US3870455A - Method for catalytically supported thermal combustion - Google Patents

Method for catalytically supported thermal combustion Download PDF

Info

Publication number
US3870455A
US3870455A US423096A US42309673A US3870455A US 3870455 A US3870455 A US 3870455A US 423096 A US423096 A US 423096A US 42309673 A US42309673 A US 42309673A US 3870455 A US3870455 A US 3870455A
Authority
US
United States
Prior art keywords
fuel
temperature
catalyst
composite
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US423096A
Other languages
English (en)
Inventor
Saul G Hindin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Engelhard Minerals and Chemicals Corp
Original Assignee
Engelhard Minerals and Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Minerals and Chemicals Corp filed Critical Engelhard Minerals and Chemicals Corp
Priority to US423096A priority Critical patent/US3870455A/en
Priority to FR7440045A priority patent/FR2253556B1/fr
Priority to JP49140385A priority patent/JPS50105536A/ja
Priority to AU76160/74A priority patent/AU500099B2/en
Priority to DE19742458219 priority patent/DE2458219A1/de
Priority to ES432717A priority patent/ES432717A1/es
Priority to BR10283/74A priority patent/BR7410283A/pt
Priority to CA215,697A priority patent/CA1042777A/en
Priority to IT54426/74A priority patent/IT1024368B/it
Priority to CH1629774A priority patent/CH613639A5/xx
Priority to SE7415423A priority patent/SE448348B/xx
Priority to AR256849A priority patent/AR223127A1/es
Priority to BE151363A priority patent/BE823187A/xx
Priority to GB5345974A priority patent/GB1474588A/en
Application granted granted Critical
Publication of US3870455A publication Critical patent/US3870455A/en
Priority to SE8005917A priority patent/SE8005917L/sv
Assigned to ENGELHARD CORPORATION reassignment ENGELHARD CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PHIBRO CORPORATION, A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium

Definitions

  • the catalytically-active materials include platinum group metal deposited on a catalytic slip or composite which contains a mixture of alumina, a rare earth metal oxide, and a metallic oxide wherein the metal is lVB, selected VIB metals, and mixtures thereof.
  • the slips or carrier compositions are calcined at a temperature of at least 850C. before deposition of platinum group metal and characterized by having a surface area of at least 20 m lg after calcination at a temperature of 1,200C. for 2 hours.
  • the present invention relates to catalyst compositions and methods for their preparation and use.
  • this invention relates to catalyst compositions characterized by high stability thereby maintaining good catalytic activity.
  • Catalyst compositions exhibit a relatively high surface area per unit weight to allow the largest amount of reactants to contact the catalyst. Additionally, high surface area is important when the catalyst composition contains a precious metal such as platinum because of the cost of the metal and because of the dispersion required to prevent undue metal crystallite growth. It is desirable to retain this high surface area for long periods of use under severe conditions which might include reaction temperatures of l,200C. or higher.
  • Alumina is an excellent and relatively economical carrier or support for many catalysts. Many crystalline forms of alumina, for example, chi, kappa, gamma, delta, eta, and theta, exhibit a very high surface area in relation to their weight.
  • a serious drawback of alumina as a catalyst carrier is its transition temperature of about l,O-l,200C. to the alpha form which results in a substantial reduction of the surface area. It is thus extremely desirable to stabilize aluminacontaining catalyst compositions based on high surface area aluminas to substantially prevent the transition to the low surface alpha form with a consequent loss in activity.
  • the catalyst composition of this invention includes a catalytically-active, calcined composite characterized by a surface area of at least square meters per gram (m /g) after calcination for two hours at a temperature of l,200C., said composite comprising or being a composite of alumina, a rare earth metal oxide and a metal oxide wherein the metal is selected from the group consisting of chromium, tungsten, a Group lVB metal and mixtures thereof.
  • the composite is first calcined at a temperature of at least 850C. and then a catalytically-effective amount of a platinum group metal is added to the composite.
