US3887893A - Fusible resistor - Google Patents
Fusible resistor Download PDFInfo
- Publication number
- US3887893A US3887893A US400236A US40023673A US3887893A US 3887893 A US3887893 A US 3887893A US 400236 A US400236 A US 400236A US 40023673 A US40023673 A US 40023673A US 3887893 A US3887893 A US 3887893A
- Authority
- US
- United States
- Prior art keywords
- resistor
- fusible
- substrate
- resistive film
- deposited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 239000000463 material Substances 0.000 claims abstract description 38
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 17
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000155 melt Substances 0.000 claims abstract description 14
- 239000011195 cermet Substances 0.000 claims abstract description 13
- 239000011253 protective coating Substances 0.000 claims abstract description 6
- 230000004907 flux Effects 0.000 claims description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 10
- 239000012777 electrically insulating material Substances 0.000 claims description 9
- 238000009736 wetting Methods 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 claims description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 claims description 4
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 3
- 239000012760 heat stabilizer Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000976 ink Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- NSAODVHAXBZWGW-UHFFFAOYSA-N cadmium silver Chemical compound [Ag].[Cd] NSAODVHAXBZWGW-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000010665 pine oil Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/13—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material current responsive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H69/00—Apparatus or processes for the manufacture of emergency protective devices
- H01H69/02—Manufacture of fuses
- H01H69/022—Manufacture of fuses of printed circuit fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/041—Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
- H01H85/046—Fuses formed as printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/041—Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
- H01H85/048—Fuse resistors
Definitions
- ABSTRACT A cermet resistive film is deposited on an alumina substrate to form a fixed resistance between a pair of spaced termination points. A portion of the resistive film is removed to form a pair of resistor sections separated by an insulating gap. A fusible link which includes a layer of cadmium material is deposited in the gap to provide electrical continuity between resistor sections and the resistor body is then covered with a protective coating. When a maximum temperature is reached due to an overload current, the fusible material melts and opens circuit.
- the field of the invention is resistors used in electrical circuits, and more specifically, resistors having a fusible link which opens the circuit when an electrical overload occurs.
- Fusible resistors are used in electrical circuits to protect components in the circuit from overload currents. They are typically much larger than conventional fixed resistors, substantially more expensive, and usually available in only a few resistance values. Except for power supplies and power output circuits of electrical systems, the use of fusible resistors has hitherto been minimal.
- Prior fusible resistors have either been constructed of resistance wire which burns out at a predetermined temperature or of a resistance material which is located in close proximity to a fusible link that melts at a predetermined temperature.
- a fixed resistor is disclosed and a metallic band is disposed around the resistor body with one of the resistor lead wires connected to it through a fusible link. The lead wire springs free of the band when the fusible link melts to open the electrical circuit at a preselected temperature.
- the present invention relates to a fusible resistor and method of manufacture in which a fusible link is integrally formed with a film of resistive material. More specifically, the fusible resistor is formed by depositing a resistive film on a substrate between a pair of spaced termination points, providing a gap which interrupts electrical continuity between the termination points, and depositing a fusible link on the substrate within the gap to provide electrical continuity across the gap at normal operating temperatures.
- the fusible link includes a fusing layer which melts at a preselected temperature, and which separates by surface preferred wetting to open-circuit the resistor.
- a general object of the invention is to provide a fusible resistor which is competitive in size, operation and cost with a fixed resistor of comparable wattage rating.
- the shape and size of the substrate may be identical to that used to make a corresponding fixed resistor, and the carbon, metal or cermet resistive film which is deposited thereon may be identical to that used to make a corresponding fixed resistor.
- the method and means used to attach the lead wires to the substrate and to insure electrical contact with the termination points is identical to that used in manufacturing a corresponding fixed resistor. In other words, the manufacturing process is substantially the same as that used to make a corresponding fixed resistor and only a few additional steps are needed to form a gap and deposit the fusible link.
