US3882680A - By-pass system - Google Patents
By-pass system Download PDFInfo
- Publication number
- US3882680A US3882680A US245214A US24521472A US3882680A US 3882680 A US3882680 A US 3882680A US 245214 A US245214 A US 245214A US 24521472 A US24521472 A US 24521472A US 3882680 A US3882680 A US 3882680A
- Authority
- US
- United States
- Prior art keywords
- vapor
- turbine
- steam
- conduit
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003303 reheating Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000007599 discharging Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 3
- 239000013641 positive control Substances 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 208000028659 discharge Diseases 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000003546 flue gas Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/20—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by combustion gases of main boiler
- F01K3/22—Controlling, e.g. starting, stopping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G5/00—Controlling superheat temperature
- F22G5/20—Controlling superheat temperature by combined controlling procedures
Definitions
- ABSTRACT A method and apparatus providing positive control of steam conditions during start up, shutdown and low load operation of the vapor generator including bypassing vapor around the heating, reheating and turbine zones for discharge to the condenser and using the by-passed vapor to attemperate the outflow from the heating and reheating zones.
- the invention relates generally to fossil-fuel fired power plant systems and more particularly to a by-pass arrangement providing positive control of steam conditions during cold and hot starts, shutdown and low load operation.
- the present state of the art does not provide effective means for controlling boiler outlet superheat and reheat steam temperatures during start up, shutdown and low load operation.
- the control of steam temperature characteristic is particularly critical with respect to the turbine and associated components where the need for matching steam and metal temperatures has long been recognized.
- the means for controlling superheat and reheat steam temperatures at normal operating loads such as water attemperators at the secondary superheater and reheater inlets, are not effective for start up or low load operation.
- the superheat and reheat steam temperatures approach the flue gas temperature as a result of the disproportionately high ratio of heating surface and gas flow to steam flow.
- the present procedures for achieving matched temperatures such as hold periods at low load operation and protracted start ups, are not suitable for cyclic service.
- the present invention is directed at a by-pass system which provides an arrangement for positive control of steam conditions with the concomitant result of faster start ups, controlled shutdowns in preparation for anticipated start up, reliability and increased maneuverability during start up and over the load range, and conservation of equipment life.
- the present invention achieves positive control of steam conditions through the control of drum pressure by means of a superheater by-pass to the condenser, the control of superheat steam temperature by means or" a superheater outlet steam attemperator and a superheater stop valve and stop valve by-pass between the primary and secondary superheaters, and the control of reheat outlet steam temperature by means of a reheat outlet steam attemperator.
- FIG. l is a diagrammatic illustration of a typical steam system for a fossil-fuel fired power plant embodying the invention.
- FIG. 2 is a detail view of the steam attemperating apparatus embodied in the invention.
- FIG. 3 is a detail view taken along line 3-3 of FIG. 2.
- FIG. I there is illustrated in diagrammatic form a vapor generator 10 comprising burner means 12 arranged to supply high temperature combustion products and an outlet means 14 for discharging the exhaust flue gases.
- the fluid circuitry of the vapor generator I0 has a series flow path including an economizer 16, a steam-water drum 18, a downcomer circuit 20, a steam generating section 22, a riser circuit 24, a primary superheater 26, a secondary superheater 28 and a reheater 30.
- Feedwater is supplied to the vapor generator 10 by a high pressure feed pump 32 and is preheated as it passes through the economizer 16.
- the preheated feedwater is conveyed by conduit 34 and fed into steamwater drum 18 to be recirculated therethrough and through the steam generating section 22 by the downcomer and riser circuits 20 and 24, respectively.
- the drum 18 includes a separating section 36 for removing the steam from the steam-water mixture leaving the riser circuit 24 and conveying the saturated steam by a conduit 38 for passage through the primary superheater 26, wherein initial superheating of the steam takes place, and then by a conduit 40 for passage through a water spray type attemperator 48 and through the secondary superheater 28, wherein final superheating of the steam is achieved.
- the conduit 40 contains a stop valve 42 and is flow-connected with a stop valve by-pass conduit 44 which contains a control valve 46.