  • a catalyst composition prepared in accordance with this invention exhibits high temperature stability and therefore catalytic activity in a number of high temperature reactions, particularly high temperature combustion reactions.
  • the composite is formed by the calcination of an intimate admixture of an aluminum compound, rare earth metal compound and at least one metal compound wherein the metal is selected from the group consisting of chromium, tungsten, a Group IVB metal and mixtures thereof.
  • the aluminum compound is alumina.
  • These compounds, as indicated, if not already in oxide form must be capable of forming or yielding their respective oxides upon calcination in air (oxygen) at a temperature of at least 850C.
  • the combination of the rare earth metal oxide and the other metal oxide or oxides may be considered as a high temperature stabilizing component for the alumina.
  • alumina to the metal oxide stabilizing component, that is, the rare earth metal oxide and oxides of the metals of the Group lVB metals and chromium and tungsten and/or mixtures of these compounds, are governed largely by empirical criteria. While it is not desired that this invention be limited by the following theory, a brief statement may provide a helpful framework to further elucidate the invention. It is thought that the addition of the stabilizing component to the alumina or alumina precursor and calcination of the mixture at a temperature of at least 850C. converts any of the non-oxide compounds to oxides and allows the stabilizing component oxides to enter the alumina lattice and prevent or substantially reduce subsequent transition to alpha alumina.
  • the terminology used to describe the metals herein, that is, the rare earth or lanthanide series and. the Group lVB metals, is the terminology used in association with the common long form of the Periodic Table of Elements.
  • the Group lVB metals are titanium, zirconium, and thorium hafnium, and the rare earth or lanthanide metals are metals of atomic number 57 to 71.
  • the catalyst composition may also contain a minor amount of other ingredients, up to about 5 percent by weight of the composite, which may serve as promoters, activators, or other purposes, for oxidation or reduction reactions.
  • Such ingredients may include, for example, manganese, vanadium, copper, iron, cobalt, and nickel usually as the metal oxide or sulfide.
  • the calcined composite may be formed to any de sired shape such as a powder, beads, or pellets. This shaping or fabricating is accomplished before calcination to promote particle adhesion. After calcination, a platinum group metal is added to the composite. Additionally, the composite can be applied or deposited on a relatively inert support or substrate and the platinum group metal then added, or the'catalyst composition can be applied or deposited onto the inert support.
  • the composite generally comprises about 50 to weight percent alumina, and about 2 to 25 weight percent of rare earth metal oxide, preferably about 5 to 15 weight percent, based on the total weight of composite.
  • the Group IVB metal may be oxide, if used alone with the rare earth metal oxide, may be present in about 2 to 25 weight percent of the composite, preferably about 5 to 15 weight percent, but if used in combination with chromium and/or tungsten oxide may be present in about 2 to 15 weight percent, preferably about 5 to 15 weight percent of the composite.
  • the Cr or W oxide maybe present in about 2 to 25 weight percent, preferably about 5 to 15 weight percent of the composite.
  • Mixtures of Group lVB metal oxides and chromium and/or tungsten oxides may be present in about 5 to 30 weight percent, preferably about 5 to 15 weight percent of the composite. If the amount of alumina is too low, the resulting .composite will not provide enough surface area to provide catalytic activity. If more alumina is present than stated, it may not be stabilized sufficiently and will lose surface area in the transition to the alpha form.
  • the stabilizing component it is necessary for the stabilizing component to be in intimate association with the alumina during precalcining.
  • An intimate admixture may be achieved, for example, by forming a slurry of alumina with water soluble compounds of the stabilizing components.
  • hydrated alumina such as aluminum trihydrate is admixed with aqueous solutions of a rare earth metal salt and at least one of the other metal salts of this invention to permit sorption of the stabilizing components by the alumina.
  • the solids are then recovered from the slurry and calcined to provide the mixed oxide composite.
  • the particulate alumina is preferably in finely divided or colloidal form to provide maximum sorption area.