- Another object of the invention is to provide a fusible resistor in which it is economically feasible to manufacture a variety of standard resistance values. After the resistive film is deposited on the substrate, it is adjusted in value by cutting a helical groove in the resistive film. Because the shape and size of the substrate may be the same as that of a corresponding fixed resistor, the same manufacturing process and equipment can be used to form and adjust the resistance element. The minimal additional cost necessary to add the fusible link to a wide selection of resistance values, not only makes it technically feasible, but also, economically feasible to substitute the fusible resistor for fixed resistors in many electrical circuits where an additional measure of protection is desired.
- Another object of the invention is to insure that the fusible link opens the circuit at the selected temperature.
- the fusing layer is deposited on the substrate and spans the gap to provide electrical continuity.
- the gap is bounded by ohmic contacts formed of a conductive material such as silver.
- An important aspect of the invention is that the substrate, fusing layer and ohmic contact materials are selected such that when the fusing layer melts, it is drawn from the gap to the ohmic contacts by surface preferred wetting and, therefore, separates to open circuit the resistor.
- the fusing layer includes a low melting point material such as cadmium, tin or lead which may be alloyed in selected amounts with other materials to obtain the desired melting point.
- a layer of non-acidic flux is deposited over the fusing layer.
- a further object of the invention is to provide a structure which may be formed in a number of convenient configurations.
- the substrate may be flat or cylindrical, the resistive film may be deposited on a portion of the substrate and the fusible link located in close proximity and in circuit with the resistive film.
- FIG. 1 is a view with parts cut away of a fusible resistor embodying the present invention
- FIG. 2 is a perspective view of the fusible resistor during an early stage of its manufacture
- FIG. 3 is a partial view in cross section showing the gap in which the fusible link is formed
- FIG. 4 is a partial view in cross section of the completed fusible resistor
- FIG. 5 is a partial view in cross section of the fusible resistor when open circuited.
- the fusible resistor is embodied in a conventional one-quarter watt fixed resistor package which includes a circular, cylindrical body 1 having a pair of lead wires 2 extending from each of its ends.
- the resistor body 1 includes an insulating substrate which is shaped in the form of a circular, cylindrical core 3 having a central opening 4 that extends through its entire length.
- the substrate material is comprised of approximately 96 percent aluminum oxide which is extruded or pressed, and then sintered to form an alumina-ceramic material which forms a hard base to which the lead wires 2 are attached and upon which the resistance material is deposited as described hereinafter.
- alumina-ceramic material which forms a hard base to which the lead wires 2 are attached and upon which the resistance material is deposited as described hereinafter.
- a resistance film 5 is deposited along the entire length of the outer cylindrical surface of the core 3.
- a cermet resistance material is used, and it is deposited on the surface of the core 3 by rolling the core across an applicator which contains the cermet material in a paste, or ink, form.
- the organic carrier which forms a part of the paste is first dried and then decomposed with heat and the cermet coated core 3 is then fired at approximately 900C.
- the glass constituent of the cermet is melted at this temperature and the metal materials which are dispersed throughout the glass form the metal and metal oxide system which is characteristic of cermet resistive materials.
- cermet inks are used. Each ink is formulated in a manner well known to the art and each exhibits a different ohms per square. For example, to obtain a full range of standard resistance values up to K ohms on a core 3 having a length of 0.270 inches and a diameter of 0.093 inches, two cermet inks having 3 ohms per square, and 100 ohms per square are used. As will be explained hereinafter, final calibration of the resistance value is made by cutting a helical groove in the cermet resistance layer.
- the resistive film 5 is terminated at each end of the body 1 by ohmic contacts 6 and 7.
- the ohmic contacts 6 and 7 provide a conductive path between the resistive film 5 and the ends of the core 3, and are formed by dipping the ends of the core 3 into a silver-glass mixture.
- a number of silver-glass mixtures are commercially available such as DuPont Silver Paste 8706 in which the silver comprises approximately 66-69 percent of the mixture, the glass approximately 3.7 to 5.9 percent, and the remainder is an organic carrier which forms an ink.
