US3871528A - Load control apparatus for cranes - Google Patents

Load control apparatus for cranes Download PDF

Info

Publication number
US3871528A
US3871528A US142210A US14221071A US3871528A US 3871528 A US3871528 A US 3871528A US 142210 A US142210 A US 142210A US 14221071 A US14221071 A US 14221071A US 3871528 A US3871528 A US 3871528A
Authority
US
United States
Prior art keywords
boom
anchor point
superstructure
point
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US142210A
Inventor
Alvin H Wilkinson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Security Pacific Business Credit Inc
Original Assignee
Alvin H Wilkinson
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alvin H Wilkinson filed Critical Alvin H Wilkinson
Priority to US142210A priority Critical patent/US3871528A/en
Application granted granted Critical
Publication of US3871528A publication Critical patent/US3871528A/en
Assigned to SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP. reassignment SECURITY PACIFIC BUSINESS CREDIT INC., A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AUTO CRANE COMPANY, AN OK CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment

Definitions

  • the present invention relates to a safety device for preventing the tipping over of cranes or the like. More particularly, this invention involves means for sensing the pitching or tilting moment with means for preventing a further increase in the tilting moment beyond a predetermined value thereof.
  • the present invention should be considered in terms of a crane having a boom pivotally supported thereon at what will be determined as a hinge point; a boom support means which is variable in length and which can be a cable or hydraulic cylinders will connect at its upper end to the free or crown end of the boom.
  • the other end of the boom support means will connect to an anchor point on the superstructure of the crane.
  • the hinge point, the crown point and the anchor point form a triangle.
  • the plane of this triangle is a vertical plane in which the boom moves.
  • a cantilever beam is located at the anchor point and, in fact, the free end of this cantilever beam actually becomes the anchor point.
  • the beam is connected to the superstructure in such a manner that its longitudinal axis is colinear with the line connecting from the hinge point to the anchor point; by placing an electrical switch adjacent the anchor point and/or cantilever beam and by causing this switch to open or close, depending upon the deflection at the end of the beam, the tilting moment can be limited.
  • the beam is pivotally connected to the superstructure of the crane but its longitudinal axis still falls along the line connecting between the hinge point and the anchor point; at the anchor point the beam is connected to one part of a hydraulic pistoncylinder combination and the other portion of the piston-cylinder combination is secured to the superstructure; in this instance, the deflection at the anchor point end of the beam will cause a change in hydraulic pressure within the piston-cylinder combination which can be used to control the tilting moment.
  • FIG. 1 is a sembdiagrammatic view of a hoisting apparatus having a pivotal boom;
  • FIG. 2 is a diagram showing the plane of movement of the boom of FIG. 1 with respect to the hinge point and the anchor point;
  • FIG. 3 is an movement diagram
  • FIG. 4 is an elevation of one form of a sensing and control device made in accordance with one embodiment of the present invention.
  • FIG. 5 is an end view of the switch and associated beam structure shown in FIG. 4.
  • FIG. 6 shows a safety device which is a modified form of the present invention.
  • FIG. 1 shows a crane carrier 10 having a boom 11 connected to the superstructure of the apparatus at point H which will sometimes hereinafter be referred to as the hinge point.
  • a boom support means 12 which is of variable length and which can constitute cables or hydraulic cylinders,
  • the boom 11 will be lifted to a more vertical position; conversely, as the boom support means is relatively lengthened, the boom 11 will be lowered to a more horizontal position with respect to FIG. 1.
  • Details of the boom support means are not shown; in the event that the boom support means were a cable, a pulley or pulleys could be located on the crown end of the boom with an additional line (not shown) leading to a winch (not shown) mounted on the superstructure for varying the length of the boom support means 12.
  • the boom support means 12 were hydraulic cylinders, obviously, hydraulic controls would be provided to permit an increase or decrease in the length of the boom support means.
  • a hook 14 which is connected to the outer end of a cable 15.
  • the cable 15 passes around a pulley (not shown) located at the crown end of the boom 11 and a line leads from this pulley to a winch (not shown) on the hoisting apparatus for winding in or letting out the cable 15 and lifting or lowering the hook 14.
  • the hinge point H, the crown point C and the anchor point A form a triangle structure H-C-A commonly referred to as a truss.
  • a truss As the plane is passed through the points H-C-A, there results vertical plane (see now FIG. 2) in which the segment of the truss H-A is fixed as to length and position while the boom structure 11 can rotate about the hinge point H between points B and D, for example.
  • the support means 12 as indicated heretofore, will be of variable length.
  • the line segments A-H and HD of FIG. 2 are used to form the moment diagram of FIG. 3. If the distance between points A and H is considered to be feet, and if the extension of the cable 15 were to intersect the line H-D 5 feet to the right of point H, a load of 4,000 pounds on the hook 14 would be compensated by a load of 4,000 pounds at point A normal to the line A-H because the opposite moments would be 20,000 ft. lbs. If this tilting moment of 20,000 ft. lbs. was considered to be the desired maximum tilting moment, the boom loading can be determined for other dispositions of the boom. For example, as shown in FIG. 3, the safe load would be 2,000 pounds at a 10 foot reach and 1,000 pounds at a foot reach. Thus, with a sensor at point A to limit the force to 4,000 pounds in a direction normal to line A-H, the proper boom loading can be insured regardless of the angle of the boom 11.