  • finely divided freshly precipitated aluminum trihydrate having a particle size of 70 percent to 90 percent smaller than 325 mesh is use ful.
  • the sorption of the stabilizing components from solution and subsequent calcination will provide at least a stabilized outer portion of the alumina.
  • Another method of preparing intimate admixture of alumina and stabilizing components is to coprecipitate all of the components, including the alumina, from aqueous solutions. Various methods of coprecipitation are suitable.
  • Such methods include, for example, surface adsorption where one or more components in ionic form are sorbed on the surface of a precipitating solid; and inclusion, in which the coprecipitated compound or compounds have dimensions and a chemical composition which will fit into the crystal structure of a precipitating solid without causing appreciable distortion.
  • a suitable precipitant usually a base
  • a suitable precipitant is added to an aqueous solution of the compounds. This can also be done by concurrent addition of both the precipitant and the compound solution to a vessel containing water.
  • the precipitant is selected such that undesirable or unnecessary compounds are volatilizable and decomposable upon calcination at 850C. or above, or removable by washing or extraction.
  • the precipitant is capable of initiating and completing essentially simultaneous coprecipitation of the components.
  • Suitable precipitants are ammonium compounds such as ammonium hydroxide or ammonium carbonate as well as other hydroxides and carbonates of the alkali metals.
  • the precipitant may be in dilute or concentrated aqueous solution;
  • the rapidity of addition of the precipitant and the degree of agitation used will vary depending upon the precipitate desired. Dilute precipitant solutions, slow addition, and vigorous agitation generally favor a coarser precipitate.
  • the temperature during the addition of precipitant may be from about to 90C. Higher temperatures generally produce coarser precipitate.
  • the precipitant is added until a pH of about 5 to 9.0 is reached. At this time the coprecipitated mixture is recovered from the slurry, washed if desired, and digested or recrystallized if desired.
  • the intimate admixture of alumina and stabilizing components are calcined at a temperature of at least about 850C., preferably about 900 to 1200 C., but not at such a high temperature or for such a long period of time to unduly sinter the composite.
  • the conditions of the calcination are such as to provide a catalyticallyactive composite having a relatively high surface area of at least about square meters per gram, and preferably at least about 75. Calcination is preferably conducted while the admixture is unsupported and in freeflowing condition. This is preferable for economic reasons and to prevent undue sintering.
  • Calcination in air to form the composite, and prior to the addition of a platinum group metal, is an integral part. of the subject invention. It is found that an intimate admixture of the stabilizing components and the alumina is stable when calcined at such temperatures before any further preparative steps are preformed. Since both the alumina and the stabilizing components are intimately admixed, the concurrent heating in close association substantially reduces any undesirable alu mina transitions. Additionally, calcination before dc posit on an inert substrate promotes adhesion of the calcined composite to the substrate thus allowing the use of higher space velocities with the finished catalyst composition with less chance of erosion.
  • calcination substantially reduces the possibility of reaction of the stabilizing component and alumina component with the substrate. Any such reactions between the alumina and the substrate promotes the formation of inactive forms of alumina thereby reducing its surface area and activity. If the stabilizing component were to react with the substrate, it would reduce the effective amount of this component available for stabilization.
  • a further advantage of such calcination is economic because less heat in smaller furnaces is required to calcine the resulting powder composite before it is placed on an inert support. Further, it is essential that the calcination is conducted before the addition of a platinum group metal component to prevent loss of such component by occlusion.
  • Suitable aluminum-containing compounds are alumina, the gamma, eta, kappa, delta, and theta forms of alumina and for coprecipitation, the water soluble aluminum compounds such as salts, for example, the aluminum halides, aluminum nitrate, aluminum acetate. aluminum sulfate. earths.
  • the rare earth metal compounds which may be employed to produce the catalytic composite are, for example, the compounds of cerium, lanthanium, neodymium, samarium, praseodymium, and the like as well as commercially available mixtures of rare earthes.
  • the rare earth used is preferably cerium. If a mixture of rare earths is used, the mixture is preferably one in which cerium is the predominant component.
