US3243961A - Apparatus and method of operating a forced flow once-through vapor generating power plant - Google Patents

Apparatus and method of operating a forced flow once-through vapor generating power plant Download PDF

Info

Publication number
US3243961A
US3243961A US238886A US23888662A US3243961A US 3243961 A US3243961 A US 3243961A US 238886 A US238886 A US 238886A US 23888662 A US23888662 A US 23888662A US 3243961 A US3243961 A US 3243961A
Authority
US
United States
Prior art keywords
steam
vapor
auxiliary
source
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US238886A
Inventor
Virginius Z Caracristi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Combustion Engineering Inc
Original Assignee
Combustion Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL300546D priority Critical patent/NL300546A/xx
Priority to NL131057D priority patent/NL131057C/xx
Application filed by Combustion Engineering Inc filed Critical Combustion Engineering Inc
Priority to US238886A priority patent/US3243961A/en
Priority to GB44584/63A priority patent/GB1035058A/en
Priority to CH1415963A priority patent/CH431561A/en
Priority to ES0293651A priority patent/ES293651A1/en
Priority to BE640157A priority patent/BE640157A/xx
Priority to FR954320A priority patent/FR1374282A/en
Application granted granted Critical
Publication of US3243961A publication Critical patent/US3243961A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/14Control systems for steam boilers for steam boilers of forced-flow type during the starting-up periods, i.e. during the periods between the lighting of the furnaces and the attainment of the normal operating temperature of the steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/20Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by combustion gases of main boiler
    • F01K3/22Controlling, e.g. starting, stopping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature

Definitions

  • the invention relates in general to a forced flow modified once-through vapor generating power plant and more particularly, to an apparatus and method for starting up a forced flow once-through type steam generator and turbine associated therewith.
  • a vapor power plant can be divided into essentially two major portions.
  • Both the turbine as well as the vapor generator require several hours for heating to bring these portions up to the proper operating temperature without exceeding permissible thermal stresses.
  • the vapor generator is first started up and the temperature and pressure of the working fluid raised to a desired degree and value before vapor is admitted to the turbine for rolling and heat conditioning of the turbine. Both of these procedures require several hours for their safe execution. Although they may over-lap chronologically to some extent, the time required to bring a unit on the line is undesirably prolonged by the sequential nature of the start up procedure.
  • An additional important object of the invention is to conserve heat during the start-up operation by reducing the quantity of heat lost through the condenser system.
  • FIG. 1 is a representation of a vapor power plant system in the form of a flow diagram incorporating the features or the present invention when employed in a vapor generator having a primary and finishing superheater.
  • FIG. 2 is a flow diagram representing a vapor power plant system similar to that depicted in FIG. 1, however, illustrating the invention in connection with a vapor generator employing primary superheater, intermediate superheater and finishing superheater.
  • FIG. 1 shows a forced flow once-through vapor generator 10.
  • a feed pump 12 is organized to supply working fluid to vapor generator 10 from a source such as tie-aerator 14 by way of condui-t 16 and via a fluid preheater 18.
  • a feed valve 20 is provided in conduit 16.
  • the working 'fluid passes through econornizer 22, conduit 23, vapor generating section 24, conduit 25, primary superheater 26, conduit 27, finishing superheater 28 and conduit 29 to a point of use such as vapor turbine 30.
  • a valve 31 is provided in conduit 29 to shut-01f the flow of working fluid to turbine 34). After having given up a major portion of its thermal energy, the vapor is condensed in condenser 32 and the condensate returned to de-aerator 1 3 through conduit 33 via condenser pump 34 and heater 35.
  • Fuel and air for combustion are supplied to vapor generator 1% by way of burner 36 in any conventional manner.
  • the hot combustion gases produced by the burning of the fuel pass in heat exchange relation over the heat absorbing surfaces of the vapor generating section 24, superheating sections 26 and 28 and economizer 22.
  • Other conventional means of supplying heat to the vapor generator may be used in connection with the invention.
  • a source 38 of auxiliary vapor is provided for supplying vapor during the start-up operation to de-aerator '14 by way of conduit 40 including valve 41, and to primary superheater 26 by way of conduit 42 including valve 43.
  • An important elemen-t of the inventive combination herein disclosed is the provision of a recirculating conduit 44 including valves 46 and recirculating pump 48 for the recirculation of working fluid from the outlet of vapor generating section 24- to the inlet thereof.
  • an overflow conduit 50 is provided including valve 51, which connects the outlet of vapor generating section 24 to a point of low pressure such as the hot well of condenser 32.
  • a by-pass conduit 52 including valve 53 for by-passing the turbine during an early phase of the start-up operation.
  • Another important element of the inventive combination is the provision in conduit 25 of a shut-off valve 54 including a throttling valve 56 arranged in conduit 57 which bypasses valve 54.
  • the purpose of bypass valve 56 is to obtain throttling with high pressure drop and/or small flow quantities, while the main shut-0E valve 54 is designed for relatively low pressure drops and large flow quantities.
  • the vapor generating power plant is divided into two main portions. These are separated by a so-called boiler shutolf and throttling valve 54, 56. With this valve closed it is possible by use of vapor obtained from an auxiliary source 38 and superheated by passing it through superheaters 26 and 28, to warm up and roll the turbine long before any vapor has been generated in the vapor generating portion 24 of the generator 10. During the time the turbine is thus being prepared for full operation with auxiliary vapor, the vapor generator is also being brought up to temperature and pressure with a vaporizable fluid which fluid bad previously been de-aerated also by the use of vapor obtained from auxiliary source 38.
  • the starting up operation of the forced flow once-through vapor power plant commences with the closing of the boiler shutoff valve 54 and bypass and throttling valve 56, and the opening of boiler extraction 3 or overflow valve 51. Opening of valve 41 permits vapor to flow from the auxiliary vapor source 38 to the deaerator 14. Vaporizable fluid is pumped from the deaerator through economizer 22 and vapor generating section 24 by means of feed pump 12 via feed valve 20. This fluid is first being discharged to a point of lower pressure such as condenser 32 by way of extraction or overflow line 50 and extraction valve 51, while the unit is being fired up.
  • the heated fluid is thus discharged through extraction valve 51 until the so-called clean-up operation of the vapor generator is completed, i.e.', until the working fluid has been purged of decontaminants and oxygen which may have been present in the working fluid.
  • feeding of the working fluid is discontinued by closing feed valve 20 and also by closing extraction valve 51, with the latter however being set to open automatically at a predetermined higher pressure. This is necessary in order to allow for overflow due to expansion of the fluid as the fluid is being heated in the vapor generating section 24.
  • a second consideration of the present invention is the provision for protecting the tube lined walls 24 of the furnace from overheating while the feed valve 23 is closed. This is accomplished by recirculating the working fluid from the outlet of the vapor generating section to the inlet thereof by Way of conduit 44 and valve 46 and by means of recirculating pump 48. Recirculation of the working fluid thus serves two purposes. First, it provides for eflicient cooling of the tubular furnace surface exposed to radiant heat, thereby permitting a faster increase of the firing rate. And second, such recirculation simultaneously results in a quicker heating of the fluid since none of the heated fluid is being discharged to waste. Such discharge and waste of heat would be unavoidable without recirculation since a minimum velocity of the working fluid must be maintained in the furnace tubes to prevent overheating thereof.
  • the turbine is warmed up at the same time and rolled also by being supplied with auxiliary vapor from source 38 with this vapor having been superheated in superheaters 26 and 28.
  • the auxiliary vapor thus performs three important functions. First, it permits the warming up and rolling of the turbine long before the vapor generating section 24 can supply the vapor for this operation. Second, the auxiliary vapor serves as a cooling medium for cooling the heating surfaces of superheaters 26 and 23 which are exposed to the hot combustion gases that are being produced for the purpose of heating the working fluid, in vapor generating section 24. And, third, 7
  • the auxiliary vapor provides the heat required for speedy de-aeration of the working fluid, thus contributing to a quick cleaning up of the fluid at start up of the vapor generator.
  • valve 56 in bypass 57 is opened with the high temperature fluid expanding into primary superheater 26.
  • the difference in pressure and temperature between the fluid or vapor in vapor generating section 24 and that in superheater 26 is chosen to be of such an amount that the throttling action taking place in valve 56 desirably results in a flashing of vapor Without any appreciable amount of liquid entering the primary superheater 26.
  • feed valve 20 is gradually being opened to reestablish flow of working fluid into the vapor generator.