- the superheated steam leaving the secondary superheater outlet header 50 is conveyed by a conduit 52 to the high pressure turbine 54 for partial expansion therein.
- the partially expanded steam leaving the high pressure turbine 54 is conveyed by a conduit 56 through a water spray type attemperator 58 for passage through the reheater 30, wherein reheating of the partially expanded steam takes place.
- the reheated steam leaving the reheater outlet header 60 is conveyed by a conduit 62 to the low pressure turbine 64 for final expansion therein.
- the exhaust steam from the low pressure turbine 64 is conveyed by a conduit 66 to a main condenser 68 where it is condensed under vacuum for return to the feedwater system.
- a by-pass system is provided around the primary and secondary superheaters, the reheater, and the high and low pressure turbines.
- the by-pass system is constructed and arranged to provide positive control of drum pressure and superheat and reheat outlet temperatures during hot and cold start ups, for low load operation, and during normal or emergency shutdown of the vapor generator.
- the by-pass comprises a conduit 70 containing a stop valve 72 and a control valve 74 and having its inlet end connected and opening to conduit 38 intermediate of the drum 18 and the primary superheater 26 and its discharge end connected and opening to the main condenser 68 which is arranged to receive and condense the saturated steam for return to the feedwater system. It will be understood, that the inlet end of the by-pass system may alternatively be flow-connected directly to the drum 18.
- provisions are made for diverting saturated steam flow from the bypass conduit 70 to a position downstream flow-wise of the secondary superheater 28 by means of a conduit 76 containing a control valve 78, and a stop and check valve 80, and having its inlet end connected and opening to the by-pass conduit70 downstream flow-wise of the stop valve 72 and its discharge end flowconnected to a steam distribution manifold 82 disposed within the secondary superheater outlet header 50.
- conduits 76 and 84 may alternatively be flow-connected to any suitable type steam attemperator disposed intermediate of the secondary superheater 28 and the high pressure turbine 54, and intermediate of the reheater 30 and the low pressure turbine 64, in conduits 52 and 62 respectively.
- FIGS. 2 and 3 there is illustratedrdetail views of the steam attemperating apparatus in accor dance with the invention and including the manifold 82 containing a plurality of spray holes 96 equally spaced across the manifold 82 and facing the incoming steam flow being discharged from the secondary superheater outlet legs 98 and into the secondary superheater outlet header 50, the manifold being centered within the header 50 by supports 100.
- the attemperated steam is discharged from header 50 through the conduit 52.
- the steam attemperating apparatus associated with the reheater outlet header 60 is substantially of the same construction as abovedescribed.
- the prior art has resorted to lowering the heat input to the vapor generator, however, this has not always been possible to the desired degree since heat input must be maintained high enough to generate sufficient steam for rolling and initial loading of the turbine.
- the superheater outlet steam attemperator as represented by distribution manifold 82 utilizes saturated steam to overcome this problem by permitting steam temperature control independent of heat input to the boiler.
- the stop valve 42 is closed and the stop valve by-pass control valve 46 is regulated to provide the required flow resistance 7 through the superheater and to control steamflow therethrough.
- this arrangement furnishes the. means for dual pressure operation of the vapor generator wherein the'turbine 54 may be started at a low throttle pressure while maintaining drum pressure sufficiently high to satisfy the.
- the reheater iswithout steam flow, thus the reheater metal absorbs heat from the flue gas and eventually attains the temperature. level of the flue gas. Subsequently, when steam is first.
- the steamleaving the re heater 30 is attemperated with saturated steam delivered by the conduit 84 through the spray attemperator, I v as represented by distribution manifold 90 disposed within the reheater outlet header 60, thereby providing a positive reheat steam temperature control during the start up.
- conduit means by-passing said superheating and turbine means valve means for adjusting the vapor flow through the superheating and conduit means, said conduit means including means for admixing at least a portion of the by-passed vapor with the superheated vapor to maintain the vapor temperature entering the turbine means within a given limit, and means for discharging the remaining by-passed vapor into the condenser means.