  • Suitable water soluble rare earth metal compounds include the acetates, halides, nitrates, sulfates, and the like, e.g., 2 s 2)s 's, 3)a, narc,rr,o;3,,sm no, and TmBr
  • the Group IVB metal oxides i.e., the oxides of titanium thorium zirconium, and hafnium, are added to the alumina in the form of their water soluble precursors.
  • water soluble lVB metal salts such as the nitrates, acetates, halides, and sulfates and the like might be employed.
  • Suitable water soluble compounds are Zr(NO ZrCl,, Zr(SO,) ZrOCL Ti C204)3, and
  • Water soluble compounds of chromium and tungsten which can be used are, for example, chromium acetate, chromium nitrate, chromium halides, chromium oxide (chromic acid), chromium oxalate, and complexes of chromium such as chloropentamine chromium chloride, tungsten halides, tungsten oxy-salts, such as tungsten dioxydichloride, ammomium tungstate, and the like.
  • a platinum group metal is added to the calcined composite to form the catalyst compositions of this invention, which are found to be effective for long time high temperature reactions. Such metals are usually added or incorporated in amounts sufficient to provide significant activity.
  • the platinum group metals useful are platinum, ruthenium, palladium, iridium, and rhodium. The choice of metal, metal combinations or alloys is governed largely by activity, specificity, volatility, deactivation by specific components included with the reactants, and economics.
  • the quantity of platinum group metal added to the calcined composite depends first on design requirements such as activity and life and second on economics. Theoretically, the maximum amount of such metal is enough to cover the maximum amount of surface available without causing undue metal crystallite growth and loss of activity during use. Two major competing phenomena are involved in such surface treatment. It is desirable to completely cover the substrate surface to provide the greatest amount of platinum group metal coverage, thereby obtaining maximum activity, but if the surface were to be completely covered, such coverage would promote growth between adjacent crystallites, which growth would then decrease the surface area and greatly reduce activity. A balance of maximum coverage coupled with proper dispersion thus must be achieved to formulate a practical catalyst. An ancillary consideration in relation to the amount of platinum group metal is the allowable size of the catalyst housing.
  • the amount of platinum group metal component used is preferably increased within the above-described limits.
  • the allowable size is relatively small, especially if unitary honeycomb type supports are used and a higher loading may be desirable.
  • Economics dictates the use of the least amount of platinum group metal component possible while accomplishing the main objective of promoting the reaction.
  • the amount of platinum group metal used is a minor portion of the catalyst composite and typically does not exceed about weight percent of the calcined composite.
  • the amount maybe about 0.1 to 20 percent and is perferably about 0.2 to 10 percent to economically maintain good activity with prolonged use. These percentages are based on the weight of the calcined composite. If the composite is used on an inert substrate, the composite may be, for example, about 10 percent of the weight of the substrate and the percent weight of platinum group metal in relation to the total weight of substrate and composite will be correspondingly less.
  • various compounds and/or complexes as well as elemental dispersions of any of the platinum group metals may be used to achieve deposition of the metal on the composite.
  • Water soluble platinum group metal compounds or complexes may be used.
  • the platinum group metal may be precipitated from solution, for example, as a sulfide by contact with hydrogen sulfide.
  • the only limitation on the carrier liquids is that the liquids should not react with the platinum group metal compound and be removable by volatilization of decomposition upon subsequent heating and/or vacuum, which may be accomplished as part of the preparation or in the use of the completed catalyst composition.
  • Suitable platinum group metal compounds are, for example, chloroplatinic acid, potassium platinum chloride, ammonium platinum thiocyanate, platinum tetrammine hydroxide,
  • platinum group metal chlorides, oxides, sulfides, and nitrates platinum tetrammine chloride, palladium tetrammine chloride, sodium palladium chloride, hexammine rhodium chloride, and hexammine iridium chloride.