- a layer of the same silver-glass mixture is applied around the core 3 to form a center band 10 which is from 80 to 100 mils in width.
- the center band 10 is processed currently with the ohmic contacts 6 and 7 by first drying and then decomposing the organic carrier with heat.
- the center band 10 and resistance film 5 are then divided into two sections by removing a 30 to 50 mil band of material from the center band 10 down to the alumina substrate 3.
- An electrically insulating gap is thus formed and is bound on each side by ohmic contacts 8 and 9 which are formed by the remaining portions of the center band 10. The cut is made sufficiently deep to clean the surface of the alumina substrate 3.
- the exposed alumina substrate in the gap and the surfaces of the adjacent ohmic contacts 8 and 9 are now prepared to receive the fusible link.
- a sensitizing material to the gap consisting of Ag-l-neodecanioc acid being dispersed in a vehicle of ethyl cellulose as a binder, di-n-butyl phthalate as plasticizer, and toluene and pine oil as solvents.
- the applied sensitizing material is dried and fired in air at about 600C. leaving the silver on the exposed substrate in the gap and on the ohmic contacts 8 and 9.
- the fusible link is then formed by immersing the resistor body 1 in a cyanide electrolyte containing cadmium ions.
- the resulting cadmium fusing layer 12 is about 0.00025 inch to 0.00050 inch thick and spans the gap between the resistor sections and makes electrical contact therewith through the ohmic contacts 8 and 9.
- the next step is to adjust the resistor to its final value by making a helical groove 14 in the resistance film 5.
- This method and the apparatus for performing it are well known in the art as exemplified by U.S. Pat. No. 3,329,922, which discloses a method of manufacturing metal film resistors, and by U.S. Pat. No. 2,597,338, which discloses a method of manufacturing carbon film resistors.
- the groove 14 is made in both sections of the resistor,and it cuts through the coating 13, the resistance film 5, and into the alumina substrate 3 approximately 5 mils.
- the fusible link is formulated to melt and open circuit at a predetermined temperature. To stabilize the melting point, however, it has been found that a flux layer 17 is necessary to prevent the cadmium fusing layer 12 from oxidizing at high temperatures.
- the flux layer 17 inhibits oxidation of the cadmium and prevents the melting point of the fusible link from rising.
- a l to 2 mil layer of a non-acidic, rosin type flux is used, and is painted over the entire surface of the fusing layer 12. More specifically, the flux is comprised of 42.5 percent water white rosin flux, 6.3 percent heat stabilizer such as that commercially available as Dupont Elwax No. 250, and 51 percent organic solvents such as butanol and methylene chloride.
- Each lead wire 2 includes a knurled head 15 on one of its ends, and an associated collar 16 which extends radially outward therefrom. As described in more detail in our U.S. Pat. No. 3,808,575, the knurled heads 15 of the two lead wires 2 are driven into the openings 4 at the ends of the body 1, and the lead wires 2 are soldered in place with -10 solder.
- the remaining step is to apply a protective, conformal coating 18 to the entire outer surface of the resistor body 1.
- a coating material which is particularly suited for this purpose is disclosed in detail in the above-cited copending patent application. It includes as major constituents an epoxy resin and a phenolic resin along with a silica filter.
- the conformal coating 18 may be applied in several layers. A coloring pigment may be added and after adding an appropriate number of coats color coding is applied. Surface heat is applied after every layer is applied to initiate polymerization and to cure the resin.
- the completed fusible resistor includes a pair of spaced termination points 19 and 20 which are located at each end of the resistor and which are joined by a conductive path that includes the two resistor sections joined by the fusible link indicated generally as 21.
- the power dissipated by the resistor sections when current flows through this path generates heat which causes the temperature of the substrate 3 and attached fusible link 21 to rise.
- the melting point of the fusing layer 12 When the melting point of the fusing layer 12 is reached, it liquifies.
