US3886885A - Container system for the storage and/or transportation of liquefied gas - Google Patents
Container system for the storage and/or transportation of liquefied gas Download PDFInfo
- Publication number
- US3886885A US3886885A US354887A US35488773A US3886885A US 3886885 A US3886885 A US 3886885A US 354887 A US354887 A US 354887A US 35488773 A US35488773 A US 35488773A US 3886885 A US3886885 A US 3886885A
- Authority
- US
- United States
- Prior art keywords
- receptacles
- network
- gas
- liquid
- liquefied gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/002—Storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/03—Orientation
- F17C2201/032—Orientation with substantially vertical main axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/054—Size medium (>1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0617—Single wall with one layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
- F17C2205/0134—Two or more vessels characterised by the presence of fluid connection between vessels
- F17C2205/0142—Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0332—Safety valves or pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0358—Pipes coaxial
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/221—Welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/046—Localisation of the removal point in the liquid
- F17C2223/047—Localisation of the removal point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0146—Two-phase
- F17C2225/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/01—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
- F17C2225/0146—Two-phase
- F17C2225/0153—Liquefied gas, e.g. LPG, GPL
- F17C2225/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/03—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
- F17C2225/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2225/00—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
- F17C2225/04—Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
- F17C2225/042—Localisation of the filling point
- F17C2225/046—Localisation of the filling point in the liquid
- F17C2225/047—Localisation of the filling point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0128—Propulsion of the fluid with pumps or compressors
- F17C2227/0135—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/01—Propulsion of the fluid
- F17C2227/0192—Propulsion of the fluid by using a working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/03—Control means
- F17C2250/036—Control means using alarms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/036—Avoiding leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/037—Handling leaked fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/032—Treating the boil-off by recovery
- F17C2265/033—Treating the boil-off by recovery with cooling
- F17C2265/034—Treating the boil-off by recovery with cooling with condensing the gas phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0134—Applications for fluid transport or storage placed above the ground
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
- F17C2270/0173—Railways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
- F17C2270/0178—Cars
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
Definitions
- oxygen 7 or nitrogen comprises a thermally insulated enclosure Appl' having a battery of upright individual vessels (bottles, flasks or cylinders) containing the liquefied gas at [30] Foreign Application Priority Data least in a bottom portion of each vessel while a top r 3 1972 (Jermam 3237699 portion thereof serves as a vapor space.
- a conduit network leads from each vapor space and communicates.
- 51 3 C H 4 74 220 9 LG externally of the chamber with a source of pressuriz- 151 1 Int.
- the safety I 77 of the system is improved by providing the conduit 7 S fi]; communicating with the liquid space wholly within the i g 8/19 I'M/74 A conduit communicating with the vapor space at least 3:145es0 3/1954 Farkas et ail 11..will: 114/74 A regiom in which the networks lie in the Spaces 3.270.700 9/l966 Kohn et a], 114/74 A twee" receplacies 0f the enclosure, y eliminai' 3537,41 11 1970 Cowlcs A y i i v v l y, 1 14 74 A ing the need for a separate safety valve at each vessel 3.627 l64 l2/l97l Wilson 114/74 A for liquid conduits.
- SHEET D 6 7V 49b A A 5 LN ,1 m H J M U W Q 2 W! 2 a a H x J fl W j m J W W 7 7// 7 6 Fig. 2
- Our present invention relates to a container system for the storage and transportation of volatile liquids and especially liquefied gases which are in a gaseous state at ambient temperature and pressure. More particularly, the invention relates to a system for the safe and economical transport of liquefied gases such as liquefied natural gas, liquid oxygen and liquid nitrogen.
- the economy of the process is based not only upon the low cost of the natural gas, but also upon the convenience of transporting it in a liquid state so that the transportation volume is relatively small but the gas volume at the consumer end is considerably greater.
- the same advantages may be gained by the transportation of other liquefied gases, especiallly the industrial gases oxygen and nitrogen, from a station convenient to an air-rectification apparatus to a station convenient to the ultimate consumer, e.g., a steel plant using oxygen to blow a steel melt.
- liquefied gas is used herein to describe liquids which are gaseous at ambient temperature and pressure and which must be stored, if a liquid state is to be maintained, at low temperatures, high pressures or both.
- receptacles e.g., of steel each holding a quantity of the liquefied gas.