  • the platinum and palladium may be in water soluble form, for example, as amine hydroxides or they may be present as chloroplatinic acid and palladium nitrate when used in preparing the catalyst of the present invention.
  • the platinum group metal may be present in the catalyst composition in elemental or combined forms, e.g., as an oxide or sulfide. During subsequent treatment such as by calcining or upon use, essentially all of the platinum group metal is converted to the elemental form.
  • the catalyst compositions of this invention preferably have a relatively catalytically inert support or substrate.
  • the supports which can be employed in this invention are preferably unitary, skeletal structures of relatively large size, e.g., honeycombs. However, smaller particle forms may be used, e.g., pellets or spheres. The size of these pellets can be altered depending upon the system, its design and operating parameters in which they are to be used, but may range from about one sixty-fourth to one half inch, preferably one thirty-second to one fourth-inch, in diameter; and their lengths are about one sixty-fourth to one inch, preferably about one thirty-second to onefourth inch.
  • the calcined composite is generally present in a minor amount of the total catalyst composition, which is usually about 2 to 30 weight percent preferably about 5 to 20 weight percent, based on the total weight of the composite and support.
  • the amount used depends on economics, size limitations, and design characteristics.
  • These supports whether of the unitary-skeletal type or pellets are preferably constructed of a substantially inert, rigid material capable of maintaining its shape and strength at high temperatures, for example, up to about l800C.
  • the support typically has a low thermal coefficient of expansion, good thermal shock resistance, and low thermal conductivity. While a support having a porous surface is preferred, the surface may be relatively non-porous, but in such event it is desirable to toughen the surface to improve adhesion of deposited compositions.
  • the support may be metallic or ceramic in nature or a combination thereof.
  • the preferred supports are composed primarily of refractory metal oxide including combined oxide forms, e.g., aluminosilicates.
  • Suitable support materials include cordierite, cordierite-alpha alumina, silicon nitride, silicon carbide, zircon-mullite, spodumene, alumina-silica-magnesia, and zirconium silicate.
  • suitable refractory ceramic materials are sillimanite, magnesium silicates, zircon, petalite, alpha-alumina, and aluminosilicates.
  • the support may be a glass ceramic, it is preferably unglazed and may be essentially entirely crystalline in form and marked by the absence of any significant amount of glassy or amorphous matrices. Further, the structure may have considerably accessible porosity, preferably having a water pore volume of at least about 10 percent. Such supports are described in US. Pat. No. 3,565,830, herein incorporated by reference.
  • the geometric, superficial, or apparent surface area of the skeletal or honeycomb type supports, including the walls of the gas flow channels is generally about 0.5 to 6, and preferably 1 to 5, square meters per liter of support. This surface area is sufficient for deposition of a satisfactory quantity of the composite or the finished catalyst composition
  • the plurality of channels about 100 to 2500, preferably 150 to 500 per square inch of cross-sectional area, may be distributed across the entire face of the structure and frequently they define an open area in excess of 60 percent of the total area of the support.
  • the walls must be thick enough to provide rigidity and integrity to the structure while maintaining good apparent surface area. The wall thickness is thus in the range of about 2 to 25 mils.
  • the flow channels can be of any shape and size consistent with the desired superficial surface area and should be large enough to permit relatively free passage of the gaseous reaction mixture; preferably the length of the channels is at least about 0.1 inch to insure sufficient contact or residence time to cause the desired reaction.
  • the channels are generally parallel, they may be multidirectional and may communicate with one or more adjacent channels.
  • an aqueous slurry of the essentially water insoluble calcined composite of alumina and stabilizing component is contacted with the support.
  • the solid content of the slurry forms an adherent deposit on the support, and the resulting supported composite is dried or calcined for a second time at a temperature which provides a relatively catalytically-active product.
  • the second drying or calcination takes place at a temperature low enough to prevent undue sintering of the mixture.
  • Suitable calcination temperatures are generally about 300-700C. to insure catalytic activity without undue sintering, preferably about 400600C.