  • FIG. 4 shows a specific sensor and mounting means for the anchor point.
  • a rigid beam 16 is supported on the superstructure of the crane carrier 10 as a cantilever beam by rigidly fixing the lower end 17 to a portion 18 of the superstructure by means of the bolt 19 or any other suitable means.
  • the free end of the beam 16 is connected to a toggle member 20 which forms the lower end of the boom support 12 by means of the anchor pin A-I, the center of which is located at the anchor point A.
  • a switch 21 is mounted on the superstructure in any convenient manner (not shown) and is positioned adjacent the anchor point end of the beam 16 such that movement of the anchor point end of the beam will cause the switch to open, as will hereinafter appear, when the load on the beam 16 exceeds a predetermined value.
  • element 22 is a grounded terminal
  • contact 23 is mounted on the outer end of a spring arm 24 so that in the closed position as shown, the contact 23 bears against the grounded terminal 22.
  • the other end of the spring arm 24 is connected to a terminal post 25 which in turn connects with a conductor 26 leading to a motor or other control circuit (not shown).
  • the switch 21 is also provided with an outer lever arm 27 which is pivotally mounted interanlly of the switch at 28 and which is provided with a pin 29 which holds the spring arm 24 in the position shown.
  • screw 30 is threaded through the beam 16 and contacts the outer lever arm 27. This screw 30 can be adjusted so that the contact 23 will open when a predetermined force due to boom loading is reached.
  • the longitudinal center line of the beam 16 falls along the line between points A and H.
  • the deflection of the beam 16 would be sufficient to open the contact 23 and interrupt the circuit between the conductor 26 and the ground.
  • the outer end of the toggle 20 is provided with an adjusting screw 31 for a purpose which will hereinafter appear.
  • the adjusting screw 31 is incorporatedin the toggle 20 so that in the dotted line position of the toggle 20 shown in FIG. 4, the screw 31 will contact the switch lever arm 27 and push it to the left so that a greater deflection of the beam 16 will be required to open contacts 23.
  • the screw 31 can be adjusted so that the contact 23 will open before the safe structural load was exceeded.
  • the rigid arm 33 is not cantilever-supported as in the case of FIG. 4.
  • the arm 33 is pivotally connected to a portion 34 of the superstructure of the crane carrier 10 by means of the pin 32.
  • the outer end of the arm 33 is connected to the toggle 20 by means of the pin A-l whose center is the anchor point A.
  • the pin A-l is also connected to the hydraulic piston-cylinder unit 35 as will hereinafter appear.
  • the hydraulic piston-cylinder unit 35 is comprised of a cylinder 36 which is hinged at 37, the latter being connected to a fixed point on the superstructure by means of a pin (not shown).
  • Unit 35 also includes a piston 39 and an interconnecting piston rod 40 having an outer linkage 41 which engages the pin A-l.
  • the two fixed'points of the above linkage are 35 and 37.
  • the arm 33 has a longitudinal center line that is colinear with the line from A to H. Also, the unit 35 is so positioned that the central axis of the piston rod 40 is perpendicular to the line A-l-l.
  • Any force in the direction A-R will increase the pressure of the hydraulic fluid 42 which is contained within the cylinder 36. This increase in pressure will be transferred by the conduit 43 to any suitable measuring and control device (not shown) responsive to fluid pressure. These pressure-responsive devices would then preclude the function or functions which would overload the crane.
  • opening of the contact 23 could serve to remove power completely from the hoist motor and- /or the boom lift motor, or circuitry could be incorporated to merely disable the particular motor in the direction in which it was moving at the time the overload was reached.
  • additional controls will be provided to operate any function in a manner to decrease the tilting moment after the contact 23 has been opened. Similar considerations hold true for the hydraulic embodiment.
  • a hoisting apparatus having a superstructure, a boom pivotally supported on said superstructure at a hinge point spaced from the center of gravity of said hoisting apparatus, said boom being movable in a vertical plane about said hinge point, a variable length boom support means connected at one end to the free end of said boom and at its other end to an anchor adjacent said superstructure for moving said boom into different angular positions in said vertical plane, a rigid beam having a longitudinal center line substantially colinear with the line between said anchor point and said hinge point, said beam being pivotally connected at one end to said superstructure adjacent said anchor point, the other end of said beam extending free from said superstructure and being connected to said other end of said boom support means for constituting said anchoring point, hoisting means connected to free end of said boom for supporting a load therefrom, and sensing means mounted adjacent said anchor point and responsive to the deflection of said beam at the anchor point end thereof for sensing the force on said beam in a direction perpendicular to the line between said anchor point and said hinge point, said sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Jib Cranes (AREA)