  • valve 43 the flow of auxiliary vapor is proportionally reduced by controlling valve 43.
  • the feeding of relatively cool working fluid into economizer 22 and vapor generating section 24 requires a corresponding increase in heat input tothe vapor generator 10.
  • Flow of high pressure, high temperature fluid from vapor generating section 24 to primary superheater 26 continues through valve 56 until the pressure in primary superheater 26 approaches that prevailing in vapor generating section 24.
  • valve 54 is opened and valve 43 closed to establish normal operation of the vapor generator and associated turbine.
  • FIG. 2 shows a representation of a forced flow vapor generating system similar to that illustrated in FIG. 1, but with the invention applied to a power plant having primary superheater 26, intermediate superheater 58 and finishing superheater 28.
  • the shut-cit valve 54 of FIG. 1 is now designated 54a and is located in the conduit 59 leading from the primary superheater 26 to the intermediate superheater 58. This is in contrast to FIG. 1 wherein the. shut-oil valve 54 is located between vapor generating section 24 and primary superheater 26.
  • the auxiliary vapor conduit 42 of FIG. 1 is now designated 42a and is connected to the inlet or" intermediate superheater 58.
  • FIG. 1 1, now designated 50a in FIG. 2 is connected to the outlet of the primary superheater 26.
  • a conduit 57a with valve 56a is provided in FIG. 2 for bypassing valve 54a also suitable valves 43a and 51a are installed in conduits 42a and 58a respectively.
  • the start-up operation and sequence of the power plant shown in FIG. 2 is substantially the'same as that earlier herein described in connection with the arrangement shown in FIG. 1.
  • the main reason for locating valve 54a after the primary superheater 24 is that a higher temperature of the working fluid can thereby be obtained prior to throttling the fluid by passing it through valve 56a.
  • Such higher temperature which is most cases should be in the neighborhood of 800 F., gives assurance that only dry vapor enters the superheater surface 58.
  • a forced flow modified once-through type steam power plant having a steam generating section, a steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating section, means de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowing through said steam superheating section comprising a cutoff valve arranged cutofl' valve is closed, a conduit connecting said super- 7 heating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said superheating section and to said turbine when said cutofl valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to water flow with a point upstream thereof, and means for recirculating water through said recirculating conduit around said steam generating section when said cutofi valve is closed.
  • a forced flow modified once-through type steam power plant having a steam generating section, a steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating section, means for de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowing'through said steam superheating section comprising a cutoff valve arranged to control fluid flow between said steam generating and steam superheating sections, a source of auxiliary steam, a conduit connecting said auxiliary steam source with said de-aerating means and arranged to convey steam from said steam source to said de-aerating means when said cutoff valve is closed, a conduit connecting said superheating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said superheating section and to said turbine when said cutoff valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to water flow with a point upstream therof, means for recirculating water through said recirculating conduit around said
  • a forced flow modified once-through type steam power plant having a steam generating section, a steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating section, means for de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowing through said steam superheating section comprising a cutoff valve arranged to control fluid flow between said steam generating and steam superheating secitons, a source of auxiliary steam, a conduit connecting said auxiliary steam source with said de-aerating means and arranged to convey steam from said steam source to said de-aerating means when said cutoff valve is closed, a conduit connecting said superheating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said superheating section and to said turbine when said cutoff valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to water flow with a point upstream thereof, means for recirculating water through said recirculating conduit around said steam
  • a forced flow once-through type steam power plant having a steam generating section, a first steam superheating section, a second steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating ection, means for de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowin through said second steam superheating section comprising a cutoff valve arranged to control fluid flow between said first steam superheating and said second steam superheating sections, a source of auxiliary steam, a conduit connecting said auxiliary steam source with said de-aerating means and arranged to convey steam from said steam source to said d e-aerating means when said cutoff valve is closed, a conduit connecting said second superheating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said second superheating section and to said turbine when said cutoff valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to Water flow with a cut
  • a method of starting up a forced flow modified once-through type vapor generator and associated turbine by use of vapor from an auxiliary vapor source said generator having a de-aerator and first heating surfaces including vapor generating surface and second heating surfaces including a superheater serially connected therein, a vaporizable fluid flowing through said first and second heating surfaces wherein it is vaporized and superheated by the passage of heat containing gases thereover so that only vapor flows through said second heating surfaces, a vapor driven turbine receiving vapor from said second heating surfaces, the invention comprising starting up with supplying vapor from said auxiliary vapor source to said de-aerator to de-aerate said vaporizable fluid, flowing said vaporizable fluid through only said first heating surfaces to urge said first heating surfaces of contaminants, and then discontinuing feeding of said vaporizable fluid to said first heating surfaces and recirculating said fluid around said first heating surfaces without condensing it and maintaining substantially the same pressure throughout, supplying vapor from said auxiliary source to said second heating surfaces only
  • a method of starting up a forced flow modified oncethrough type vapor generator and associated turbine by use of vapor from an auxiliary vapor source said generator having a de-aerator and first heating surfaces including vapor generating surface and second heating surfaces including vapor heating surface serially connected therein, a vaporizable fluid flowing through said first and second heating surfaces wherein it is vaporized and superheated by the passage of heating gases thereover so that only vapor flows through said second heating surfaces, and a vapor driven turbine receiving vapor from said second heating surfaces, the invention comprising the steps of:
  • step 5 heating the vapor in said second heating surfaces by the passage of said heating gases thereover, to a desired temperature and pressure While rolling and synchronizing said turbine;
  • a method of starting up a forced flow modified oncethrough type vapor generator and associated turbine by use of vapor from an auxiliary vapor source said generator having first heating surfaces including vapor generating surface and second heating surfaces including vapor heating surface serially connected therein, a vaporizable fluidflowing through said first and second heating surfaces wherein it is vaporized and superheated by the passage of heating gases thereover so that only vapor flows through said second heating surfaces, and a vapor driven turbine receiving vapor from said second heating surfaces, the invention comprising the steps of:

