the condenser 5A1 and the water cooler.

そして凝縮器A1によって冷却液化された冷媒の一部を
、住居内の冷房目的にも使用できるように、水冷却3A
2への冷媒供給路に並列接続した冷媒配管に、冷風発生
用の蒸発器33を接続させている。
Then, a part of the refrigerant cooled and liquefied by the condenser A1 can be used for cooling purposes in the residence.Water cooling 3A
An evaporator 33 for generating cold air is connected to a refrigerant pipe connected in parallel to the refrigerant supply path to the refrigerant 2.

図中の他の符号は、21と22が熱交換器A1またはA
2に設けた、冷媒配管31または32の接続用継手部で
あり、23と24は熱交換器A1またはA2の据付は基
台とブラケットである。、51は熱交換器A1に冷却水
を送る送水パイプ、52と62は水濾過器、53と63
&よ水板上げポンプ、54は温水戻しパイプ、61は被
冷却水の汲上げパイプ、64は冷却水の戻しパイプ、モ
して40は圧縮機30の駆動用エンジンである。
Other symbols in the figure indicate that 21 and 22 are heat exchangers A1 or A
2 is a joint for connecting the refrigerant pipe 31 or 32, and 23 and 24 are a base and a bracket on which the heat exchanger A1 or A2 is installed. , 51 is a water pipe that sends cooling water to the heat exchanger A1, 52 and 62 are water filters, 53 and 63
54 is a hot water return pipe, 61 is a pipe for drawing up cooled water, 64 is a cooling water return pipe, and 40 is an engine for driving the compressor 30.

次に上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

第7図において、エンジン40を駆動させることによっ
て、圧縮機30を働かせ、冷媒帰路配管32内を流れる
気化冷媒をこの圧縮機に吸入し、高温・高圧状態に圧縮
したうえ、吐出口から冷媒往路配管31に吐出する。
In FIG. 7, by driving the engine 40, the compressor 30 is operated, and the vaporized refrigerant flowing in the refrigerant return pipe 32 is sucked into the compressor, compressed to a high temperature and high pressure state, and then passed from the discharge port to the refrigerant return pipe. It is discharged into piping 31.

凝縮器A1に冷媒人口3Aから流入した高温気相冷媒は
、第1図によって叩解されるように、ヘリカルチューブ
3内をたどって冷媒出口3Bに向かう間に、筒状ケース
1内の冷却水入口チューブ8からこのケース内に流入し
て出[1チユーブ9に向かう冷却水と熱交換して冷却液
化される。
The high-temperature vapor phase refrigerant flowing into the condenser A1 from the refrigerant population 3A passes through the cooling water inlet in the cylindrical case 1 while following the inside of the helical tube 3 and heading toward the refrigerant outlet 3B, as shown in FIG. The water flows into the case from the tube 8 and exchanges heat with the cooling water flowing out into the tube 9 to be turned into a cooling liquid.

筒状ケース1内には既述の如く、へりカルチューブ3の
螺旋形状に沿わせるようにして螺旋状流水路Bが形成さ
れているので、ヘリカルチl−ブ3内と螺旋状流水路B
内とをそれぞれとたどる冷媒と冷却水とは、共にほぼ同
一の延長長さを有する流路を、チューブ3の’IIを介
して互いに接触を保ちながら且つ水流の旋回に伴って生
ずる乱流を伴いながら流れることになって、冒頭に述べ
た2重管式熱交換器と同等の熱交換性能を発揮し、極め
て効率的に気相冷媒を液化させる。
As described above, the spiral flow channel B is formed in the cylindrical case 1 so as to follow the spiral shape of the helical tube 3, so that the inside of the helical tube 3 and the spiral flow channel B are formed.
The refrigerant and the cooling water each follow a flow path having approximately the same length, while maintaining contact with each other through the 'II of the tube 3, and avoiding turbulence caused by the swirling of the water flow. This results in a heat exchange performance equivalent to that of the double-tube heat exchanger mentioned at the beginning, and liquefies the gas phase refrigerant extremely efficiently.