Abstract

Apparatus for preventing the tipping over of cranes which includes a loading beam positioned colinear with the line extending from the hinge point of the boom to the anchor point of the boom support means, one end of the beam being connected to the frame, the other end of the beam constituting the anchor point, and means responsive to the deflection of the anchor end of the beam for limiting the tilting moment of the crane.

Description

O Tinned States Patent 1191 1111 3,871,528
Wilkinson Mar. 18, 1975 [54] LOAD CONTROL APPARATUS FOR 3,035.710 5/1962 Pohl .1 212/39 R X CRANES FOREIGN PATENTS OR APPLICATIONS [76] Inventor: Alvin l-l. Wilkinson, Post Office Box 1,255,263 11/1967 Germany 212/39 R 3808, Utica Square Station, Talala, Okla. 74152 Primary Examiner-Even C. Blunk Assistant Examiner]ose h E. Valenza 22 F1 1; 11 1971 P 1 l 6 May Attorney, Agent, or FirmWilliam S. Dorman [21] Appl. No.: 142,210
Related U.S. Application Data [57] ABSTRACT {62] Division ofSer. No 8463811115 31, 1969, Pat. No. Apparatus for Preventing the pp over of Cranes 1612394, which includes a loading beam positioned colinezir with the line extending from the hinge point of the [521 U.S. Cl 212/39 R boom to h an r p nt of the boom supp rt m ans, [51] Int. Cl. B66c 13/48 one end of the beam being connected to the frame, [58] Field of Search 212/39; 340/267 C h h r end of h m n i uting he anchor point, and means responsive to the deflection of the [56] References Cited anchor end of the beam for limiting the tilting moment UNITED STATES PATENTS of the crane' 1,857,172 5/1932 Wagner 212/39 R 1 Claim, Drawing Figures PATEN-IED um I 8 {97s SHEEIIN? mmu 0091 D mm 000v FIG. 7 I
ALVIN H. WILKINSON INVENTOR A 'ITORNE Y PAIEM WR 3,871,528
sum 2 [If 2 ALVIN H. WILKINSON I NVENTOR Mia/W A T TORNEY LOAD CONTROL APPARATUS FOR CRANES This application is a division of my co-pending application Ser. No. 846,387, filed July 31, 1969, now US. Pat. No. 3,612,294 issued Oct. 12, 1971.
The present invention relates to a safety device for preventing the tipping over of cranes or the like. More particularly, this invention involves means for sensing the pitching or tilting moment with means for preventing a further increase in the tilting moment beyond a predetermined value thereof.
The desirability of preventing cranes or the like from tipping over is well recognized. To this end, it is conventional to provide hoisting equipment with means for measuring the pitching moment with further means to prevent the pitching moment from exceeding a predetermined value as soon as that value is reached. However, the prior art teaches the use of rather complicated devices to accomplish this purpose. As will hereinafter appear, the present invention represents a simpler and more accurate method of determining and controlling the pitching moment.
Briefly stated, the present invention should be considered in terms of a crane having a boom pivotally supported thereon at what will be determined as a hinge point; a boom support means which is variable in length and which can be a cable or hydraulic cylinders will connect at its upper end to the free or crown end of the boom. The other end of the boom support means will connect to an anchor point on the superstructure of the crane. The hinge point, the crown point and the anchor point form a triangle. The plane of this triangle is a vertical plane in which the boom moves. In one form of the invention, a cantilever beam is located at the anchor point and, in fact, the free end of this cantilever beam actually becomes the anchor point. The beam is connected to the superstructure in such a manner that its longitudinal axis is colinear with the line connecting from the hinge point to the anchor point; by placing an electrical switch adjacent the anchor point and/or cantilever beam and by causing this switch to open or close, depending upon the deflection at the end of the beam, the tilting moment can be limited. In another form of the invention, the beam is pivotally connected to the superstructure of the crane but its longitudinal axis still falls along the line connecting between the hinge point and the anchor point; at the anchor point the beam is connected to one part of a hydraulic pistoncylinder combination and the other portion of the piston-cylinder combination is secured to the superstructure; in this instance, the deflection at the anchor point end of the beam will cause a change in hydraulic pressure within the piston-cylinder combination which can be used to control the tilting moment.