- said turbine means includes a high and a low pressure turbine, vapor reheating means flow connectedly interposed between said high and low pressure turbines, said conduit means including means for admixing at least a portion of the by-passed vapor with the reheated vapor to maintain the vapor temperature entering the low pressure turbine within a given limit.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US245214A US3882680A (en) | 1972-04-18 | 1972-04-18 | By-pass system |
CA162,095A CA964535A (en) | 1972-04-18 | 1973-01-25 | By-pass system for a vapor generator |
ES413633A ES413633A1 (es) | 1972-04-18 | 1973-04-12 | Sistema electrico a vapor para centrales electricas y meto-do correspondiente para su realizacion. |
AU54602/73A AU477228B2 (en) | 1972-04-18 | 1973-04-17 | Improvements in and relating to power plants |
SE7305478A SE384729B (sv) | 1972-04-18 | 1973-04-17 | Angkraftverk for varierande belastningar och spec. for upptagande av toppbelastningar |
DK213073AA DK136227B (da) | 1972-04-18 | 1973-04-17 | Kraftanlæg med en dampkedel med naturlig cirkulation og en dampturbine. |
ZA732629A ZA732629B (en) | 1972-04-18 | 1973-04-17 | Improvements in and relating to power plants |
AR247604A AR200862A1 (es) | 1972-04-18 | 1973-04-17 | Mejoras en centrales electricas que tienen medios generadores de vapor |
GB1867273A GB1433530A (en) | 1972-04-18 | 1973-04-18 | Power plants |
NL7305457.A NL157381B (nl) | 1972-04-18 | 1973-04-18 | Stoomkrachtinstallatie, voorzien van een ketel met natuurlijke circulatie. |
JP4329873A JPS5641804B2 (en)van) | 1972-04-18 | 1973-04-18 | |
IT23243/73A IT986980B (it) | 1972-04-18 | 1973-04-19 | Sistema di deviazione o di by bass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US245214A US3882680A (en) | 1972-04-18 | 1972-04-18 | By-pass system |
Publications (1)
Publication Number | Publication Date |
---|---|
US3882680A true US3882680A (en) | 1975-05-13 |
Family
ID=22925762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US245214A Expired - Lifetime US3882680A (en) | 1972-04-18 | 1972-04-18 | By-pass system |
Country Status (12)
Country | Link |
---|---|
US (1) | US3882680A (en)van) |
JP (1) | JPS5641804B2 (en)van) |
AR (1) | AR200862A1 (en)van) |
AU (1) | AU477228B2 (en)van) |
CA (1) | CA964535A (en)van) |
DK (1) | DK136227B (en)van) |
ES (1) | ES413633A1 (en)van) |
GB (1) | GB1433530A (en)van) |
IT (1) | IT986980B (en)van) |
NL (1) | NL157381B (en)van) |
SE (1) | SE384729B (en)van) |
ZA (1) | ZA732629B (en)van) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991603A (en) * | 1975-03-10 | 1976-11-16 | Westinghouse Electric Corporation | Moisture indicating apparatus |
US4060990A (en) * | 1976-02-19 | 1977-12-06 | Foster Wheeler Energy Corporation | Power generation system |
US4226086A (en) * | 1979-05-21 | 1980-10-07 | Westinghouse Electric Corp. | Automatic restart control for a power plant boiler |
US4282708A (en) * | 1978-08-25 | 1981-08-11 | Hitachi, Ltd. | Method for the shutdown and restarting of combined power plant |
US4439687A (en) * | 1982-07-09 | 1984-03-27 | Uop Inc. | Generator synchronization in power recovery units |
US4487166A (en) * | 1981-06-08 | 1984-12-11 | The Babcock & Wilcox Company | Start-up system for once-through boilers |
US5605118A (en) * | 1994-11-15 | 1997-02-25 | Tampella Power Corporation | Method and system for reheat temperature control |
US20060168962A1 (en) * | 2005-02-02 | 2006-08-03 | Siemens Westinghouse Power Corporation | Hot to cold steam transformer for turbine systems |
US20100236241A1 (en) * | 2009-03-23 | 2010-09-23 | General Electric Company | Single loop attemperation control |