Description

April 5, 1966 v. z. CARACRISTI APPARATUS AND METHOD OF OPERATING A FORCED FLOW ONCE-THROUGH VAPOR GENERATING POWER PLANT Filed Nov. 20, 1962 2 Sheets-Sheet l FINISHIZNG SUPERHEATER I I l l l I PRIMARY SUPERHEATER AUXILIARY VAPOR SOURCE DEAERATOR I l I I 1 l l 1 l I l VAPOR E G E NE RATING SECTION [1 mill 1 24 hillllllmlllll INVENTOR. VIRGINIUS Z. CARACRISTI BY @441? 25/ AGENT April 5, 1966 v. z. cARAcRlsTl APPARATUS AND METHOD OF OPERATING A FORCED FLOW ONCE-THROUGH VAPOR GENERATING POWER PLANT Filed Nov. 20, 1962 2 Sheets-Sheet 2 DEAERATOR d 5 E 6 YR v mm 8 S $2 3 W a (AP m. E 2 w 0 m M 4 2 E E H U R E S P E w m H G m R N E M m I l I l l I l I l l I l I '0 m m m N T C H m 7 n 2 5 2 w 5 2 .1 l l l I I l I l I l l l l l I I l I l l l l l l I IIL FIG. 2
INVENTOR: VIRGINIUS Z. CARACRISTI ig/4;
AGENT Patented Apr. 5, 19%? 3,243,961 APPARATUS AND METHOD OF OPERATING A FORCED FLOW ONCE-THROUGH VAPOR GEN- ERATING POWER PLANT Virginians Z. Caracristi, West Hartford, Conn, assignor to Combustion Engineering, Inc, Windsor, Conn, a corporation of Delaware Filed Nov. 29, 1962, Ser. No. 238,886 9 Claims. (Cl. 60-105) The invention relates in general to a forced flow modified once-through vapor generating power plant and more particularly, to an apparatus and method for starting up a forced flow once-through type steam generator and turbine associated therewith.
In starting up a forced flow once-through steam or vapor generator it is very important for economical reasons to reduce as much as possible the time required for bringing the unit on the line and the amount of heated vapor or steam required for safe starting, which vapor or steam is not directly used to generate electric power.
For start up operation, a vapor power plant can be divided into essentially two major portions. The liquid heating and vapor generating portion, and the vapor heating and turbine portion. Both the turbine as well as the vapor generator require several hours for heating to bring these portions up to the proper operating temperature without exceeding permissible thermal stresses. Conventionally the vapor generator is first started up and the temperature and pressure of the working fluid raised to a desired degree and value before vapor is admitted to the turbine for rolling and heat conditioning of the turbine. Both of these procedures require several hours for their safe execution. Although they may over-lap chronologically to some extent, the time required to bring a unit on the line is undesirably prolonged by the sequential nature of the start up procedure. Furthermore, in modern high capacity high pressure vapor generators, large quantities of heated working fluid are utilized in the starting up operation of these power plant. The heat contained in the vast quantities of working fluid thus passing through the heating surfaces is largely lost in the condenser. It is, accordingly, of prime economic importance in starting up high capacity high pressure forced once-through flow vapor generators and turbines, not only to reduce the time required for start-up, but also to reduce the heat lost in the working fluid that is being discharged to drain or to the hot well during starting up operation.
Accordingly, it is a primary object of the invention to reduce by a significant degree the time necessary for starting up a forced flow once-through vapor generator and turbine power plant.
An additional important object of the invention is to conserve heat during the start-up operation by reducing the quantity of heat lost through the condenser system.
Other objects and advantages will become apparent as the description of illustrative embodiments of the invention proceeds. The novel features which are considered characteristic of the invention are set forth with particularity in the appended claims. These claims as well as the following description of the invention will best be understood when read in conjunction with the accompanying drawing in which:
FIG. 1 is a representation of a vapor power plant system in the form of a flow diagram incorporating the features or the present invention when employed in a vapor generator having a primary and finishing superheater.
FIG. 2 is a flow diagram representing a vapor power plant system similar to that depicted in FIG. 1, however, illustrating the invention in connection with a vapor generator employing primary superheater, intermediate superheater and finishing superheater.
Referring now to the drawing in which like reference characters are used throughout to designate like elements, the diagrammatic representation of FIG. 1 shows a forced flow once-through vapor generator 10. A feed pump 12 is organized to supply working fluid to vapor generator 10 from a source such as tie-aerator 14 by way of condui-t 16 and via a fluid preheater 18. To control or shutoff the flow of a working fluid a feed valve 20 is provided in conduit 16. The working 'fluid passes through econornizer 22, conduit 23, vapor generating section 24, conduit 25, primary superheater 26, conduit 27, finishing superheater 28 and conduit 29 to a point of use such as vapor turbine 30. A valve 31 is provided in conduit 29 to shut-01f the flow of working fluid to turbine 34). After having given up a major portion of its thermal energy, the vapor is condensed in condenser 32 and the condensate returned to de-aerator 1 3 through conduit 33 via condenser pump 34 and heater 35.
Fuel and air for combustion are supplied to vapor generator 1% by way of burner 36 in any conventional manner. The hot combustion gases produced by the burning of the fuel pass in heat exchange relation over the heat absorbing surfaces of the vapor generating section 24, superheating sections 26 and 28 and economizer 22. Other conventional means of supplying heat to the vapor generator may be used in connection with the invention.
In accordance with the invention a source 38 of auxiliary vapor is provided for supplying vapor during the start-up operation to de-aerator '14 by way of conduit 40 including valve 41, and to primary superheater 26 by way of conduit 42 including valve 43. An important elemen-t of the inventive combination herein disclosed is the provision of a recirculating conduit 44 including valves 46 and recirculating pump 48 for the recirculation of working fluid from the outlet of vapor generating section 24- to the inlet thereof. In additon an overflow conduit 50 is provided including valve 51, which connects the outlet of vapor generating section 24 to a point of low pressure such as the hot well of condenser 32. Furthermore the invention contemplates the use of a by-pass conduit 52 including valve 53 for by-passing the turbine during an early phase of the start-up operation. Another important element of the inventive combination is the provision in conduit 25 of a shut-off valve 54 including a throttling valve 56 arranged in conduit 57 which bypasses valve 54. The purpose of bypass valve 56 is to obtain throttling with high pressure drop and/or small flow quantities, while the main shut-0E valve 54 is designed for relatively low pressure drops and large flow quantities.
The forced flow modified once-through vapor generator is started up according to the invention with the following general considerations in mind.
First, as earlier mentioned herein, the vapor generating power plant is divided into two main portions. These are separated by a so-called boiler shutolf and throttling valve 54, 56. With this valve closed it is possible by use of vapor obtained from an auxiliary source 38 and superheated by passing it through superheaters 26 and 28, to warm up and roll the turbine long before any vapor has been generated in the vapor generating portion 24 of the generator 10. During the time the turbine is thus being prepared for full operation with auxiliary vapor, the vapor generator is also being brought up to temperature and pressure with a vaporizable fluid which fluid bad previously been de-aerated also by the use of vapor obtained from auxiliary source 38.
Accordingly, the starting up operation of the forced flow once-through vapor power plant commences with the closing of the boiler shutoff valve 54 and bypass and throttling valve 56, and the opening of boiler extraction 3 or overflow valve 51. Opening of valve 41 permits vapor to flow from the auxiliary vapor source 38 to the deaerator 14. Vaporizable fluid is pumped from the deaerator through economizer 22 and vapor generating section 24 by means of feed pump 12 via feed valve 20. This fluid is first being discharged to a point of lower pressure such as condenser 32 by way of extraction or overflow line 50 and extraction valve 51, while the unit is being fired up. The heated fluid is thus discharged through extraction valve 51 until the so-called clean-up operation of the vapor generator is completed, i.e.', until the working fluid has been purged of decontaminants and oxygen which may have been present in the working fluid. At this time feeding of the working fluid is discontinued by closing feed valve 20 and also by closing extraction valve 51, with the latter however being set to open automatically at a predetermined higher pressure. This is necessary in order to allow for overflow due to expansion of the fluid as the fluid is being heated in the vapor generating section 24. I