It is a principal object of the present invention to pro vide a safety device to prevent the tilting moment on a crane or the like from exceeding a predetermined value.
It is another object of the present invention to provide a safety device of the type referred to above which includes a rigid beam disposed along a line connecting between the hinge point and the anchor point, the outer end of the beam constituting the anchor point, with means responsive to the deflection of the anchor point end of the beam for limiting the tilting moment.
It is a further object of the present invention to provide a safety device of the type referred to above wherein the rigid beam is a cantilever beam, the free end of which is the anchor point with electrical switch means disposed adjacent the anchor point end of the beam for limiting the tilting moment.
It is a further object of the present invention to pro vide a safety device of the type referred to above which includes an additional safety means to prevent structural overload. 7
It is still a further object of the present invention to provide a safety device of the type referred to above wherein the rigid beam is pivotally connected to the superstructure wherein the other end of the beam is the anchor point, the anchor point being connected to one end of a piston-cylinder hydraulic unit, the other end of the hydraulic unit being connected to the superstructure with means responsive to the increase in pressure within the hydraulic unit as a result of the deflection of the anchor point end of the beam to limit the tilting moment.
Other and further objects and advantageous features of the present invention will hereinafter more fully appear in connection with a detailed description of the drawings in which:
FIG. 1 is a sembdiagrammatic view of a hoisting apparatus having a pivotal boom;
FIG. 2 is a diagram showing the plane of movement of the boom of FIG. 1 with respect to the hinge point and the anchor point;
FIG. 3 is an movement diagram;
FIG. 4 is an elevation of one form of a sensing and control device made in accordance with one embodiment of the present invention;
FIG. 5 is an end view of the switch and associated beam structure shown in FIG. 4; and
FIG. 6 shows a safety device which is a modified form of the present invention.
Referring to the drawings in detail, FIG. 1 shows a crane carrier 10 having a boom 11 connected to the superstructure of the apparatus at point H which will sometimes hereinafter be referred to as the hinge point. A boom support means 12, which is of variable length and which can constitute cables or hydraulic cylinders,
connects from the upper end of the boom at point C which will sometimes hereinafter be referred to as the crown point. The lower end of the boom support means. 12 connects with the superstructure at point A which will sometimes hereinafter be referred to as the anchor point. The center of gravity of the entire unit is indicated by the reference character G; to provide additional stability, Outriggers 13 are included.
As the boom support means 12 is shortened with relation to the diagram shown in FIG. 1, the boom 11 will be lifted to a more vertical position; conversely, as the boom support means is relatively lengthened, the boom 11 will be lowered to a more horizontal position with respect to FIG. 1. Details of the boom support means are not shown; in the event that the boom support means were a cable, a pulley or pulleys could be located on the crown end of the boom with an additional line (not shown) leading to a winch (not shown) mounted on the superstructure for varying the length of the boom support means 12. In the event that the boom support means 12 were hydraulic cylinders, obviously, hydraulic controls would be provided to permit an increase or decrease in the length of the boom support means.