  • thee coating on the support has a surface area of at least about 75 s.m.p.g. Lower temperatures can be employed to dry the composite if the second calcination is not performed.
  • a platinum group metal component is added to enhance the catalytic activity of the composite.
  • the platinum group metal may be added to the coated support in the manner previously described. Preferably, this addition is made from an aqueous or other solution to impregnate or deposit the platinum group metal component on the coated support.
  • the resulting structure is dried and may be calcined for a third time under conditions which provide a composition having characteristics that enhance selected reactions.
  • This final calcination stabilizes the completed catalyst composition so that during the initial stages of use, the activity of the catalyst is not materially altered.
  • the temperature of this final calcination must be low enough to prevent substantial sintering of the underlying coating which would cause substantial occlusion of the platinum group metal component.
  • the calcination may be conducted at temperatures of about 300-700C., preferably about 400600C.
  • An alternative method of making the catalyst compositions of this invention if a relatively inert support is used involves adding the platinum group metal compo nent to the calcined composite before the composite is deposited on the support.
  • an aqueous slurry of the calcined composite can be prepared and the platinum group metal component added to the slurry and mixed intimately therewith.
  • the platinum group metal component can be in the form already described and may be precipitated as previously described.
  • the final mixture containing the platinum group metal may then be dried or calcined to provide a catalytically-active composition in a form suitable for deposition on a support or for use without such deposition as a finished catalyst in either finely divided or macrosize forms. Subsequent calcinations or drying may be conducted as described above.
  • the calcined material generally has a surface area of at least about 25 s.m.p.g., preferably at least about s.m.p.g.
  • a stabilized CeO ZrO and A1 0 composite slip is prepared by dissolving 17.82 grams of cerium nitrate and 14.41 grams of zirconyl nitrate in 628 ml H O to form a totalvolume of 632.5 ml. 275 grams of activated A1 0 powder is stirred into the solution with constant agitation for 10 minutes. The total solution is then evaporated to dryness under heat and with agitation. transferred to a drying oven at C., and dried overnight. The dried solids are ground to less than 20 mesh and calcined at 970C. for one hour.
  • EXAMPLE [I 186 grams of the calcined powder from EXAMPLE [are mixed with 286 ml. H 0 and 13.9 ml. conc. HNO and ball-milled for 19 hours at 68 RPM in a U. S. Stoneware l-gallon mill jar. 330 ml. of the resulting slip having a density of 1.4 g/cc and a pH of 4.45 are diluted with 30 ml of water to a viscosity of about 68 cps. A 20 cubic inch cordierite honeycomb having about 250 parallel gas passages per square inch of cross-sectional area is dipped into this diluted slip, drained, blown with air, dried at 120C. for 2 /2 hours, and calcined at 500C. for 2 hours. The adherent composite makes up approximately 17 weight percent of the coated honeycomb.
  • EXAMPLE Ill A honeycomb, coated with a ceria-zirconia-alumina composite sllip is prepared as in EXAMPLE 11. The coated honeycomb is then dipped into about 420 ml. of a solution containing both H PtCl and Na PdCl concentrations of each being such that there is theoretically 0.9 percent by weight of solution and 0.3 percent Pd by weight of solution. After standing for 10 minutes with intermittent raising and lowering of the honeycomb into the solution, the honeycomb is withdrawn from the solution, drained, and excess solution blown off. The honeycomb is then treated with gaseous hydrogen sulfide for 15 minutes, and washed chloride-free using deionized water. The resulting impregnated honeycomb is dried overnight at 110C., and calcined in flowing air for 2 hours at 500C. The finished catalyst contains about 0.4 weight percent Pt and 0.1 weight percent Pd.
  • a zircon-mullite honeycomb is coated with a composite slip containing Cr O Ce and A1 0 and then impregnated with Pt using the ammine hydroxide as the platinum source.
  • 1,200 g. of activated alumina powder is slurried in a mixer with a solution prepared by dissolving 1263 g, Cr(NO .9H O and 691 g. Ce(NO .61-l O in 156 ml. H O at 75C.