液化した冷媒の一部は水冷却器へ2に送られて、その入
口部に設けである膨慝弁(図示略)を通過する間に気液
2層状態に減圧されたうえ、ヘリカルチューブ3に流入
する。筒状ケース1の冷却本人ロチ1−ブ8にはポンプ
63によっていけす60から汲上げられた被冷却水が流
入して来るので、冷媒はこの温かい水から気化の潜熱を
奪ってこれを冷却すると共に自身は気相冷媒に戻り、帰
路配管32を経て圧縮機30に吸入され再圧縮される。
A part of the liquefied refrigerant is sent to the water cooler 2, and while passing through an expansion valve (not shown) provided at the inlet thereof, the pressure is reduced to a gas-liquid two-layer state, and then the helical tube 3 flows into. Since the water to be cooled pumped up from the tank 60 by the pump 63 flows into the cooling rotary tube 8 of the cylindrical case 1, the refrigerant cools this warm water by removing the latent heat of vaporization from it. At the same time, the refrigerant itself returns to the gaseous phase, is sucked into the compressor 30 via the return pipe 32, and is recompressed.

冷却された水は戻しバイブロ4を経ていけす60に戻さ
れた後、反復して筒状ケース1内に送り込まれる。
The cooled water is returned to the tank 60 via the return vibro 4, and then repeatedly fed into the cylindrical case 1.

凝縮器A1から排出された液化冷媒の残りの部分は、冷
風発生用熱交換器としての蒸発器33に供給され、送1
気機(図示略)によってこの蒸発器に吹きつけられる温
風から気化の潜熱を奪って冷風を生じさゼ、自身は気相
に戻って圧縮機30に再吸入される。
The remaining part of the liquefied refrigerant discharged from the condenser A1 is supplied to the evaporator 33, which serves as a heat exchanger for generating cold air, and
An air blower (not shown) removes the latent heat of vaporization from the hot air blown to the evaporator to generate cold air, which returns to the gas phase and is sucked into the compressor 30 again.

凝縮器A1および水冷tJl器Δ2を椙成する筒状ケー
ス1の内部には、時の経過と共に冷却水中に含まれてい
る不純物や微生物などが次第に付着して滞積して来るの
で、その熱交換性能は経時的に低下する。
As time passes, impurities and microorganisms contained in the cooling water gradually adhere and accumulate inside the cylindrical case 1 that forms the condenser A1 and the water-cooled tank Δ2. Replacement performance deteriorates over time.

その場合にこれらの付着物を取り除くための汚れ落とし
作業は、シェル・アイド」イル型熱交換器同様にすこぶ
る簡単迅速に行うことができる、。
In that case, the cleaning work to remove these deposits can be done very easily and quickly, just like with shell-eyed heat exchangers.

即ち、蓋体2を筒状ケース1の上端開放筒端aに押圧固
定さゼているボルト12とプツト13の締結を解くこと
によって、ヘリカルチューブ3は蓋体2に固定された状
態のままで、筒状ケース1内から扱き取られる。次いで
、ヘリカルチューブ3の中空部およびチューブのピッチ
間隙部に挟み込まれた状態にある、バッフル付中筒4の
下端部をもってねじりながら引っばると、このバッフル
付中筒4も容易迅速にヘリカルチューブ3から扱き取る
ことができる。
That is, the helical tube 3 remains fixed to the cover 2 by unfastening the bolts 12 and 13 which press and fix the cover 2 to the upper open cylinder end a of the cylindrical case 1. , are handled from inside the cylindrical case 1. Next, when the lower end of the baffled middle tube 4, which is sandwiched between the hollow part of the helical tube 3 and the pitch gap between the tubes, is twisted and pulled, the baffled middle tube 4 can be easily and quickly removed from the helical tube 3. It can be handled from.