- a first conduit network is provided with individual branches leading to the vapor space above the liquid level in the receptacle.
- each receptacle is provided with a branch of a second conduit network communicating with the interior of the receptacle below the level of the liquid therein (e.g., a syphon tube).
- the second conduit network is connected to a pump and a source of the liquefied gas so that the liquid is charged into the receptacles and the liquid level rises therein, displacing gas from the vapor space through the first conduit network which may be connected to a reservoir collecting the displaced gas.
- a displacement gas is forced into the receptacles via a first network to assist in driving the liquid through the second network to a storage tank, gasifier or consumer line.
- the displacement gas may either be the gasified displaced liquid or some inert gas.
- the second (liquid) network is cut off while the first (vapor) network remains effective to permit controlled evaporation of the liquefied gas and maintain the desired transport or storage temperature.
- the networks generally lie entirely within the thermally insulated compartment or space in which the battery of receptacles is received, only a single line connected to the networks emerging from this insulated space.
- each branch at least, of the liquid conduit network with a safety valve at the point at which this branch is connected to the receptacle.
- the valves are located within the insulated compartment and are designed to cut off the receptacles from the network should a break occur in any of the liquid conduit lines. This prevents large quantities of liquefied gas from flowing into the hold of the ship upon rupture of one of the lines of the network.
- vales are costly and the unit cost must be multiplied by the number of receptacles which are provided. It is not uncommon. for a tankship to have more than 600 liquefied gas bottles or flasks, each with a respective safety valve. Maintenance of the large number of valves, of course, is also a problem in such systems, especially since all of the valves lie within the cold thermally insulated chamber described earlier.
- Another object of the invention is to provide a system for the filling, emptying and storage of liquefied gases in individual receptacles, e g., a battery of flasks, bottles, cylinders and the like constituting a storage assembly.
- individual receptacles e g., a battery of flasks, bottles, cylinders and the like constituting a storage assembly.
- Still another object of this invention is to increase the safety of storage and transportation of low temperature liquefied gases, especially liquefied natural gas, oxygen and nitrogen whereby the aforementioned disadvantages are obviated.
- thermally insulated wall means defining an insulated chamber a plurality of upright receptacles (preferably in the form of gas cylinders, bottles or flasks) in the insulated space and having lower liquid-receiving spaces and vapor spaces above the liquid receiving spaces, and a first or vapor conduit network within the chamber and communicating with these vapor spaces for venting gas therefrom and enabling gas-pressurization of the receptacles.
- a liquid conduit network is provided with branches opening into the liquid space of each receptacle and, in accordance with the present invention, the two networks are provided one within the other, especially with the liquid-conduit network being disposed within the vapor-conduit network.
- the inner network communicates with the liquid spaces while the outer network communicates with the vapor spaces of the receptacles of the battery.
- This system is inexpensive, at least by comparison with systems providing a safety valve at each receptacle, is substantially maintenance free since it does not require any valving within the insulated compartment and reduces the risk of danger and even precludes endangerment of the vessel by pipe breakage during the three operating periods or phases (filling, transport and emptying).
- the advantage of the system is that any break in the liquid conduit network will simply discharge liquid into the surrounding vapor conduit network and will be contained thereby.
- the liquefied gas is pumped through the inner network to the bottom portion of the receptacle while gas is displaced from the receptacles by the rising liquid level therein.
- the displaced gas delivered by the outer network to a collector in which the gas is condensed and returned to the liquid compartments or is stored at the shore installation.
- any break in the liquid conduit network within the insulated chamber will simply deliver a portion of the supplied liquefied gas directly to the outer gas conduit network and then into the reliquefaction cycle listed earlier or into the receptacles inasmuch as the vapor therein is generally displaced without significant counterpressure.
- the break in the liquid conduit network does not discharage liquid into the thermally insulated hold of the tankship.
- gas may be released into the hold where it is detected, according to the present invention, by a gas analyzer or sen sor.
- the sensor upon detection of the gas in the hold generates a signal which closes a valve leading to the inner or liquid conduit network and disposed externally of the hold. Filling can then be stopped and the gas releasesd into the hold vented through the outer conduit network.
- the outer gas conduit system is connected to a source of compressed gas (e.g., vaporized stores liquid), or an inert gas, thereby increasing the pressure in the vapor spaces of each receptacle and driving the liquid through the inner or liquid conduit network.