US8763397B1 (en) * | 2010-03-23 | 2014-07-01 | Phani K. Meduri | Device and process to reduce pressure and temperature loss from a solar thermal receiver |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51148104A (en) * | 1975-06-14 | 1976-12-20 | Power Reactor & Nuclear Fuel Dev Corp | Electrogenerating plant which controls the steam temperature at starti ng of turbine |
JPS6161835A (ja) * | 1984-08-31 | 1986-03-29 | Sekisui Chem Co Ltd | エンボス加工された熱可塑性樹脂シ−トの製造方法 |
AU705259B1 (en) * | 1998-02-25 | 1999-05-20 | Cyril Cannell | Improvements in the design and construction of monotube steam generators |
CN106524131B (zh) * | 2016-09-23 | 2018-08-31 | 华北电力大学(保定) | 一种火电机组蒸汽温度的前馈控制方法 |
US10731825B2 (en) | 2018-05-17 | 2020-08-04 | Amerlux Llc | Linear optic and LED lighting fixture |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968156A (en) * | 1957-03-08 | 1961-01-17 | Babcock & Wilcox Ltd | Power plant |
US3021824A (en) * | 1956-11-22 | 1962-02-20 | Sulzer Ag | Forced flow steam generating plant |
US3100967A (en) * | 1959-10-15 | 1963-08-20 | Sulzer Ag | Steam power plant |
US3175367A (en) * | 1962-08-08 | 1965-03-30 | Foster Wheeler Corp | Forced flow vapor generating unit |
US3219018A (en) * | 1962-01-18 | 1965-11-23 | Sulzer Ag | Method of starting a forced flow steam generator and apparatus for carrying out the method |
US3243961A (en) * | 1962-11-20 | 1966-04-05 | Combustion Eng | Apparatus and method of operating a forced flow once-through vapor generating power plant |
US3250259A (en) * | 1959-08-19 | 1966-05-10 | Sulzer Ag | Method and apparatus for controlling rate of temperature changes of heat generators during startup and shutdown |
-
1972
- 1972-04-18 US US245214A patent/US3882680A/en not_active Expired - Lifetime
-
1973
- 1973-01-25 CA CA162,095A patent/CA964535A/en not_active Expired
- 1973-04-12 ES ES413633A patent/ES413633A1/es not_active Expired
- 1973-04-17 ZA ZA732629A patent/ZA732629B/xx unknown
- 1973-04-17 DK DK213073AA patent/DK136227B/da unknown
- 1973-04-17 AU AU54602/73A patent/AU477228B2/en not_active Expired
- 1973-04-17 SE SE7305478A patent/SE384729B/xx unknown
- 1973-04-17 AR AR247604A patent/AR200862A1/es active
- 1973-04-18 GB GB1867273A patent/GB1433530A/en not_active Expired
- 1973-04-18 NL NL7305457.A patent/NL157381B/xx unknown
- 1973-04-18 JP JP4329873A patent/JPS5641804B2/ja not_active Expired
- 1973-04-19 IT IT23243/73A patent/IT986980B/it active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3021824A (en) * | 1956-11-22 | 1962-02-20 | Sulzer Ag | Forced flow steam generating plant |
US2968156A (en) * | 1957-03-08 | 1961-01-17 | Babcock & Wilcox Ltd | Power plant |
US3250259A (en) * | 1959-08-19 | 1966-05-10 | Sulzer Ag | Method and apparatus for controlling rate of temperature changes of heat generators during startup and shutdown |
US3100967A (en) * | 1959-10-15 | 1963-08-20 | Sulzer Ag | Steam power plant |
US3219018A (en) * | 1962-01-18 | 1965-11-23 | Sulzer Ag | Method of starting a forced flow steam generator and apparatus for carrying out the method |
US3175367A (en) * | 1962-08-08 | 1965-03-30 | Foster Wheeler Corp | Forced flow vapor generating unit |
US3243961A (en) * | 1962-11-20 | 1966-04-05 | Combustion Eng | Apparatus and method of operating a forced flow once-through vapor generating power plant |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3991603A (en) * | 1975-03-10 | 1976-11-16 | Westinghouse Electric Corporation | Moisture indicating apparatus |
US4060990A (en) * | 1976-02-19 | 1977-12-06 | Foster Wheeler Energy Corporation | Power generation system |