A second consideration of the present invention is the provision for protecting the tube lined walls 24 of the furnace from overheating while the feed valve 23 is closed. This is accomplished by recirculating the working fluid from the outlet of the vapor generating section to the inlet thereof by Way of conduit 44 and valve 46 and by means of recirculating pump 48. Recirculation of the working fluid thus serves two purposes. First, it provides for eflicient cooling of the tubular furnace surface exposed to radiant heat, thereby permitting a faster increase of the firing rate. And second, such recirculation simultaneously results in a quicker heating of the fluid since none of the heated fluid is being discharged to waste. Such discharge and waste of heat would be unavoidable without recirculation since a minimum velocity of the working fluid must be maintained in the furnace tubes to prevent overheating thereof.
While the vapor generating portion of the unit is thus prepared for full operation in a minimum of time by virtue of the recirculation circuit and the use of auxiliary vapor, the turbine is warmed up at the same time and rolled also by being supplied with auxiliary vapor from source 38 with this vapor having been superheated in superheaters 26 and 28. The auxiliary vapor thus performs three important functions. First, it permits the warming up and rolling of the turbine long before the vapor generating section 24 can supply the vapor for this operation. Second, the auxiliary vapor serves as a cooling medium for cooling the heating surfaces of superheaters 26 and 23 which are exposed to the hot combustion gases that are being produced for the purpose of heating the working fluid, in vapor generating section 24. And, third, 7
the auxiliary vapor provides the heat required for speedy de-aeration of the working fluid, thus contributing to a quick cleaning up of the fluid at start up of the vapor generator.
When the fluid contained in vapor generating section 24 and continually being recirculated thereabout has reached a temperature and pressure exceeding the temperature' and pressure in the superheater 26 by a predetermined desired amount, valve 56 in bypass 57 is opened with the high temperature fluid expanding into primary superheater 26. The difference in pressure and temperature between the fluid or vapor in vapor generating section 24 and that in superheater 26 is chosen to be of such an amount that the throttling action taking place in valve 56 desirably results in a flashing of vapor Without any appreciable amount of liquid entering the primary superheater 26. Simultaneously with the opening of bypass valve 56 feed valve 20 is gradually being opened to reestablish flow of working fluid into the vapor generator. Also the flow of auxiliary vapor is proportionally reduced by controlling valve 43. The feeding of relatively cool working fluid into economizer 22 and vapor generating section 24 requires a corresponding increase in heat input tothe vapor generator 10. Flow of high pressure, high temperature fluid from vapor generating section 24 to primary superheater 26 continues through valve 56 until the pressure in primary superheater 26 approaches that prevailing in vapor generating section 24. At this time valve 54 is opened and valve 43 closed to establish normal operation of the vapor generator and associated turbine.
FIG. 2 shows a representation of a forced flow vapor generating system similar to that illustrated in FIG. 1, but with the invention applied to a power plant having primary superheater 26, intermediate superheater 58 and finishing superheater 28. In the embodiment of FIG. 2 the shut-cit valve 54 of FIG. 1 is now designated 54a and is located in the conduit 59 leading from the primary superheater 26 to the intermediate superheater 58. This is in contrast to FIG. 1 wherein the. shut-oil valve 54 is located between vapor generating section 24 and primary superheater 26. In addition, the auxiliary vapor conduit 42 of FIG. 1 is now designated 42a and is connected to the inlet or" intermediate superheater 58. Also the over flow conduit 50 of FIG. 1, now designated 50a in FIG. 2 is connected to the outlet of the primary superheater 26. As in FIG. 1 a conduit 57a with valve 56a is provided in FIG. 2 for bypassing valve 54a also suitable valves 43a and 51a are installed in conduits 42a and 58a respectively.
The start-up operation and sequence of the power plant shown in FIG. 2 is substantially the'same as that earlier herein described in connection with the arrangement shown in FIG. 1. The main reason for locating valve 54a after the primary superheater 24 is that a higher temperature of the working fluid can thereby be obtained prior to throttling the fluid by passing it through valve 56a. Such higher temperature which is most cases should be in the neighborhood of 800 F., gives assurance that only dry vapor enters the superheater surface 58.
While specific embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that various changes, modifications, substitutions, additions and omissions may be made therein Without departing from the spirit and scope of the invention as set forth in the appended claims.
What I claim is:
1. In a forced flow modified once-through type steam power plant having a steam generating section, a steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating section, means de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowing through said steam superheating section comprising a cutoff valve arranged cutofl' valve is closed, a conduit connecting said super- 7 heating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said superheating section and to said turbine when said cutofl valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to water flow with a point upstream thereof, and means for recirculating water through said recirculating conduit around said steam generating section when said cutofi valve is closed.
2. In a forced flow modified once-through type steam power plant having a steam generating section, a steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating section, means for de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowing'through said steam superheating section comprising a cutoff valve arranged to control fluid flow between said steam generating and steam superheating sections, a source of auxiliary steam, a conduit connecting said auxiliary steam source with said de-aerating means and arranged to convey steam from said steam source to said de-aerating means when said cutoff valve is closed, a conduit connecting said superheating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said superheating section and to said turbine when said cutoff valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to water flow with a point upstream therof, means for recirculating water through said recirculating conduit around said steam generating section when said cutoff valve is closed, and a valve controlled relief conduit connecting said steam generating section to a point of lower pressure for maintaining a desired pressure in said steam generating section.
3. In a forced flow modified once-through type steam power plant having a steam generating section, a steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating section, means for de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowing through said steam superheating section comprising a cutoff valve arranged to control fluid flow between said steam generating and steam superheating secitons, a source of auxiliary steam, a conduit connecting said auxiliary steam source with said de-aerating means and arranged to convey steam from said steam source to said de-aerating means when said cutoff valve is closed, a conduit connecting said superheating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said superheating section and to said turbine when said cutoff valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to water flow with a point upstream thereof, means for recirculating water through said recirculating conduit around said steam generating section when said cutoff valve is closed, a valve controlled relief conduit connecting said steam generating section to a point of lower pressure and for maintaining a desired pressure in said steam generating section, and a valve controlled relief conduit connecting said steam superheating section to a point of lower pressure for controlling the pressure in said steam superheating section.