- a source of compressed gas e.g., vaporized stores liquid
- the liquid conduit network may be connected by a valve externally of the thermally insulated hold to a gasifier or storage tank as described.
- the inner conduit network is blocked while the outer or vapor conduit is open to the atmosphere and the gas is vented.
- the break in either the inner or the outer conduit network therefore, does not affect the liquid within the receptacles.
- the networks are disposed at upper portions of the receptacles and the outer and inner networks pass through these upper portions of the receptacles.
- the outer network transverses the walls of the receptacles, they are sealed to the outer network, e.g., by welding, ln this case, the branches of the inner network can pass into the outer network directly within the respective receptacle.
- the conduit system functions to strengthen the assembly of receptacles and the latter provide effective structural support for the outer network.
- additional means for fastening the receptacles in place within the insulated chamber are eliminated, lnstead of connecting all of the receptacles to common conduits, it is advantageous to subdivide the receptacles into batteries of several receptacles which are provided with respective networks. In this case, the rupture of one of the ducts will only affect a group of receptacles rather than the entire collection of them.
- FIG. 1 is a vertical section, partly in diagrammatic form, of the system of the present invention as applied to a tankship;
- FIG. 2 is a view similar to FIG. 1 illustrating another embodiment.
- FIG. 1 shows a group of five liquefied gas storage receptacles l, 2, 3, 4, 5, in the form of cylinders, bottles or flasks of conventional construction, received in the open space of an insulated chamber 8 defined between thermally insulated walls 6 and 7 and constituting a hold of a ship.
- Each receptacle 1 5 is provided with a syphon tube ll, l2, l3, l4, 15, extending dwonwardly to a location just above the bottom of the receptacle and within the liquid-storage region thereof.
- each of the syphon tubes 11 15, which constitute branches of a liquid conduit network is connected to a common conduit 9 which serves to deliver the liquid phase or withdraw it from the receptacles.
- the outer conduit network 10 serves to discharge gas from the receptacle or to admit pressurized gas thereto when, during the emptying phase, the pressurized gas drives liquid upwardly through the syphon tubes 11 l5 and through conduit 9.
- cut off valves 16 and 17 are provided for manual operation and for automatic control by a gas analyzesr 18 located within the insulated chamber 8 and responsive to the leakage of gas into the latter.
- a vent valve 19 is of teh pressure-relief type and may open into the atmosphere at the top of a stack rising from and forming part of the outer network 10.
- valve 17 is connected to a tank or liquefaction apparatus of conventional design.
- the pump displaces liquefied gas into the receptacles 1 5
- the rising liquid drives gas upwardly through the network 10 and out of the system.
- valve 16 is connected to a compressor which displaces an inert gas (nitrogen) or a gas of the same type as is stored in the receptacles while valve 17 is connected to a discharge line leading to a storage tank, a pump and- /or a gas as, for example. described in connection with the aforementioned copending application.
- valves 16 and I7 are closed and any pressure developed within the network 10 is vented via valve 19 when this pressure attains a predetermined level.
- the gas analyzer operates to close the valves 16 and 17 during filling and discharge as previously described.
- the system in FIG. 2 differs from that of FIG. I in that the outer duct 10 passes through the upper portions of each receptacle 11 I4 and is sealed to the walls thereof by welding at 20 26, thereby constituting of the receptacles and the conduit 10 a rigid structure.
- the end of pipe 10 abuts the wall of the last receptacle l at 27 as noted.
- the gas analyzer may be provided as described in connection with FIG. 1 and the venting stack may be an extension of the first receptacle 5.
- the system of FIG. 2 operates in a manner similar to that of FIG. 1.