従ってこれらの分解された各部品に付着している異物を
取り除く作業は、穫く手早くまた確実に行える。掃除し
終った各部品は分解時とは逆の手順によって極く短時間
で再組立できる。
Therefore, the work of removing foreign matter adhering to each of these disassembled parts can be done quickly and reliably. Once cleaned, each part can be reassembled in a very short time by reversing the disassembly process.

本発明による熱交換器の構造を特徴付ける、熱交換性能
向上用のバッフル付中筒4の効力をm認するために、こ
のバッフル付中筒4を有しない点を除いて第1図の熱交
換器と同一の構造と寸法を備えた、従来のシェル・アン
ドコイル型の熱交換器と、第1図の熱交換器の性能を比
較した、一連の実験のデータの一部を第9図と第10図
にグラフ化して示した。
In order to recognize the effectiveness of the baffled middle cylinder 4 for improving heat exchange performance, which characterizes the structure of the heat exchanger according to the present invention, the heat exchanger shown in FIG. Figure 9 shows part of the data from a series of experiments comparing the performance of the heat exchanger in Figure 1 with a conventional shell-and-coil heat exchanger, which has the same structure and dimensions as the heat exchanger. This is shown graphically in FIG.

実験は、これらの熱交換器を第7図の冷凍勺イクルの凝
縮器A1として用い、同一の冷凍サイクル運転条件のも
とに行った。図中の実線グラフは本発明の、また−・点
鎖線グラフは従来の熱交換器が描いたグラフである。
The experiment was conducted using these heat exchangers as the condenser A1 of the refrigeration cycle shown in FIG. 7 under the same refrigeration cycle operating conditions. The solid line graph in the figure is a graph drawn by the present invention, and the dashed-dot line graph is a graph drawn by a conventional heat exchanger.

筒状ケース1内を流れる冷部水の流部を増大させる程、
画然交換器の熱伝達率αWの値のI;iきは拡大し、冷
部水流量が30J/ff1inの時には、実施例熱交換
器のαWは従来熱交換器に較べて約75%も高められる
ことが第9図のグラフから読み取れる。
The more the flow of cold water flowing inside the cylindrical case 1 is increased,
The value of the heat transfer coefficient αW of the heat exchanger increases, and when the cold section water flow rate is 30 J/ff1in, αW of the example heat exchanger is about 75% compared to the conventional heat exchanger. It can be seen from the graph in FIG. 9 that this can be improved.

また冷却水の流吊が20〜40J/l1linの範囲で
は実施例熱交換器の熱交換能力Qwは、従来型のそれに
較べて10%近く向上することが第10図から読みとれ
る。
Furthermore, it can be seen from FIG. 10 that the heat exchange capacity Qw of the embodiment heat exchanger is improved by nearly 10% compared to that of the conventional type when the cooling water flow rate is in the range of 20 to 40 J/l1lin.

第8図は本発明による第2実施例熱交換器の部分拡大側
断面図である。第1実施例と異なる点は、チューブの螺
旋ピッチは同一・であるが円筒の直径が相違する2つの
円筒状ヘリカルチ1−7103と203を向応的に組合
わせて用いた所にある。
FIG. 8 is a partially enlarged side sectional view of a second embodiment of the heat exchanger according to the present invention. The difference from the first embodiment is that two cylindrical helical cultiforms 1-7103 and 203, which have the same tube helical pitch but different cylinder diameters, are used in a reactive combination.

冷媒充VAIの多い大型冷凍装置では、冷媒流路に介在
さゼた熱交換器による冷媒の圧力損失を極力低くとどめ
る必要がある。そこで熱交換器内の冷媒流路を並列状態
に分岐させる方法が有効な対応策となるが、冒頭に)ホ
べたように従来の2手管式熱交換器では、その構造上流
路を並列化させることは極めて困難である。
In large-scale refrigeration systems with a high refrigerant charging VAI, it is necessary to keep the pressure loss of the refrigerant due to the heat exchanger interposed in the refrigerant flow path as low as possible. Therefore, an effective countermeasure is to branch the refrigerant flow paths in the heat exchanger into parallel states. However, as mentioned in the beginning, in the conventional two-tube heat exchanger, the upper flow paths of the structure are parallelized. It is extremely difficult to do so.