- the liquified cadmium has a relatively high surface tension which causes it to bead.
- the cadmium does not wet" the exposed surface of the substrate 3 as well as the silver-glass ohmic contacts 8 and 9, and as a result, it divides, or separates, and flows toward the respective ohmic contacts 8 and 9 where it beads and solidifies as shown in FIG. 5. Electrical continuity between the termination points 19 and 20 is thus abruptly interrupted when the melting point of the fusing layer 12 is reached.
- the fusible link 21 can be formed of other electrically conductive materials to obtain different melting temperatures.
- tin, lead, zinc, indium, silver, or combinations thereof may be substituted for the cadmium fusing layer of the preferred embodiment.
- Cadmium and cadmium-silver alloys are preferred, however, because they resist oxidation at elevated temperatures.
- cadmium and cadmium-silver alloys are drawn rapidly by surface preferred wetting toward the ohmic contacts located on each side of the gap when their melting temperature is reached, with the result that the fusible link opens circuit quickly.
- the fusible resistor may be manufactured in a number of ways.
- the resistive film 5 may be applied as two separate sections which are spaced apart to form a gap therebetween and in which the fusible link is deposited.
- the order in which the manufacturing steps are performed may also be varied.
- the point at which the lead wires 2 are attached may be changed to suit the available assembly equipment.
- the shape of the substrate and position of the resistive element and fusible link may take a number of forms.
- the resistive film is deposited thereon and the fusible link is deposited in close proximity to the resistive film and in electrical circuit therewith.
- the fusible link may be positioned on the side opposite the substrate surface upon which the resistive film is deposited. Regardless of the configuration, however, the fusible link must be connected in circuit with the resistive element and must be positioned sufficiently close to receive an accurate indication of temperature.
- a fusible resistor comprising:
- a cylindrical substrate made of an electrically insulating material and having ohmic contacts disposed at its ends;
- resistive film deposited on the surface of said cylindrical substrate between said ohmic contacts, said resistive film being divided into two resistor sec tions by a gap which interrupts electrical continuity between said lead wires;
- a fusible link deposited on said substrate and within said gap to provide electrical continuity between said resistor sections at normal operating temperatures, said fusible link including a fusing layer which melts at a preselected temperature to open circuit.
- a fusible resistor the combination comprising:
- a substrate made of an electrically insulating material and having a pair of spaced termination points
- resistive film deposited on the surface of said substrate between said termination points, said resistive film being divided into two resistor sections by a gap which interrupts electrical continuity between said termination points;
- a fusible link deposited on said substrate and within said gap to provide electrical continuity between said resistor sections at normal operating temperatures
- said fusible link including a fusing layer made from a material having substantially less resistance per square than said resistive film and which is responsive to the heat generated in said resistive film to melt at a preselected temperature and said fusing layer material has a relatively high surface tension when in the liquid state and is drawn out of said gap by surface preferred wetting when said preselected temperature is exceeded to open circuit.
- a fusible resistor the combination comprising:
- a substrate made of an electrically insulating material and having a pair of spaced termination points
- resistive film selected from the group of carbon composition and cermet resistive materials and deposited on the surface of said substrate between said termination points;
- a fusible link deposited on said substrate in series connection with said resistive film to provide electrical continuity between said termination points, said fusible link including a metallic fusing layer 7 8 which has substantially less resistance per square a resistive film deposited on the surface of said subthan said resistive film material, which is supported strate between said termination points; by the substrate and which melts at a preselected a fusible link deposited on said substrate in series temperature to open circuit by surface preferred connection with said resistive film to provide elecwetting. trical continuity between said termination points, 13.
- the fusible resistor as recited in claim 12 in said fusible link including a fusing layer which which said fusing layer is coated with a layer of nonmelts at a preselected temperature to open circuit acidic flux. by surface preferred wetting;
- the fusible resistor as recited in claim 13 in ohmic contacts disposed to each side of said fusing which said fusing layer material is selected from the to layer and when said fusing layer material melts, it group consisting of cadmium, silver, indium, tin, lead, flows to said ohmic contacts. and zinc.