In order to support a load from the end of the boom 11, there is provided a hook 14 which is connected to the outer end of a cable 15. The cable 15 passes around a pulley (not shown) located at the crown end of the boom 11 and a line leads from this pulley to a winch (not shown) on the hoisting apparatus for winding in or letting out the cable 15 and lifting or lowering the hook 14.
The hinge point H, the crown point C and the anchor point A form a triangle structure H-C-A commonly referred to as a truss. As the plane is passed through the points H-C-A, there results vertical plane (see now FIG. 2) in which the segment of the truss H-A is fixed as to length and position while the boom structure 11 can rotate about the hinge point H between points B and D, for example. The support means 12 as indicated heretofore, will be of variable length.
The line segments A-H and HD of FIG. 2 are used to form the moment diagram of FIG. 3. If the distance between points A and H is considered to be feet, and if the extension of the cable 15 were to intersect the line H-D 5 feet to the right of point H, a load of 4,000 pounds on the hook 14 would be compensated by a load of 4,000 pounds at point A normal to the line A-H because the opposite moments would be 20,000 ft. lbs. If this tilting moment of 20,000 ft. lbs. was considered to be the desired maximum tilting moment, the boom loading can be determined for other dispositions of the boom. For example, as shown in FIG. 3, the safe load would be 2,000 pounds at a 10 foot reach and 1,000 pounds at a foot reach. Thus, with a sensor at point A to limit the force to 4,000 pounds in a direction normal to line A-H, the proper boom loading can be insured regardless of the angle of the boom 11.
FIG. 4 shows a specific sensor and mounting means for the anchor point. A rigid beam 16 is supported on the superstructure of the crane carrier 10 as a cantilever beam by rigidly fixing the lower end 17 to a portion 18 of the superstructure by means of the bolt 19 or any other suitable means. The free end of the beam 16 is connected to a toggle member 20 which forms the lower end of the boom support 12 by means of the anchor pin A-I, the center of which is located at the anchor point A. A switch 21 is mounted on the superstructure in any convenient manner (not shown) and is positioned adjacent the anchor point end of the beam 16 such that movement of the anchor point end of the beam will cause the switch to open, as will hereinafter appear, when the load on the beam 16 exceeds a predetermined value. In the switch, element 22 is a grounded terminal, contact 23 is mounted on the outer end of a spring arm 24 so that in the closed position as shown, the contact 23 bears against the grounded terminal 22. The other end of the spring arm 24 is connected to a terminal post 25 which in turn connects with a conductor 26 leading to a motor or other control circuit (not shown). The switch 21 is also provided with an outer lever arm 27 which is pivotally mounted interanlly of the switch at 28 and which is provided with a pin 29 which holds the spring arm 24 in the position shown. A
screw 30 is threaded through the beam 16 and contacts the outer lever arm 27. This screw 30 can be adjusted so that the contact 23 will open when a predetermined force due to boom loading is reached.
It should be understood that the longitudinal center line of the beam 16 falls along the line between points A and H. Thus, assuming a desired maximum boom loadingof 20,000 ft. lbs., and, regardless of the angle of inclination of the boom 11, if the resulting force in the direction R on FIG. 4 exceeds 4,000 lbs, the deflection of the beam 16 would be sufficient to open the contact 23 and interrupt the circuit between the conductor 26 and the ground.
The outer end of the toggle 20 is provided with an adjusting screw 31 for a purpose which will hereinafter appear. In cases where the hook 14 were disposed to the left of the right-hand outrigger support 13, the tilting moments would'be negative in value. Therefore, the crane could lift loads restricted to the structural strength of the crane without danger of tilting. To provide for this greater load, the adjusting screw 31 is incorporatedin the toggle 20 so that in the dotted line position of the toggle 20 shown in FIG. 4, the screw 31 will contact the switch lever arm 27 and push it to the left so that a greater deflection of the beam 16 will be required to open contacts 23. The screw 31 can be adjusted so that the contact 23 will open before the safe structural load was exceeded.