しかしこの実施例熱交換器では、第8図をみれば叩解さ
れるように、2つあるいはそれ以上の円筒状ヘリカルチ
ューブを同志的に重ね合わせると共に、螺旋状バッフル
5の横11]を、複合型ヘリカルコイルの横111拡大
分に対応させて拡巾させるだけで、2重管式熱交換器に
類する構造を備えるこの熱交換器に、並列状の熱交換用
流路を形成させることが出来る。
However, in the heat exchanger of this embodiment, as shown in FIG. By simply expanding the width to correspond to the horizontal 111 expansion of the type helical coil, parallel heat exchange channels can be formed in this heat exchanger, which has a structure similar to a double tube heat exchanger. .

上記実施例は、冷凍装買に使われる冷媒を冷却水を用い
て冷やすh法を説明しているが、第2の熱交換流体とし
ては冷媒以外の様々な流体を用いることができるし、場
合によっては、第1の熱交換流体として水以外の流体を
選ぶことも自由である。
The above embodiment describes the h method in which the refrigerant used in refrigeration equipment is cooled using cooling water, but various fluids other than refrigerant can be used as the second heat exchange fluid, and in some cases Depending on the situation, a fluid other than water may be freely selected as the first heat exchange fluid.

また筒状ケースやヘリカルチューブの形状・構造、そし
て蓋体の着脱手段や、ヘリカルデユープの管端部固定手
段などは、その−例を示したにとどまるしのであって、
6廿に応じて適宜に設置1変更しても本発明の目的は達
成できる。
In addition, the shapes and structures of the cylindrical case and helical tube, the means for attaching and detaching the lid, and the means for fixing the tube end of the helical duplex are merely examples.
The object of the present invention can be achieved even if the installation is changed appropriately depending on the age.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図へ・第4図はいずれも本発明による一実施例の熱
交換器を示しており、第1図は側断面図、第2図は第1
図の(イ)−(イ)断面図、第3図は分解図、そして第
4図はバッフル付中筒の部分側断面図である。 第5図と第6図は、バッフル句中筒の別の構造例を丞し
た、それぞれ分解図と組立図である。 第7図は2基の上記熱交換器を、その一台は冷媒凝縮器
として、他の・一台をいけす(魚槽)内の水を冷やすた
めの水冷却器(蒸発器)として、−・つの冷凍サイクル
内に組み込んで用いる使用事例を示したサイクル図であ
る。 第8図は本発明による第2実施例熱交換器の部分拡大側
断面図である。 第9図と第10図は、本発明による熱交換器の組付構造
の従来のそれとの優劣を比較した一連の実験のデータグ
ラフである。 図中  1・・・筒状ケース、  2・・・蓋体、  
3・・・ヘリカルチ1−ブ、  3A、  3B・・・
第2の熱交換流体の入口と出口 4・・・バッフル付中
筒、  5・・・螺旋状バラノル、  6.7・・・固
定手段 8.9・・・第1の熱交換流体の入l」と出1
」、 12.13・・・着脱手段
Figures 1 and 4 both show a heat exchanger according to an embodiment of the present invention, with Figure 1 being a side sectional view and Figure 2 being a 1
FIG. 3 is an exploded view, and FIG. 4 is a partial side sectional view of the baffled inner cylinder. FIGS. 5 and 6 are an exploded view and an assembled view, respectively, of another example of the structure of the baffle pipe middle cylinder. Figure 7 shows two heat exchangers, one of which is used as a refrigerant condenser and the other as a water cooler (evaporator) for cooling the water in the fish tank. - It is a cycle diagram showing an example of use by incorporating it into one refrigeration cycle. FIG. 8 is a partially enlarged side sectional view of a second embodiment of the heat exchanger according to the present invention. FIGS. 9 and 10 are data graphs of a series of experiments comparing the advantages and disadvantages of the heat exchanger assembly structure according to the present invention with the conventional one. In the figure 1... cylindrical case, 2... lid body,
3... Helical cube 1-b, 3A, 3B...
Inlet and outlet of second heat exchange fluid 4... Middle cylinder with baffle, 5... Spiral balanor, 6.7... Fixing means 8.9... Inlet of first heat exchange fluid ” and exit 1
", 12.13... Attachment and detachment means