- a system for the storage and/or transport of a lowtemperature liquefied gas comprising:
- each of said receptacles having a bottom portion adapted to receive a liquefied gas and an upper portion forming a vapor space above the liquefied gas in said receptacle;
- first conduit network communicating with said vapor spaces of all of said receptacles of said row within said chamber, said first conduit network comprising:
- a second conduit network communicating with said bottom portions of said receptacles and entirely received in said receptacles and said first network within said chamber, said second network including a first-horizontal tube of relatively small crosssection extending through said duct and emerging therefrom at said one end outside said chamber, and respective small-cross-section second tubes extending vertically from said first tube through said pipes and reaching downwardly into said receptacles substantially to the bottoms thereof;
- a pressure relief valve communicating with said riser from said duct and selectively operable for chargfor venting said first network; and ing said receptacles with liquefied gas and fearive controllable valves connected to said first charging liquefied gas from said receptacles.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pipeline Systems (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2237699A DE2237699A1 (de) | 1972-07-31 | 1972-07-31 | Behaeltersystem zur lagerung und/oder zum transport von tiefsiedenden fluessiggasen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3886885A true US3886885A (en) | 1975-06-03 |
Family
ID=5852289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US354887A Expired - Lifetime US3886885A (en) | 1972-07-31 | 1973-04-26 | Container system for the storage and/or transportation of liquefied gas |
Country Status (10)
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6339996B1 (en) * | 1999-04-19 | 2002-01-22 | Mr. Steven Campbell | Natural gas composition transport system and method |
US6398055B1 (en) * | 1998-03-18 | 2002-06-04 | Mannesmann Ag | Device for storing pressurized gas |
WO2003089836A1 (de) * | 2002-04-19 | 2003-10-30 | Mannesmannröhren-Werke Ag | Druckbehälter zur speicherung von gasförmigen medien unter druck |
US6655155B2 (en) * | 2000-09-05 | 2003-12-02 | Enersea Transport, Llc | Methods and apparatus for loading compressed gas |
WO2004005790A1 (en) * | 2002-07-04 | 2004-01-15 | Knutsen Oas Shipping As | Loading pipe in a cargo pressure tank of a ship |
US20040074430A1 (en) * | 2001-02-16 | 2004-04-22 | Per Lothe | Manifold device for pressure vessels |
WO2005007505A1 (en) * | 2003-07-22 | 2005-01-27 | Knutsen Oas Shipping As | Method and device for protecting a vessel’s loading space from excess pressure |
AU783543B2 (en) * | 2000-10-17 | 2005-11-10 | Steven Campbell | Natural gas composition transport system and method |
US20060225436A1 (en) * | 2004-02-19 | 2006-10-12 | Baudat Ned P | Cold box storage apparatus for lng tanks and methods for processing, transporting and/or storing lng |
US20060243950A1 (en) * | 2003-06-19 | 2006-11-02 | Chevron U.S.A. Inc. | Use of waste nitrogen from air separation units for blanketing cargo and ballast tanks |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
US20080206121A1 (en) * | 2006-07-12 | 2008-08-28 | Narsingh Bahadur Singh | Solid solution wide bandgap semiconductor materials |
US20090071634A1 (en) * | 2007-09-13 | 2009-03-19 | Battelle Energy Alliance, Llc | Heat exchanger and associated methods |
US20100186446A1 (en) * | 2001-05-04 | 2010-07-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
KR100981991B1 (ko) * | 2008-06-16 | 2010-09-14 | 대우조선해양 주식회사 | 선박 계류 작업용 비상 풀림장치 |
US20100258572A1 (en) * | 2006-06-13 | 2010-10-14 | Nicolantonio Luongo | Multi-cell tank for pressurised gas |
US20110094263A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US20120159970A1 (en) * | 2009-09-01 | 2012-06-28 | Wilfried-Henning Reese | Filling containers with compressed media |