In the embodiment shown in FIG. 6, the rigid arm 33 is not cantilever-supported as in the case of FIG. 4. The arm 33 is pivotally connected to a portion 34 of the superstructure of the crane carrier 10 by means of the pin 32. The outer end of the arm 33 is connected to the toggle 20 by means of the pin A-l whose center is the anchor point A. The pin A-l is also connected to the hydraulic piston-cylinder unit 35 as will hereinafter appear.
The hydraulic piston-cylinder unit 35 is comprised of a cylinder 36 which is hinged at 37, the latter being connected to a fixed point on the superstructure by means of a pin (not shown). Unit 35 also includes a piston 39 and an interconnecting piston rod 40 having an outer linkage 41 which engages the pin A-l. The two fixed'points of the above linkage are 35 and 37. The arm 33 has a longitudinal center line that is colinear with the line from A to H. Also, the unit 35 is so positioned that the central axis of the piston rod 40 is perpendicular to the line A-l-l.
Any force in the direction A-R will increase the pressure of the hydraulic fluid 42 which is contained within the cylinder 36. This increase in pressure will be transferred by the conduit 43 to any suitable measuring and control device (not shown) responsive to fluid pressure. These pressure-responsive devices would then preclude the function or functions which would overload the crane.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications, apart from those shown or suggested herein, may be made within the spirit and scope of this invention.
For example, opening of the contact 23 could serve to remove power completely from the hoist motor and- /or the boom lift motor, or circuitry could be incorporated to merely disable the particular motor in the direction in which it was moving at the time the overload was reached. In any event, it should be understood that additional controls will be provided to operate any function in a manner to decrease the tilting moment after the contact 23 has been opened. Similar considerations hold true for the hydraulic embodiment.
What is claimed is:
1. In a hoisting apparatus having a superstructure, a boom pivotally supported on said superstructure at a hinge point spaced from the center of gravity of said hoisting apparatus, said boom being movable in a vertical plane about said hinge point, a variable length boom support means connected at one end to the free end of said boom and at its other end to an anchor adjacent said superstructure for moving said boom into different angular positions in said vertical plane, a rigid beam having a longitudinal center line substantially colinear with the line between said anchor point and said hinge point, said beam being pivotally connected at one end to said superstructure adjacent said anchor point, the other end of said beam extending free from said superstructure and being connected to said other end of said boom support means for constituting said anchoring point, hoisting means connected to free end of said boom for supporting a load therefrom, and sensing means mounted adjacent said anchor point and responsive to the deflection of said beam at the anchor point end thereof for sensing the force on said beam in a direction perpendicular to the line between said anchor point and said hinge point, said sensing means including a hydraulic piston-cylinder unit, one end of said piston-cylinder unit being pivotally connected to the superstructure and the other end thereof being pivotally connected to the anchor point end of the beam and at substantially right angles thereto, whereby increased transverse movement of the anchor point end of the beam increases the fluid pressure within the pistoncylinder unit, and means responsive to an increase in pressure to a predetermined value to render inoperative the hoisting means for preventing further increase in the pitching moment.