- a fusible resistor. the combination comprising: which said substrate is an alumina-ceramic material a substrate made of an electrically insulating material and said ohmic contacts include silver.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Fuses (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Thermistors And Varistors (AREA)
- Non-Adjustable Resistors (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US400236A US3887893A (en) | 1973-09-24 | 1973-09-24 | Fusible resistor |
CA205,452A CA1011882A (en) | 1973-09-24 | 1974-07-23 | Fusible resistor |
GB3881374A GB1474095A (en) | 1973-09-24 | 1974-09-05 | Resistors |
DE19742444375 DE2444375A1 (de) | 1973-09-24 | 1974-09-17 | Schmelzwiderstand |
FR7431432A FR2245076B3 (enrdf_load_stackoverflow) | 1973-09-24 | 1974-09-17 | |
IT749573A IT1023751B (it) | 1973-09-24 | 1974-09-19 | Resistore fusibile per circuiti elettrici di ridotte dimensioni |
JP49110384A JPS5059766A (enrdf_load_stackoverflow) | 1973-09-24 | 1974-09-24 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US400236A US3887893A (en) | 1973-09-24 | 1973-09-24 | Fusible resistor |
Publications (1)
Publication Number | Publication Date |
---|---|
US3887893A true US3887893A (en) | 1975-06-03 |
Family
ID=23582774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US400236A Expired - Lifetime US3887893A (en) | 1973-09-24 | 1973-09-24 | Fusible resistor |
Country Status (7)
Country | Link |
---|---|
US (1) | US3887893A (enrdf_load_stackoverflow) |
JP (1) | JPS5059766A (enrdf_load_stackoverflow) |
CA (1) | CA1011882A (enrdf_load_stackoverflow) |
DE (1) | DE2444375A1 (enrdf_load_stackoverflow) |
FR (1) | FR2245076B3 (enrdf_load_stackoverflow) |
GB (1) | GB1474095A (enrdf_load_stackoverflow) |
IT (1) | IT1023751B (enrdf_load_stackoverflow) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3978443A (en) * | 1973-10-05 | 1976-08-31 | Erie Electronics Limited | Fusible resistor |
US4006443A (en) * | 1975-09-11 | 1977-02-01 | Allen-Bradley Company | Composition resistor with an integral thermal fuse |
US4031497A (en) * | 1975-09-23 | 1977-06-21 | Juichiro Ozawa | Fusible resistor |
US4034207A (en) * | 1976-01-23 | 1977-07-05 | Murata Manufacturing Co., Ltd. | Positive temperature coefficient semiconductor heating element |
JPS52171738U (enrdf_load_stackoverflow) * | 1976-06-21 | 1977-12-27 | ||
US4101820A (en) * | 1976-05-06 | 1978-07-18 | Wabco Westinghouse | Fail-safe resistor |
US4199745A (en) * | 1977-12-15 | 1980-04-22 | Trx, Inc. | Discrete electrical components |
US4278706A (en) * | 1977-12-15 | 1981-07-14 | Trx, Inc. | Method for making discrete electrical components |
US4331947A (en) * | 1977-05-28 | 1982-05-25 | Aktieselkabet Laur. Knudsen Nordisk Electricitets | Electric safety fuse |
US4529960A (en) * | 1983-05-26 | 1985-07-16 | Alps Electric Co., Ltd. | Chip resistor |
US5027101A (en) * | 1987-01-22 | 1991-06-25 | Morrill Jr Vaughan | Sub-miniature fuse |
US5032817A (en) * | 1987-01-22 | 1991-07-16 | Morrill Glassteck, Inc. | Sub-miniature electrical component, particularly a fuse |
US5040284A (en) * | 1987-01-22 | 1991-08-20 | Morrill Glasstek | Method of making a sub-miniature electrical component, particularly a fuse |