WO2013083169A1 (en) * | 2011-12-05 | 2013-06-13 | Blue Wave Co S.A. | Multilayer pressure vessel |
US8555672B2 (en) | 2009-10-22 | 2013-10-15 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
CN103353061A (zh) * | 2013-06-24 | 2013-10-16 | 江苏荣成特种装备工程有限公司 | 一种低温储罐 |
WO2014046900A1 (en) * | 2012-09-19 | 2014-03-27 | Linde Aktiengesellschaft | Integrated dispensing station |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
US20170108313A1 (en) * | 2015-10-14 | 2017-04-20 | Luke K. Chang | Mobile chemical agent delivery system |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
RU2723205C1 (ru) * | 2019-10-31 | 2020-06-09 | Евгений Сергеевич Солдатов | Мультимодальный контейнер для транспортировки и хранения сжиженных криогенных газов |
EP4290121A1 (en) * | 2022-06-07 | 2023-12-13 | Volvo Construction Equipment AB | A gas consumer system for a vehicle |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58189899U (ja) * | 1982-06-10 | 1983-12-16 | 大同酸素株式会社 | 高圧液体貯槽 |
HU193122B (en) * | 1985-07-30 | 1987-08-28 | Olajipari Foevallal Tervezoe | Method and arrangement for decreasing the evaporation losses of storage spaces containing evaporating material and recovering the vapours from gas-vapour mixture |
DE3911655C1 (en) * | 1989-04-10 | 1990-06-07 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | Cryogenic supersonic aircraft fuel tank - is surrounded by fuel pipe harness to permit heating or cooling |
PL182179B1 (en) * | 1995-10-30 | 2001-11-30 | Enron Lng Dev Corp | Shipborne system for transporting compressed earth gas |
JP2013220811A (ja) * | 2012-04-19 | 2013-10-28 | Mitsubishi Heavy Ind Ltd | 液化ガス焚船舶 |
DE102020119676A1 (de) | 2020-07-27 | 2022-01-27 | Bayerische Motoren Werke Aktiengesellschaft | Druckbehältersystem mit mehreren Druckbehältern |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US707634A (en) * | 1902-02-10 | 1902-08-26 | James F Place | Vessel for holding and shipping liquid air or other liquid gases. |
US2434956A (en) * | 1945-11-05 | 1948-01-27 | Spencer S Prentiss | Liquid oxygen "walkaround" unit |
US2897658A (en) * | 1955-03-16 | 1959-08-04 | Constock Liquid Methane Corp | Method and apparatus for unloading cold low temperature boiling liquids from storage reservoir |
US3145680A (en) * | 1961-02-24 | 1964-08-25 | Hydrocarbon Research Inc | Transport of liquefied gases |
US3270700A (en) * | 1964-07-13 | 1966-09-06 | Vehoc Corp | Shipboard installation of elongated pressure vessels |
US3537416A (en) * | 1969-01-02 | 1970-11-03 | Exxon Research Engineering Co | Shipping container and method for transporting hydrocarbon fluids and the like |
US3627164A (en) * | 1970-01-09 | 1971-12-14 | Exxon Research Engineering Co | Method and apparatus for maintaining uniform insulation density |
US3659543A (en) * | 1969-04-04 | 1972-05-02 | Mcmullen Ass John J | Ship for transporting cryogenic material |
US3762175A (en) * | 1971-07-08 | 1973-10-02 | P Jones | Liquefied gas containers |
-
1972
- 1972-07-31 DE DE2237699A patent/DE2237699A1/de active Pending
-
1973
- 1973-03-10 ES ES412533A patent/ES412533A1/es not_active Expired
- 1973-03-29 GB GB1512473A patent/GB1371750A/en not_active Expired
- 1973-04-03 NL NL7304612A patent/NL7304612A/xx not_active Application Discontinuation
- 1973-04-26 US US354887A patent/US3886885A/en not_active Expired - Lifetime
- 1973-05-21 FR FR7318354A patent/FR2194913B3/fr not_active Expired
- 1973-07-13 NO NO2879/73A patent/NO133461C/no unknown
- 1973-07-20 JP JP48082598A patent/JPS4945418A/ja active Pending
- 1973-07-25 IT IT27019/73A patent/IT991381B/it active
- 1973-07-31 SE SE7310570A patent/SE381233B/xx unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US707634A (en) * | 1902-02-10 | 1902-08-26 | James F Place | Vessel for holding and shipping liquid air or other liquid gases. |
US2434956A (en) * | 1945-11-05 | 1948-01-27 | Spencer S Prentiss | Liquid oxygen "walkaround" unit |
US2897658A (en) * | 1955-03-16 | 1959-08-04 | Constock Liquid Methane Corp | Method and apparatus for unloading cold low temperature boiling liquids from storage reservoir |