Claims (1)

1. In a hoisting apparatus having a superstructure, a boom pivotally supported on said superstructure at a hinge point spaced from the center of gravity of said hoisting apparatus, said boom being movable in a vertical plane about said hinge point, a variable length boom support means connected at one end to the free end of said boom and at its other end to an anchor adjacent said superstructure for moving said boom into different angular positions in said vertical plane, a rigid beam having a longitudinal center line substantially colinear with the line between said anchor point and said hinge point, said beam being pivotally connected at one end to said superstructure adjacent said anchor point, the other end of said beam extending free from said superstructure and being connected to said other end of said boom support means for constituting said anchoring point, hoisting means connected to free end of said boom for supporting a load therefrom, and sensing means mounted adjacent said anchor point and responsive to the deflection of said beam at the anchor point end thereof for sensing the force on said beam in a direction perpendicular to the line between said anchor point and said hinge point, said sensing means including a hydraulic piston-cylinder unit, one end of said piston-cylinder unit being pivotally connected to the superstructure and the other end thereof being piVotally connected to the anchor point end of the beam and at substantially right angles thereto, whereby increased transverse movement of the anchor point end of the beam increases the fluid pressure within the piston-cylinder unit, and means responsive to an increase in pressure to a predetermined value to render inoperative the hoisting means for preventing further increase in the pitching moment.
US142210A 1969-07-31 1971-05-11 Load control apparatus for cranes Expired - Lifetime US3871528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US142210A US3871528A (en) 1969-07-31 1971-05-11 Load control apparatus for cranes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84638769A 1969-07-31 1969-07-31
US142210A US3871528A (en) 1969-07-31 1971-05-11 Load control apparatus for cranes

Publications (1)

Publication Number Publication Date
US3871528A true US3871528A (en) 1975-03-18

Family

ID=26839873

Family Applications (1)

Application Number Title Priority Date Filing Date
US142210A Expired - Lifetime US3871528A (en) 1969-07-31 1971-05-11 Load control apparatus for cranes

Country Status (1)