US5084694A (en) * | 1989-06-29 | 1992-01-28 | Ngk Insulators, Ltd. | Detection elements and production process therefor |
US5097245A (en) * | 1987-01-22 | 1992-03-17 | Morrill Glasstek, Inc. | Sub-miniature electrical component, particularly a fuse |
US5122774A (en) * | 1987-01-22 | 1992-06-16 | Morrill Glasstek, Inc. | Sub-miniature electrical component, particularly a fuse |
DE4200072A1 (de) * | 1991-01-03 | 1992-07-09 | Gould Inc | Elektrische sicherung mit einem duennschicht-schmelzleiter auf einem substrat |
US5131137A (en) * | 1987-01-22 | 1992-07-21 | Morrill Glasstek, Inc. | Method of making a sub-miniature electrical component particularly a fuse |
US5155462A (en) * | 1987-01-22 | 1992-10-13 | Morrill Glasstek, Inc. | Sub-miniature electrical component, particularly a fuse |
US5224261A (en) * | 1987-01-22 | 1993-07-06 | Morrill Glasstek, Inc. | Method of making a sub-miniature electrical component, particularly a fuse |
EP0786790A3 (en) * | 1996-01-29 | 1998-01-07 | CTS Corporation | Electrical fuse |
US20080303626A1 (en) * | 2004-07-08 | 2008-12-11 | Vishay Bccomponents Beyschlag Gmbh | Fuse For a Chip |
US7983024B2 (en) | 2007-04-24 | 2011-07-19 | Littelfuse, Inc. | Fuse card system for automotive circuit protection |
CN106847447A (zh) * | 2017-01-03 | 2017-06-13 | 常州安斯电子有限公司 | 一种晶片阻值保险性电阻器及其生产工艺 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT383697B (de) * | 1983-09-15 | 1987-08-10 | Wickmann Werke Gmbh | Schutzvorrichtung zum unterbrechen eines stromkreises von elektrischen geraeten, maschinen etc. |
JPH0831303B2 (ja) * | 1986-12-01 | 1996-03-27 | オムロン株式会社 | チツプ型ヒユ−ズ |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1208448A (en) * | 1914-02-26 | 1916-12-12 | Gen Electric | Electric cut-out. |
US1255597A (en) * | 1916-10-16 | 1918-02-05 | Georges Giles | Industrial electrical capacity-battery. |
US2263752A (en) * | 1939-04-26 | 1941-11-25 | Babler Egon | Electric circuit interupter |
US2537959A (en) * | 1945-07-18 | 1951-01-16 | Sprague Electric Co | Artificial transmission line |
US2672542A (en) * | 1952-02-02 | 1954-03-16 | Milwaukee Resistor Company | Fusible resistor |
US2973418A (en) * | 1958-10-07 | 1961-02-28 | Bell Telephone Labor Inc | Fuse-resistor |
US3386063A (en) * | 1960-10-03 | 1968-05-28 | Gen Electric | Temperature responsive fuses and apparatus embodying such fuses |
US3423574A (en) * | 1965-10-14 | 1969-01-21 | Sanders Associates Inc | Electrical resistance heating pad |
US3441804A (en) * | 1966-05-02 | 1969-04-29 | Hughes Aircraft Co | Thin-film resistors |
US3766508A (en) * | 1972-07-03 | 1973-10-16 | Matsushita Electric Ind Co Ltd | Flame-proof coated resistors |
-
1973
- 1973-09-24 US US400236A patent/US3887893A/en not_active Expired - Lifetime
-
1974
- 1974-07-23 CA CA205,452A patent/CA1011882A/en not_active Expired
- 1974-09-05 GB GB3881374A patent/GB1474095A/en not_active Expired
- 1974-09-17 FR FR7431432A patent/FR2245076B3/fr not_active Expired
- 1974-09-17 DE DE19742444375 patent/DE2444375A1/de not_active Withdrawn
- 1974-09-19 IT IT749573A patent/IT1023751B/it active