US3145680A (en) * | 1961-02-24 | 1964-08-25 | Hydrocarbon Research Inc | Transport of liquefied gases |
US3270700A (en) * | 1964-07-13 | 1966-09-06 | Vehoc Corp | Shipboard installation of elongated pressure vessels |
US3537416A (en) * | 1969-01-02 | 1970-11-03 | Exxon Research Engineering Co | Shipping container and method for transporting hydrocarbon fluids and the like |
US3659543A (en) * | 1969-04-04 | 1972-05-02 | Mcmullen Ass John J | Ship for transporting cryogenic material |
US3627164A (en) * | 1970-01-09 | 1971-12-14 | Exxon Research Engineering Co | Method and apparatus for maintaining uniform insulation density |
US3762175A (en) * | 1971-07-08 | 1973-10-02 | P Jones | Liquefied gas containers |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6398055B1 (en) * | 1998-03-18 | 2002-06-04 | Mannesmann Ag | Device for storing pressurized gas |
US6339996B1 (en) * | 1999-04-19 | 2002-01-22 | Mr. Steven Campbell | Natural gas composition transport system and method |
US6655155B2 (en) * | 2000-09-05 | 2003-12-02 | Enersea Transport, Llc | Methods and apparatus for loading compressed gas |
AU783543B2 (en) * | 2000-10-17 | 2005-11-10 | Steven Campbell | Natural gas composition transport system and method |
US6886482B2 (en) * | 2001-02-16 | 2005-05-03 | Knutsen Oas Shipping As | Manifold device for pressure vessels |
US20040074430A1 (en) * | 2001-02-16 | 2004-04-22 | Per Lothe | Manifold device for pressure vessels |
US20100186446A1 (en) * | 2001-05-04 | 2010-07-29 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of a gas and methods relating to same |
US20070107465A1 (en) * | 2001-05-04 | 2007-05-17 | Battelle Energy Alliance, Llc | Apparatus for the liquefaction of gas and methods relating to same |
WO2003089836A1 (de) * | 2002-04-19 | 2003-10-30 | Mannesmannröhren-Werke Ag | Druckbehälter zur speicherung von gasförmigen medien unter druck |
CN100554758C (zh) * | 2002-04-19 | 2009-10-28 | 曼内斯曼管道工厂股份公司 | 用于在压力下储存气态介质的压力容器及其制造方法 |
WO2004005790A1 (en) * | 2002-07-04 | 2004-01-15 | Knutsen Oas Shipping As | Loading pipe in a cargo pressure tank of a ship |
US20060005757A1 (en) * | 2002-07-04 | 2006-01-12 | Per Lothe | Loading pipe in a cargo pressure tank of a ship |
US7159524B2 (en) | 2002-07-04 | 2007-01-09 | Knutsen Oas Shipping As | Loading pipe in a cargo pressure tank of a ship |
US20060243950A1 (en) * | 2003-06-19 | 2006-11-02 | Chevron U.S.A. Inc. | Use of waste nitrogen from air separation units for blanketing cargo and ballast tanks |
WO2005007505A1 (en) * | 2003-07-22 | 2005-01-27 | Knutsen Oas Shipping As | Method and device for protecting a vessel’s loading space from excess pressure |
CN100436252C (zh) * | 2003-07-22 | 2008-11-26 | 克努森Oas海运As | 保护船只的装载空间免于超压的方法和装置 |
US20070125286A1 (en) * | 2003-07-22 | 2007-06-07 | Per Lothe | Method and device for protecting a vessel's loading space from excess pressure |
US7363870B2 (en) * | 2003-07-22 | 2008-04-29 | Knutsen Oas Shipping As | Method and device for protecting a vessel's loading space from excess pressure |
US20060225436A1 (en) * | 2004-02-19 | 2006-10-12 | Baudat Ned P | Cold box storage apparatus for lng tanks and methods for processing, transporting and/or storing lng |
US7146817B2 (en) * | 2004-02-19 | 2006-12-12 | Mustang Engineering L.P. | Cold box storage apparatus for LNG tanks and methods for processing, transporting and/or storing LNG |
US20100258572A1 (en) * | 2006-06-13 | 2010-10-14 | Nicolantonio Luongo | Multi-cell tank for pressurised gas |
US20080206121A1 (en) * | 2006-07-12 | 2008-08-28 | Narsingh Bahadur Singh | Solid solution wide bandgap semiconductor materials |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US8544295B2 (en) | 2007-09-13 | 2013-10-01 | Battelle Energy Alliance, Llc | Methods of conveying fluids and methods of sublimating solid particles |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US8061413B2 (en) | 2007-09-13 | 2011-11-22 | Battelle Energy Alliance, Llc | Heat exchangers comprising at least one porous member positioned within a casing |