4. In a forced flow once-through type steam power plant having a steam generating section, a first steam superheating section, a second steam superheating section and a steam turbine serially connected in the order named, means for supplying feedwater to said steam generating ection, means for de-aerating the feedwater, means for starting up said steam boiler and said turbine with only steam flowin through said second steam superheating section comprising a cutoff valve arranged to control fluid flow between said first steam superheating and said second steam superheating sections, a source of auxiliary steam, a conduit connecting said auxiliary steam source with said de-aerating means and arranged to convey steam from said steam source to said d e-aerating means when said cutoff valve is closed, a conduit connecting said second superheating section to said auxiliary steam source and arranged to convey steam from said auxiliary steam source to said second superheating section and to said turbine when said cutoff valve is closed, a recirculating conduit connecting a point downstream of said steam generating section with respect to Water flow with a point upstream thereof, and means for recirculating water through said recirculating conduit around said steam generating section when said cutoff valve is closed.
5. Apparatus as defined in claim 4 wherein a valve controlled relief conduit is provided connecting said first steam superheating section to a point of lower pressure for controlling the pressure in said first steam superheating section,
6. Apparatus as defined in claim 5 wherein a valve controlled relief conduit is provided connecting said second steam superheating section to a point of lower pressure for controlling the pressure in said second steam su perheating section.
7. A method of starting up a forced flow modified once-through type vapor generator and associated turbine by use of vapor from an auxiliary vapor source, said generator having a de-aerator and first heating surfaces including vapor generating surface and second heating surfaces including a superheater serially connected therein, a vaporizable fluid flowing through said first and second heating surfaces wherein it is vaporized and superheated by the passage of heat containing gases thereover so that only vapor flows through said second heating surfaces, a vapor driven turbine receiving vapor from said second heating surfaces, the invention comprising starting up with supplying vapor from said auxiliary vapor source to said de-aerator to de-aerate said vaporizable fluid, flowing said vaporizable fluid through only said first heating surfaces to urge said first heating surfaces of contaminants, and then discontinuing feeding of said vaporizable fluid to said first heating surfaces and recirculating said fluid around said first heating surfaces without condensing it and maintaining substantially the same pressure throughout, supplying vapor from said auxiliary source to said second heating surfaces only, while commencing the passage of heating gases over said first and second heating surfaces, heating said vaporizable fluid that is recirculating through said first heating surfaces to produce vapor at a selected temperature and pressure, heating said auxiliarly supplied vapor in said second heating surfaces to a selected temperature and pressure, roll and synchronize said turbine with said auxiliarly supplied vapor, gradually increasing the heat content of said heating gases flowing over said first and second heating surfaces to achieve a temperature of the vapor leaving said first heating surfaces such that the steam in said second heating surfaces remains in an essentially dry state, gradually passing a portion of said vapor from said first heating surfaces to said second heating surfaces while admitting a corresponding portion of vaporizable fluid to said first heating surfaces and proportionally decreasing the flow of vapor from said auxiliary source to said second heating surfaces, progressively increasing the flow of vaporizable fluid to said first heating surfaces in direct relation to the said increase in heating gas flow to maintain only vapor flowing to said second heating surfaces, and discontinuing flow of vapor from said auxiliary vapor source to said second heating surfaces.
8. A method of starting up a forced flow modified oncethrough type vapor generator and associated turbine by use of vapor from an auxiliary vapor source, said generator having a de-aerator and first heating surfaces including vapor generating surface and second heating surfaces including vapor heating surface serially connected therein, a vaporizable fluid flowing through said first and second heating surfaces wherein it is vaporized and superheated by the passage of heating gases thereover so that only vapor flows through said second heating surfaces, and a vapor driven turbine receiving vapor from said second heating surfaces, the invention comprising the steps of:
(1) shutting off flow between said first and second heating surfaces;
(2) heating vaporizable fluid in said first heating surfaces by supplying heat from said heating gases to the heating surfaces thereof with said vaporizable fluid having first been de-aerated by using heated vapor from said auxiliary vapor source;
(3) discontinuing flow of said vaporizable fluid to said first heating surfaces and recirculating said vaporizable fluid around said heating surfaces while maintaining the pressure thereof substantially equal throughout;
(4) simultaneously with steps 2 and 3 supplying vapor to said second heating surfaces from said auxiliary vapor source;
(5) heating the vaporizable fluid in said first heating surfaces by the passage of said heating gases thereover to gradually raise the temperature and pressure thereof to desired values;
(6) simultaneously with step 5 heating the vapor in said second heating surfaces by the passage of said heating gases thereover, to a desired temperature and pressure While rolling and synchronizing said turbine;
(7) controlling the temperature and pressure of the vapor produced in said first heating surfaces such that the vapor in said second heating surfaces remains in an essentially dry state;
(8) gradually establishing flow of vapor from said first to said second heating surfaces With a proportional increase of Vaporizabie fluid flow to said first heating surfaces and a gradual decrease and tidal discontinuance of the flow of the vapor from said auxiliary vapor source to said second heating surfaces.
9. A method of starting up a forced flow modified oncethrough type vapor generator and associated turbine by use of vapor from an auxiliary vapor source, said generator having first heating surfaces including vapor generating surface and second heating surfaces including vapor heating surface serially connected therein, a vaporizable fluidflowing through said first and second heating surfaces wherein it is vaporized and superheated by the passage of heating gases thereover so that only vapor flows through said second heating surfaces, and a vapor driven turbine receiving vapor from said second heating surfaces, the invention comprising the steps of:
(1) shutting ofi flow between said first and second heating surfaces;
(2) heating vaporizable fluid in' said first heating surfaces by supplying heat from said heating gases to the heating surfaces thereof;
(3) discontinuing flow of said vaporizable fluid to said first heating surfaces and recirculating said vaporizable fluid around said heating surfaces while maintaining the pressure thereof substantially equal throughout;
(4) simultaneously with steps 2 and 3 supplying vapor to said second heating surfaces from said auxiliary vapor source; a
(5) heating the vap'orizable fluid in, said first heating surfaces by the passage of said heating gases thereover to gradually raise the tempe'rature and pressure thereof toade'sire'd values; p 7 a (6) simultaneously with step 5 heating the vapor in said second heating surfaces by the passage of said heating gases thereover, to a desired temperature and pressure While rolling and synchronizing said turbine;
(7) controlling the temperature and pressure of the discontinuance of the flow of the vapor from said auxiliary vapor source to said second heating surfaces.
References (Iited by the Examiner UNITED STATES PATENTS 2,116,587 5/1938 Toensfeldt -105 2,184,224 12/1939 Lucke 60-102 2,989,038 ,6/1961 SchWarz 122-406 3,019,774 2/1962 Beyel'lein 122-406 SAMUEL LEVINE, Primary Examiner. ROBERT R. BUNEVICHExaniiner.