- 1974-09-24 JP JP49110384A patent/JPS5059766A/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1208448A (en) * | 1914-02-26 | 1916-12-12 | Gen Electric | Electric cut-out. |
US1255597A (en) * | 1916-10-16 | 1918-02-05 | Georges Giles | Industrial electrical capacity-battery. |
US2263752A (en) * | 1939-04-26 | 1941-11-25 | Babler Egon | Electric circuit interupter |
US2537959A (en) * | 1945-07-18 | 1951-01-16 | Sprague Electric Co | Artificial transmission line |
US2672542A (en) * | 1952-02-02 | 1954-03-16 | Milwaukee Resistor Company | Fusible resistor |
US2973418A (en) * | 1958-10-07 | 1961-02-28 | Bell Telephone Labor Inc | Fuse-resistor |
US3386063A (en) * | 1960-10-03 | 1968-05-28 | Gen Electric | Temperature responsive fuses and apparatus embodying such fuses |
US3423574A (en) * | 1965-10-14 | 1969-01-21 | Sanders Associates Inc | Electrical resistance heating pad |
US3441804A (en) * | 1966-05-02 | 1969-04-29 | Hughes Aircraft Co | Thin-film resistors |
US3766508A (en) * | 1972-07-03 | 1973-10-16 | Matsushita Electric Ind Co Ltd | Flame-proof coated resistors |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3978443A (en) * | 1973-10-05 | 1976-08-31 | Erie Electronics Limited | Fusible resistor |
US4006443A (en) * | 1975-09-11 | 1977-02-01 | Allen-Bradley Company | Composition resistor with an integral thermal fuse |
US4031497A (en) * | 1975-09-23 | 1977-06-21 | Juichiro Ozawa | Fusible resistor |
US4034207A (en) * | 1976-01-23 | 1977-07-05 | Murata Manufacturing Co., Ltd. | Positive temperature coefficient semiconductor heating element |
US4101820A (en) * | 1976-05-06 | 1978-07-18 | Wabco Westinghouse | Fail-safe resistor |
JPS52171738U (enrdf_load_stackoverflow) * | 1976-06-21 | 1977-12-27 | ||
US4331947A (en) * | 1977-05-28 | 1982-05-25 | Aktieselkabet Laur. Knudsen Nordisk Electricitets | Electric safety fuse |
US4199745A (en) * | 1977-12-15 | 1980-04-22 | Trx, Inc. | Discrete electrical components |
US4278706A (en) * | 1977-12-15 | 1981-07-14 | Trx, Inc. | Method for making discrete electrical components |
US4529960A (en) * | 1983-05-26 | 1985-07-16 | Alps Electric Co., Ltd. | Chip resistor |
US5040284A (en) * | 1987-01-22 | 1991-08-20 | Morrill Glasstek | Method of making a sub-miniature electrical component, particularly a fuse |
US5131137A (en) * | 1987-01-22 | 1992-07-21 | Morrill Glasstek, Inc. | Method of making a sub-miniature electrical component particularly a fuse |
US5027101A (en) * | 1987-01-22 | 1991-06-25 | Morrill Jr Vaughan | Sub-miniature fuse |
US5224261A (en) * | 1987-01-22 | 1993-07-06 | Morrill Glasstek, Inc. | Method of making a sub-miniature electrical component, particularly a fuse |
US5097245A (en) * | 1987-01-22 | 1992-03-17 | Morrill Glasstek, Inc. | Sub-miniature electrical component, particularly a fuse |
US5122774A (en) * | 1987-01-22 | 1992-06-16 | Morrill Glasstek, Inc. | Sub-miniature electrical component, particularly a fuse |
US5155462A (en) * | 1987-01-22 | 1992-10-13 | Morrill Glasstek, Inc. | Sub-miniature electrical component, particularly a fuse |
US5032817A (en) * | 1987-01-22 | 1991-07-16 | Morrill Glassteck, Inc. | Sub-miniature electrical component, particularly a fuse |