US20090071634A1 (en) * | 2007-09-13 | 2009-03-19 | Battelle Energy Alliance, Llc | Heat exchanger and associated methods |
KR100981991B1 (ko) * | 2008-06-16 | 2010-09-14 | 대우조선해양 주식회사 | 선박 계류 작업용 비상 풀림장치 |
US20120159970A1 (en) * | 2009-09-01 | 2012-06-28 | Wilfried-Henning Reese | Filling containers with compressed media |
US8555672B2 (en) | 2009-10-22 | 2013-10-15 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US8899074B2 (en) | 2009-10-22 | 2014-12-02 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US20110094261A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Natural gas liquefaction core modules, plants including same and related methods |
US20110094263A1 (en) * | 2009-10-22 | 2011-04-28 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
WO2013083169A1 (en) * | 2011-12-05 | 2013-06-13 | Blue Wave Co S.A. | Multilayer pressure vessel |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
WO2014046900A1 (en) * | 2012-09-19 | 2014-03-27 | Linde Aktiengesellschaft | Integrated dispensing station |
CN103353061A (zh) * | 2013-06-24 | 2013-10-16 | 江苏荣成特种装备工程有限公司 | 一种低温储罐 |
US20170108313A1 (en) * | 2015-10-14 | 2017-04-20 | Luke K. Chang | Mobile chemical agent delivery system |
RU2723205C1 (ru) * | 2019-10-31 | 2020-06-09 | Евгений Сергеевич Солдатов | Мультимодальный контейнер для транспортировки и хранения сжиженных криогенных газов |
EP4290121A1 (en) * | 2022-06-07 | 2023-12-13 | Volvo Construction Equipment AB | A gas consumer system for a vehicle |
Also Published As
Publication number | Publication date |
---|---|
GB1371750A (en) | 1974-10-23 |
ES412533A1 (es) | 1976-01-01 |
IT991381B (it) | 1975-07-30 |
JPS4945418A (US06653308-20031125-C00199.png) | 1974-04-30 |
NO133461B (US06653308-20031125-C00199.png) | 1976-01-26 |
SE381233B (sv) | 1975-12-01 |
FR2194913B3 (US06653308-20031125-C00199.png) | 1976-05-14 |
NO133461C (US06653308-20031125-C00199.png) | 1976-05-05 |
FR2194913A1 (US06653308-20031125-C00199.png) | 1974-03-01 |
DE2237699A1 (de) | 1974-02-21 |
NL7304612A (US06653308-20031125-C00199.png) | 1974-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3886885A (en) | Container system for the storage and/or transportation of liquefied gas | |
US4987932A (en) | Process and apparatus for rapidly filling a pressure vessel with gas | |
US2550886A (en) | System for conserving liquefied gases | |
US5803005A (en) | Ship based system for compressed natural gas transport | |
US4846088A (en) | System for transporting compressed gas over water | |
US3034309A (en) | Method for transporting gas | |
US3213632A (en) | Ship for transporting liquefied gases and other liquids | |
US5699839A (en) | Zero-vent liquid natural gas fueling station | |
US5211021A (en) | Apparatus for rapidly filling pressure vessels with gas | |
CN104379440B (zh) | 运输压缩气体的船 | |
MXPA97002712A (en) | System based on boat for transport of natural gas comprim | |
US2963873A (en) | Method and apparatus for storing liquefied gases | |
CA2116797A1 (en) | No loss fueling system for natural gas powered vehicles | |
US3831811A (en) | Method of and system for the emptying of liquefied-gas vessels, especially the tanks of a tank ship | |
NO135880B (US06653308-20031125-C00199.png) | ||
GB1363737A (en) | Low-loss closed-loop supply system for transferring liquid gas from a large container to a small container | |
US3157147A (en) | Vessel for liquefied gas | |
US2972873A (en) | System for loading and unloading liquefied gases from tankers | |
US2966040A (en) | Tank for the storage and transportation of a low boiling liquid | |
US3848559A (en) | Centralized cargo handling system for cryogenic vessels | |
CN114592990B (zh) | 一种lng双燃料动力船燃气供给系统 | |
US3041841A (en) | Storage means for a liquefied gas | |
US3544289A (en) | Fluid control system for liquid storage apparatus | |
NL102354C (US06653308-20031125-C00199.png) | ||
US3527379A (en) | Systems and tanks therefor for storing products in the liquid phase that are normally in the gas phase |