Claims (1)

【特許請求の範囲】 (a) 第1の熱交換流体としての水の熱交換流路をな
して、その入口と出口を両筒端部に有すると共に、一方
の開放筒端に蓋体を着脱可能に取付けた気密筒状ケース
と、 (b) 第2の熱交換流体の流路をなして、前記ケース
内に納められる、円盤状ヘリカルチューブと、(c) 
該ヘリカルチューブの両筒端部を前記蓋体に挿通し固定
させる固定手段と、 (d) 前記ヘリカルチューブの螺旋ピッチと同等のピ
ッチを有すると共に、前記筒状ケース内に挿嵌しうる外
径を備えた螺旋状バッフルがその外周面に設けられてお
り、前記ヘリカルチューブの中空部に納められるバッフ
ル付中筒とを備える熱交換器の組付構造。
[Scope of Claims] (a) Forms a heat exchange flow path for water as the first heat exchange fluid, has an inlet and an outlet at both ends of the cylinder, and has a lid attached to and detachable from one open end of the cylinder. (b) a disc-shaped helical tube housed within the case and forming a flow path for a second heat exchange fluid; (c)
(d) a fixing means for inserting and fixing both cylindrical ends of the helical tube into the lid; (d) having an outer diameter that has a pitch equivalent to the helical pitch of the helical tube and that can be inserted into the cylindrical case; A heat exchanger assembly structure comprising: a helical baffle provided on the outer peripheral surface thereof, and a baffled inner cylinder housed in a hollow part of the helical tube.
JP62051130A 1987-03-05 1987-03-05 Heat exchanger assembly structure Expired - Lifetime JPH0731016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62051130A JPH0731016B2 (en) 1987-03-05 1987-03-05 Heat exchanger assembly structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62051130A JPH0731016B2 (en) 1987-03-05 1987-03-05 Heat exchanger assembly structure

Publications (2)

Publication Number Publication Date
JPS63217192A true JPS63217192A (en) 1988-09-09
JPH0731016B2 JPH0731016B2 (en) 1995-04-10

Family

ID=12878230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62051130A Expired - Lifetime JPH0731016B2 (en) 1987-03-05 1987-03-05 Heat exchanger assembly structure

Country Status (1)

Country Link
JP (1) JPH0731016B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680740A1 (en) * 1991-09-03 1993-03-05 Valeo Systemes Dessuyage DEVICE FOR HEATING A WASHER FLUID, IN PARTICULAR FOR A WINDSHIELD OF A MOTOR VEHICLE.
KR100786127B1 (en) * 2005-10-28 2007-12-18 에스엠시 가부시키가이샤 Temperature control device
WO2012153569A1 (en) * 2011-05-07 2012-11-15 イーグル工業株式会社 Cooler for mechanical seal
WO2014000017A1 (en) * 2012-06-29 2014-01-03 Waterco Limited Heat exchanger
JP2018004221A (en) * 2016-07-07 2018-01-11 株式会社Ihi Condenser and cleaning device
WO2018158843A1 (en) * 2017-02-28 2018-09-07 株式会社巴商会 Heat exchanger
CN109387102A (en) * 2017-08-03 2019-02-26 沈阳天洁环保新能源有限公司 Efficient rotary tubular type water-water heat exchanger
JP6761149B1 (en) * 2020-01-10 2020-09-23 鹿島建設株式会社 Decontamination system for microbial and / or virus-containing waste liquids