Country Link
US (1) US3871528A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678256A1 (en) * 1991-06-27 1992-12-31 Neotec Dev Device for controlling and limiting the tilting torque of a bracket, particularly for supporting a handling arm
ES2130075A1 (en) * 1997-06-05 1999-06-16 Munarriz Aldaz Alberto Load-control system for foldable-boom crane
US6991119B2 (en) 2002-03-18 2006-01-31 Jlg Industries, Inc. Measurement system and method for assessing lift vehicle stability
US7014054B2 (en) 2002-07-01 2006-03-21 Jlg Industries, Inc. Overturning moment measurement system
US20130140053A1 (en) * 2013-01-29 2013-06-06 Danuser Llc Post driver with limited movement floating post anvil
US20140014609A1 (en) * 2012-07-16 2014-01-16 Altec Industries, Inc. Hydraulic side load braking system
CN104528527A (en) * 2014-12-10 2015-04-22 中联重科股份有限公司 Deflection detecting system, method and device of suspension arm of engineering machinery and engineering machinery
US20170107681A1 (en) * 2014-03-19 2017-04-20 Movax Oy A hammering device
CN110888463A (en) * 2019-10-10 2020-03-17 内蒙古第一机械集团有限公司 Torque control method and system based on hydraulic loading device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1857172A (en) * 1928-12-07 1932-05-10 Koehring Co Safety mechanism for material handling machines
US3035710A (en) * 1958-06-11 1962-05-22 Hydrostahlbau Ges Wiese & Co Hydraulic whip drive for the overhang beam of a crane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1857172A (en) * 1928-12-07 1932-05-10 Koehring Co Safety mechanism for material handling machines
US3035710A (en) * 1958-06-11 1962-05-22 Hydrostahlbau Ges Wiese & Co Hydraulic whip drive for the overhang beam of a crane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678256A1 (en) * 1991-06-27 1992-12-31 Neotec Dev Device for controlling and limiting the tilting torque of a bracket, particularly for supporting a handling arm
ES2130075A1 (en) * 1997-06-05 1999-06-16 Munarriz Aldaz Alberto Load-control system for foldable-boom crane
US6991119B2 (en) 2002-03-18 2006-01-31 Jlg Industries, Inc. Measurement system and method for assessing lift vehicle stability
US7014054B2 (en) 2002-07-01 2006-03-21 Jlg Industries, Inc. Overturning moment measurement system
US20140014609A1 (en) * 2012-07-16 2014-01-16 Altec Industries, Inc. Hydraulic side load braking system
US9327946B2 (en) * 2012-07-16 2016-05-03 Altec Industries, Inc. Hydraulic side load braking system
US20130140053A1 (en) * 2013-01-29 2013-06-06 Danuser Llc Post driver with limited movement floating post anvil
US9416514B2 (en) * 2013-01-29 2016-08-16 Danuser Llc Post driver with limited movement floating post anvil
US20170107681A1 (en) * 2014-03-19 2017-04-20 Movax Oy A hammering device
US10557244B2 (en) * 2014-03-19 2020-02-11 Movax Oy Hammering device
CN104528527A (en) * 2014-12-10 2015-04-22 中联重科股份有限公司 Deflection detecting system, method and device of suspension arm of engineering machinery and engineering machinery
CN110888463A (en) * 2019-10-10 2020-03-17 内蒙古第一机械集团有限公司 Torque control method and system based on hydraulic loading device

Similar Documents

Publication Publication Date Title
US3680714A (en) Safety device for mobile cranes
US4648647A (en) Load handling apparatus
US3871528A (en) Load control apparatus for cranes
US3269560A (en) Safety control for cranes
US4003482A (en) Safety device for a crane
GB978765A (en) Improvements in or relating to slewing cranes
US3612294A (en) Load control apparatus for cranes
US4579504A (en) Crane for lifting device such as fork lift
US4471877A (en) Crane sensor to detect out of plumb lift cable
CN111217264A (en) Crane with a movable crane
US4861224A (en) Aerial lift including overload sensing system
GB2096097B (en) Telescopic jib cranes
US4567990A (en) Self-balancing crane
SE7613905L (en) DEVICE AT LOAD CRANES
US3072264A (en) Overload safety control apparatus for hoisting equipment
US3987906A (en) Apparatus for preventing the tilting of telescopic jib cranes
US3371800A (en) Safe load control device for cranes
US3530999A (en) Safety device for materials handling structures
US4363410A (en) Split topping lift gear
US3176854A (en) Boom suspension system
GB1103173A (en) Improvements in transportable tower cranes
GB1400585A (en) Inclinable articulated jib for hoisting and transporting loads in particular for cranes
KR890003879B1 (en) Ship's derrick crane
US3368695A (en) Device for hoisting loads, for example antennae on towers or masts
SU1572981A1 (en) Arrangement for checking vertically of tackle block of boom crane

Legal Events

Date Code Title Description
AS Assignment

Owner name: SECURITY PACIFIC BUSINESS CREDIT INC., TWO NORTH L

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AUTO CRANE COMPANY, AN OK CORP.;REEL/FRAME:005576/0359

Effective date: 19901011