Claims (1)

1. IN A FORCED FLOW MODIFIED ONCE-THROUGH TYPE STEAM POWER PLANT HAVING A STEAM GENERATING SECTION, A STEAM SUPERHEATING SECTION AND A STEAM TURBINE SERIALLY CONNECTED IN THE ORDER NAMED, MEANS FOR SUPPLYING FEEDWATER TO SAID STEAM GENERATING SECTION, MEANS DE-AERATING THE FEEDWATER, MEANS FOR STARTING UP SAID STEAM BOILER AND SAID TURBINE WITH ONLY STEAM FLOWING THROUGH SAID STEAM SUPERHEATING SECTION COMPRISING A CUTOFF VALVE ARRANGED TO CONTROL FLUID FLOW BETWEEN SAID STEAM GENERATING AND STEAM SUPERHEATING SECTIONS, A SOURCE OF AUXILIARY STEAM, A CONDUIT CONNECTING SAID AUXILIARY STEAM SOURCE WITH SAID DE-AERATING MEANS AND ARRANGED TO CONVEY STEAM FROM SAID STEAM SOURCE TO SAID DE-AERATING MEANS WHEN SAID CUTOFF VALVE IS CLOSED, A CONDUIT CONNECTING SAID SUPERHEATING SECTION TO SAID AUXILIARY STEAM SOURCE AND ARRANGED TO CONVEY STEAM FROM SAID AUXILIARY STEAM SOURCE TO SAID SUPERHEATING SECTION AND TO SAID TURBINE WHEN SAID CUTOFF VALVE IS CLOSED, A RECIRCULATING CONDUIT CONNECTING A POINT DOWNSTREAM OF SAID STEAM GENERATING SECTION WITH RESPECT TO WATER FLOW WITH A POINT UPSTREAM THEREOF, AND MEANS FOR RECIRCULATING WATER THROUGH SAID RECIRCULATING CONDUIT AROUND SAID STEAM GENERATING SECTION WHEN SAID CUTOFF VALVE IS CLOSED.
US238886A 1962-11-20 1962-11-20 Apparatus and method of operating a forced flow once-through vapor generating power plant Expired - Lifetime US3243961A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NL300546D NL300546A (en) 1962-11-20
NL131057D NL131057C (en) 1962-11-20
US238886A US3243961A (en) 1962-11-20 1962-11-20 Apparatus and method of operating a forced flow once-through vapor generating power plant
GB44584/63A GB1035058A (en) 1962-11-20 1963-11-12 A forced flow once-through vapour generator and method for starting the same
CH1415963A CH431561A (en) 1962-11-20 1963-11-19 Method for starting a steam generating plant with forced flow of steam
ES0293651A ES293651A1 (en) 1962-11-20 1963-11-19 Apparatus and method of operating a forced flow once-through vapor generating power plant
BE640157A BE640157A (en) 1962-11-20 1963-11-19
FR954320A FR1374282A (en) 1962-11-20 1963-11-19 Improvements made to the conduct of forced circulation and total vaporization steam generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US238886A US3243961A (en) 1962-11-20 1962-11-20 Apparatus and method of operating a forced flow once-through vapor generating power plant

Publications (1)

Publication Number Publication Date
US3243961A true US3243961A (en) 1966-04-05

Family

ID=22899726

Family Applications (1)

Application Number Title Priority Date Filing Date
US238886A Expired - Lifetime US3243961A (en) 1962-11-20 1962-11-20 Apparatus and method of operating a forced flow once-through vapor generating power plant

Country Status (6)