  • a further 240 ml. of H 0 is slowly added and the whole mixed for one-half hour. At the end of this time, the mass is uniform in appearance and dark green.
  • the mass is then dried at 1 C., resulting large lumps are crushed, and the material is then dried for 16 hours at this temperature. After drying, the solids are crushed and screened to less than 40 mesh, and the powder is calcined for 4 hours at 1,000C. 350 g. of the powder is charged to a one-half gallon ball mill, and 350 ml. H 0, 7 ml. conc. HNO and ceramic balls are added. The mill is rolled for 16 hours at 99 RPM. The pH of the slurry is 3.7 300 ml. of the slurry are diluted with 100 ml. H O containing 1 ml. conc.
  • HNO A zirconmullite honeycomb, from American Lava Corporation, with about 100 flow paths per square inch of crosssection, is dipped in the diluted slip and held for 1 minute, then withdrawn and blown with air to remove excess slip.
  • the honeycomb is dried 16 hours at 110C., and then calcined for 2 hours at 1,000C.
  • the cooled honeycomb shows a pickup of 16.7 weight per cent composite slip which has a composition of approximately 70 percent by weight alulmina, 14 percent by weight chromia, and 16 percent by weight ceria.
  • the coated honeycomb is then dipped in an aqueous solution ofplatinum tetrammine hydroxide, having 0.435 g. platinum in 184 ml. of solution for 1 minute, then the excess blown off and the catalyst dried at 1 10C. After drying, the honeycomb is calcined for 2 at 400C.
  • the final honeycomb contains nominally 0.5 weight percent Pt.
  • EXAMPLE V A zircon-mullite honeycomb is coated with a composite conntaining Cr O CeO and A1 0 and impregnated with Pd using the ammine hydroxide.
  • This catalyst is prepared exactly as the catalyst of Example IV except that instead of Pt, the slip-coated honeycomb is dipped in a palladium tetrammine hydroxide solution, yielding a final honeycomb containing, nominally, 0.5 weight percent Pd.
  • EXAMPLE VI An alpha-alumina honeycomb is coated with a composition prepared by ball-milling a ceria-chromiaalumina powder with a palladium nitrate solution.
  • a ceria-chromia-alumina powder was prepared and calcined as in Example IV, except that instead of milling the powder and depositing it on a hoenycomb for subsequent platinum group metal deposition, a different procedure is used.
  • the powder is ball-milled with a solution of Pd (NO in distilled water for 17 hours at 114 RPM. It is then diluted with an equal volume of 1 percent (conc,) l-lNO in water, and this diluted slip is used to dip an alpha-alumina honeycomb having 17 corrugations/inch. After blowing off the excess slurry, the honeycomb is dried at C., then is calcined 2 hours at 500C. 7.4 weight percent slip is taken up. The coated block is again dipped in a freshly prepared slurry of composite, prepared as above. After drying and calcining, weighting shows the block contains 12.0 weight percent slip, and 0.21 weight percent Pd.
  • a ceria-chromia-zirconia-alumina composite is prepared by dissolving 22.95 g. of cerium nitrate, 18.56 g. of zirconyl nitrate, and 47.92 g. of chromium nitrate in 587.5 mi. H O for a final volume of 632.5 ml., and 275 g. of activated alumina powder is added to the solution with constant agitation for 10 minutes. The slurry is then evaporated to dryness with heat and agitation, transferred to a drying oven at C., and then dried overnight. The dried solids are ground to less than 20 mesh and calcined at 970C. for 1 hour.
  • EXAMPLE Vlll 191 g. of a ceria-chromia-zirconia-alumina composite as prepared in EXAMPLE V11 is transferred to a 1 qt. ball mill jar containing 665 g. of stones. 191 cc H O plus 14.4 conc. HNO is then added. The whole is then ball-milled for 19 hours at 66 RPM. The slurry is poured out, diluted with 40 m1. of water to a viscosity of 15 cps, and then used to coat the same type of honeycomb as in EXAMPLE IV and by the same procedure. The catalyst so prepared, after. calcination at 500C., contains 13 weight percent composite on the total weight of coated honeycomb.