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201465A1 (en) * 2013-01-30 2014-07-31 Eberspächer Exhaust Technology GmbH & Co. KG Heat exchanger of an internal combustion engine
JP2018025345A (en) * 2016-08-09 2018-02-15 株式会社システック Heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442376Y1 (en) * 1965-09-10 1969-01-29
JPS5810572U (en) * 1981-07-08 1983-01-24 株式会社日立製作所 Heat exchanger
JPS621577U (en) * 1985-06-19 1987-01-07

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442376Y1 (en) * 1965-09-10 1969-01-29
JPS5810572U (en) * 1981-07-08 1983-01-24 株式会社日立製作所 Heat exchanger
JPS621577U (en) * 1985-06-19 1987-01-07

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680740A1 (en) * 1991-09-03 1993-03-05 Valeo Systemes Dessuyage DEVICE FOR HEATING A WASHER FLUID, IN PARTICULAR FOR A WINDSHIELD OF A MOTOR VEHICLE.
KR100786127B1 (en) * 2005-10-28 2007-12-18 에스엠시 가부시키가이샤 Temperature control device
WO2012153569A1 (en) * 2011-05-07 2012-11-15 イーグル工業株式会社 Cooler for mechanical seal
JPWO2012153569A1 (en) * 2011-05-07 2014-07-31 イーグル工業株式会社 Cooler for mechanical seal
JP5807926B2 (en) * 2011-05-07 2015-11-10 イーグル工業株式会社 Cooler for mechanical seal
WO2014000017A1 (en) * 2012-06-29 2014-01-03 Waterco Limited Heat exchanger
US9683785B2 (en) 2012-06-29 2017-06-20 Waterco Limited Heat exchanger
JP2018004221A (en) * 2016-07-07 2018-01-11 株式会社Ihi Condenser and cleaning device
WO2018158843A1 (en) * 2017-02-28 2018-09-07 株式会社巴商会 Heat exchanger
JPWO2018158843A1 (en) * 2017-02-28 2019-03-07 株式会社巴商会 Heat exchanger
CN109387102A (en) * 2017-08-03 2019-02-26 沈阳天洁环保新能源有限公司 Efficient rotary tubular type water-water heat exchanger
JP6761149B1 (en) * 2020-01-10 2020-09-23 鹿島建設株式会社 Decontamination system for microbial and / or virus-containing waste liquids

Also Published As

Publication number Publication date
JPH0731016B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US5526876A (en) Heat exchanger
JP3056151B2 (en) Heat exchanger
US8959948B2 (en) Receiver dryer
JPS63217192A (en) Assembly structure of heat exchanger
US2729433A (en) Heat exchanger with removable tube banks
JPH11316065A (en) Condenser with receiver tank
US3889746A (en) Heat exchanger
US6516873B1 (en) Heat exchanger
JPH04295599A (en) Heat exchanger
JP2000055574A (en) Heat-exchanging device
JP2010185648A (en) Heat exchanger
JPH0961071A (en) Heat exchanger
CA2763210C (en) Improved refrigerant compensator
US4805694A (en) Heat exchanger
JPS586378A (en) Direct expansion evaporator
RU2206851C1 (en) Shell-and-plate heat exchanger (modofocations)
KR200259605Y1 (en) Integral Condenser
JPH04309766A (en) Heat exchanger
US8424593B2 (en) Pressurized-gas cooler for a compressor
JPH01123994A (en) Heat exchanger for freezing cycle
JP2006207995A (en) Heat exchanger
JPS5836265B2 (en) Heat exchanger for chilled water production equipment
CN219976800U (en) Anti-corrosion evaporator
KR20000032409A (en) Water container
KR100535201B1 (en) Cooling Device for Water Purifier