US4282708A (en) * | 1978-08-25 | 1981-08-11 | Hitachi, Ltd. | Method for the shutdown and restarting of combined power plant |
US4226086A (en) * | 1979-05-21 | 1980-10-07 | Westinghouse Electric Corp. | Automatic restart control for a power plant boiler |
US4487166A (en) * | 1981-06-08 | 1984-12-11 | The Babcock & Wilcox Company | Start-up system for once-through boilers |
US4439687A (en) * | 1982-07-09 | 1984-03-27 | Uop Inc. | Generator synchronization in power recovery units |
US5605118A (en) * | 1994-11-15 | 1997-02-25 | Tampella Power Corporation | Method and system for reheat temperature control |
US20060168962A1 (en) * | 2005-02-02 | 2006-08-03 | Siemens Westinghouse Power Corporation | Hot to cold steam transformer for turbine systems |
US7174715B2 (en) | 2005-02-02 | 2007-02-13 | Siemens Power Generation, Inc. | Hot to cold steam transformer for turbine systems |
US20100236241A1 (en) * | 2009-03-23 | 2010-09-23 | General Electric Company | Single loop attemperation control |
US8733104B2 (en) * | 2009-03-23 | 2014-05-27 | General Electric Company | Single loop attemperation control |
US8763397B1 (en) * | 2010-03-23 | 2014-07-01 | Phani K. Meduri | Device and process to reduce pressure and temperature loss from a solar thermal receiver |
Also Published As
Publication number | Publication date |
---|---|
JPS4920616A (en)van) | 1974-02-23 |
AR200862A1 (es) | 1974-12-27 |
ZA732629B (en) | 1974-11-27 |
GB1433530A (en) | 1976-04-28 |
ES413633A1 (es) | 1976-01-16 |
AU477228B2 (en) | 1976-10-21 |
IT986980B (it) | 1975-01-30 |
AU5460273A (en) | 1974-10-17 |
CA964535A (en) | 1975-03-18 |
DK136227C (en)van) | 1978-02-06 |
DK136227B (da) | 1977-09-05 |
NL157381B (nl) | 1978-07-17 |
SE384729B (sv) | 1976-05-17 |
NL7305457A (en)van) | 1973-10-22 |
JPS5641804B2 (en)van) | 1981-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890002916B1 (ko) | 재열증기 터어빈 발전플랜트의 터어빈 바이패스 장치 | |
US3882680A (en) | By-pass system | |
US8959917B2 (en) | Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator | |
US3575002A (en) | Combination fossil fuel and superheated steam nuclear power plant | |
US5375410A (en) | Combined combustion and steam turbine power plant | |
KR100242735B1 (ko) | 복합사이클전력장치, 증기 및 가스터빈복합사이클장치용재열증기사이클장치 및 증기터빈으로의 증기공급방법 | |
US4869210A (en) | Method of operating a once-through steam generator | |
GB1592812A (en) | Method and apparatus for thermal power generation | |
US3529580A (en) | Start-up system | |
EP2698507B1 (en) | System and method for temperature control of reheated steam | |
US3338053A (en) | Once-through vapor generator start-up system | |
CA1066516A (en) | Power generation system | |
US3286466A (en) | Once-through vapor generator variable pressure start-up system | |
US2921441A (en) | Feed water preheating system for steam power plants | |
US3411300A (en) | Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure | |
US6062017A (en) | Steam generator | |
US3374621A (en) | Gas turbine auxiliary for steam power plants | |
US4487166A (en) | Start-up system for once-through boilers | |
JP2532750B2 (ja) | 循環式流動層ボイラの再熱蒸気温度制御のためのシステムと方法 | |
US3212477A (en) | Forced flow steam generator and method of starting same | |
US3362164A (en) | Start-up system for forced flow vapor generator | |
US3457725A (en) | Apparatus for covering a peak load or a rapidly changing load in a steam turbine plant | |
US3055181A (en) | Method of operating a power plant system | |
US4920751A (en) | System and method for reheat steam temperature control in circulating fluidized bed boilers | |
US3271961A (en) | Start-up system for forced flow vapor generator |