US5084694A (en) * | 1989-06-29 | 1992-01-28 | Ngk Insulators, Ltd. | Detection elements and production process therefor |
DE4200072A1 (de) * | 1991-01-03 | 1992-07-09 | Gould Inc | Elektrische sicherung mit einem duennschicht-schmelzleiter auf einem substrat |
EP0786790A3 (en) * | 1996-01-29 | 1998-01-07 | CTS Corporation | Electrical fuse |
US20080303626A1 (en) * | 2004-07-08 | 2008-12-11 | Vishay Bccomponents Beyschlag Gmbh | Fuse For a Chip |
US9368308B2 (en) * | 2004-07-08 | 2016-06-14 | Vishay Bccomponents Beyschlag Gmbh | Fuse in chip design |
US10354826B2 (en) | 2004-07-08 | 2019-07-16 | Vishay Bccomponents Beyschlag Gmbh | Fuse in chip design |
US7983024B2 (en) | 2007-04-24 | 2011-07-19 | Littelfuse, Inc. | Fuse card system for automotive circuit protection |
CN106847447A (zh) * | 2017-01-03 | 2017-06-13 | 常州安斯电子有限公司 | 一种晶片阻值保险性电阻器及其生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
FR2245076A1 (enrdf_load_stackoverflow) | 1975-04-18 |
GB1474095A (en) | 1977-05-18 |
IT1023751B (it) | 1978-05-30 |
DE2444375A1 (de) | 1975-04-03 |
CA1011882A (en) | 1977-06-07 |
FR2245076B3 (enrdf_load_stackoverflow) | 1977-07-01 |
JPS5059766A (enrdf_load_stackoverflow) | 1975-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3887893A (en) | Fusible resistor | |
US6023028A (en) | Surface-mountable device having a voltage variable polgmeric material for protection against electrostatic damage to electronic components | |
US6492896B2 (en) | Chip resistor | |
JP2726130B2 (ja) | 金属有機物膜からなる少量アンペア用ヒューズ及びその製造方法 | |
DE69125307T2 (de) | Kleinstsicherung für niedere Stromstärke | |
JP2001524747A (ja) | Ptcおよび可融性素子を含む表面実装可能電気デバイス | |
CA1044346A (en) | Composition resistor with an integral thermal fuse | |
US5363272A (en) | Capacitor apparatus incorporating fuse | |
AU619506B2 (en) | Gas discharge surge absorber | |
EP0797220B1 (en) | A resistor composition and resistors using the same | |
US5790008A (en) | Surface-mounted fuse device with conductive terminal pad layers and groove on side surfaces | |
US4371860A (en) | Solderable varistor | |
US5974661A (en) | Method of manufacturing a surface-mountable device for protection against electrostatic damage to electronic components | |
US20060158304A1 (en) | Resistive material, resistive element, resistor, and method for manufacturing resistor | |
US6191678B1 (en) | Time lag fuse | |
EP0830704B1 (en) | Improved method and apparatus for a surface-mounted fuse device | |
EP0834180B1 (en) | Method and apparatus for a surface-mountable device for protection against electrostatic damage to electronic components | |
US3938069A (en) | Metal oxide varistor with passivating coating | |
JPS5842131A (ja) | ヒユ−ズ用の可融素子およびヒユ−ズ | |
US3766508A (en) | Flame-proof coated resistors | |
JPH0465046A (ja) | チップ形ヒューズ抵抗器 | |
JPH0922802A (ja) | 抵抗器 | |
US3808045A (en) | Method of manufacture of electric contacts | |
JPH07297006A (ja) | チップ状電子部品 | |
US3248682A (en) | Electrical resistance element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLEN-BRADLEY COMPANY Free format text: MERGER;ASSIGNORS:ALLEN-BRADLEY COMPANY (MERGED INTO);NEW A-B CO., INC., (CHANGED TO);REEL/FRAME:005165/0612 Effective date: 19851231 |