Country Link
US (1) US3243961A (en)
BE (1) BE640157A (en)
CH (1) CH431561A (en)
ES (1) ES293651A1 (en)
GB (1) GB1035058A (en)
NL (2) NL300546A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361117A (en) * 1966-02-18 1968-01-02 Babcock & Wilcox Co Start-up system for forced flow vapor generator and method of operating the vapor generator
US3705494A (en) * 1971-01-04 1972-12-12 Fester Wheeler Corp Holding system for steam power cycle
US3882680A (en) * 1972-04-18 1975-05-13 Babcock & Wilcox Co By-pass system
US4311013A (en) * 1979-02-27 1982-01-19 Hitachi, Ltd. Method of controlling condensation system of steam plant
US4658589A (en) * 1986-03-21 1987-04-21 Sundstrand Corporation Non-condensible ejection system for closed cycle Rankine apparatus
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
US5396865A (en) * 1994-06-01 1995-03-14 Freeh; James H. Startup system for power plants
US20100107636A1 (en) * 2008-10-30 2010-05-06 General Electric Company Provision for rapid warming of steam piping of a power plant
US20130091842A1 (en) * 2010-05-03 2013-04-18 Brightsource Industries (Israel) Ltd. Systems, methods, and devices for operating a solar thermal electricity generating system
US20130160450A1 (en) * 2011-12-22 2013-06-27 Frederick J. Cogswell Hemetic motor cooling for high temperature organic rankine cycle system
US20150211731A1 (en) * 2014-01-27 2015-07-30 Ellis Young Processed vapor make-up process and system
US11371392B1 (en) * 2021-01-07 2022-06-28 General Electric Company System and method for improving startup time in a fossil-fueled power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2116587A (en) * 1937-07-01 1938-05-10 Comb Eng Co Inc Regulating means for steam generating plants
US2184224A (en) * 1937-02-17 1939-12-19 Babcock & Wilcox Co Method and apparatus for the operation of steam boilers and accessory devices
US2989038A (en) * 1956-04-26 1961-06-20 Duerrwerke Ag Device for starting-up once-through boilers
US3019774A (en) * 1959-09-16 1962-02-06 Dunwerke Ag Once-through vapor generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184224A (en) * 1937-02-17 1939-12-19 Babcock & Wilcox Co Method and apparatus for the operation of steam boilers and accessory devices
US2116587A (en) * 1937-07-01 1938-05-10 Comb Eng Co Inc Regulating means for steam generating plants
US2989038A (en) * 1956-04-26 1961-06-20 Duerrwerke Ag Device for starting-up once-through boilers
US3019774A (en) * 1959-09-16 1962-02-06 Dunwerke Ag Once-through vapor generator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361117A (en) * 1966-02-18 1968-01-02 Babcock & Wilcox Co Start-up system for forced flow vapor generator and method of operating the vapor generator
US3705494A (en) * 1971-01-04 1972-12-12 Fester Wheeler Corp Holding system for steam power cycle
US3882680A (en) * 1972-04-18 1975-05-13 Babcock & Wilcox Co By-pass system
US4311013A (en) * 1979-02-27 1982-01-19 Hitachi, Ltd. Method of controlling condensation system of steam plant
US4658589A (en) * 1986-03-21 1987-04-21 Sundstrand Corporation Non-condensible ejection system for closed cycle Rankine apparatus
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
US5396865A (en) * 1994-06-01 1995-03-14 Freeh; James H. Startup system for power plants
US7987675B2 (en) * 2008-10-30 2011-08-02 General Electric Company Provision for rapid warming of steam piping of a power plant
US20100107636A1 (en) * 2008-10-30 2010-05-06 General Electric Company Provision for rapid warming of steam piping of a power plant
CN101725381B (en) * 2008-10-30 2013-03-27 通用电气公司 Device and method for rapid warming of steam piping of a power plant
US20130091842A1 (en) * 2010-05-03 2013-04-18 Brightsource Industries (Israel) Ltd. Systems, methods, and devices for operating a solar thermal electricity generating system
US9255569B2 (en) * 2010-05-03 2016-02-09 Brightsource Industries (Israel) Ltd. Systems, methods, and devices for operating a solar thermal electricity generating system
US20130160450A1 (en) * 2011-12-22 2013-06-27 Frederick J. Cogswell Hemetic motor cooling for high temperature organic rankine cycle system
US9689281B2 (en) * 2011-12-22 2017-06-27 Nanjing Tica Air-Conditioning Co., Ltd. Hermetic motor cooling for high temperature organic Rankine cycle system
US20150211731A1 (en) * 2014-01-27 2015-07-30 Ellis Young Processed vapor make-up process and system
US9791146B2 (en) * 2014-01-27 2017-10-17 Ellis Young Processed vapor make-up process and system
US11371392B1 (en) * 2021-01-07 2022-06-28 General Electric Company System and method for improving startup time in a fossil-fueled power generation system
US20220213815A1 (en) * 2021-01-07 2022-07-07 General Electric Company System and method for improving startup time in a fossil-fueled power generation system

Also Published As

Publication number Publication date
BE640157A (en) 1964-05-19
NL131057C (en)
ES293651A1 (en) 1964-06-01
NL300546A (en)
CH431561A (en) 1967-03-15
GB1035058A (en) 1966-07-06

Similar Documents

Publication Publication Date Title
US4164849A (en) Method and apparatus for thermal power generation
US3220193A (en) Devices for improving operating flexibility of steam-electric generating plants
US3243961A (en) Apparatus and method of operating a forced flow once-through vapor generating power plant
US3575002A (en) Combination fossil fuel and superheated steam nuclear power plant
MXPA96002485A (en) Method and conversion apparatus of a water vapor turbine energy plant with thermal regeneration cycle to a combined cycle power plant without regeneration
US3358450A (en) Method and apparatus for steam turbine startup
US6250258B1 (en) Method for starting up a once-through heat recovery steam generator and apparatus for carrying out the method
US3338053A (en) Once-through vapor generator start-up system
US2900792A (en) Steam power plant having a forced flow steam generator
US3019774A (en) Once-through vapor generator
US4487166A (en) Start-up system for once-through boilers
US3882680A (en) By-pass system
US3135096A (en) Method of and apparatus for operating at startup and low load a oncethrough vapor generating system
US3530836A (en) Forced through-flow steam generator
GB997549A (en) Combined circulation steam generator and method of initiating its operation
US3164134A (en) Apparatus and method for operating a forced flow once-through vapor generator
US3362164A (en) Start-up system for forced flow vapor generator
US3304716A (en) Start-up system for forced flow vapor generator
US3262431A (en) Economic combination and operation of boiler throttle valves
US3271961A (en) Start-up system for forced flow vapor generator
US3194218A (en) Apparatus and method for starting forced flow once-through steam generating power plant
US3259111A (en) Start-up system for forced flow vapor generator
US3612005A (en) Once-through steam generator recirculating startup system
US3255735A (en) Once-through, forced-flow boilers
US2852005A (en) Method and means for controlling resuperheat temperature