  • EXAMPLE 1X A composite is prepared containing a commercial rare earth mixture, chromia, and alumina. 14.87 grams of a mixture of rare earth nitrates is used. The composition converted to the theoretical oxide content is as follows: Ce0 48%; La O 24%; Nd O 17%; Pr O 5%; Sm O 3%; Gd O 2%; Y O 0.2%; others 0.8%. The rare earth mixture and 3.95 grams of O0, are dissolved in water and diluted to 80.3 ml. 51 grams of alumina having a surface area of 300 m lg after grinding is added to the solution with agitation for 5 minutes.
  • the slurry is transferred to an evaporating dish, dried with agitation for one hour under an infrared lamp, transferred to an oven and dried at 1 10C. overnight.
  • the dried mixture weighed 65.1 grams containing 10 percent by weight rare earth oxide mixture, 5 percent by weight chromia, and 85 percent by weight alumina.
  • the mixture is crushed to a powder and a 5 gram portion is calcined at 1,200C. for 4 hours.
  • the surface area of the calcined powder is 43.7 mlg.
  • EXAMPLE X A 1 inch X 3 inch zircon mullite honeycomb having 12 corrugations per inch is coated with a composite prepared as in EXAMPLE 1X except a two kilogram batch is prepared and chromium nitrate is used in place of CrO After the dried powder is pulverized, it is calcined at 1,000C. for 4 hours to form a composite. 240 grams of the composite is added to a 1 A gallon ball mill with about 10 pounds of stones. 432 ml. of water and 18 ml. concentrated nitric acid are added; the slurry is milled for 17 hours and cooled at 25C. The slurry has a density of 1.49 grams per cubic centimeter and a viscosity of 12 cps.
  • nitric acid 1 percent nitric acid is added to a density of 1.38 grams per cubic centimeter.
  • the slurry is then placed in a container and stirred continuously.
  • the honeycomb is immersed in the slurry, blown dry and dried at 110C. overnight.
  • the coated honeycomplete addition of the nitrate solution it is found Representative compositions prepared by the same methods as set forth in the Examples and results obtained after calcination at 1,200C are reported in comb is calcined for 2 hours at 500C. and weighed. TABLE 1.
  • the honeycomb picks up 15.3 percent composite on 40 EXAMPLE XI A composite is prepared by coprecipitation.
  • the composition is the same as that in EXAMPLE X, i.e., 10 percent of a rare earth oxide mixture, 5 percent chromia, and 85 percent alumina.
  • 187.7 grams of aluminum nitrate, 7.4 grams of the same rare earth nitrate mixture used in EXAMPLE IX, and 7.9 grams of chromium nitrate are dissolved in series in one liter of water and the solution transferred to a dropping funnel.
  • a second solution was prepared containing 400 m1. of ammonium hydroxide (28.3% NH and 1,600 ml. water and transferred to a dropping funnel. 2,000 ml.
  • the catalytic com positions are particularly useful when employed with the high temperature oxidation of carbonaceous fuels. For example, they may be used advantageously in a method employing a catalytically-supported thermal combustion of carbonaceous fuel, as more fully described in co-pending application Ser. No. 358,411, filed May 8, 1973, of W. C.
  • This method includes the essentially adiabatic combustion of at least a portion of a carbonaceous fuel admixed with air in the presence of a catalytic composition of this invention at an operating temperature substantially above the instantaneous autoignition temperature of the fuel-air admixture but below a temperature that would result in any substantial formation of oxides of nitrogen.
  • Flammable mixtures of most fuels with air are normally such as to burn at relatively high temperatures, i.e., about 3,300F. and above, which inherently results in the formation of substantial amounts of nitrogen oxides or NO,. However, little or no NO, is formed in a system which burns the fuel catalytically at relatively low temperatures.
  • reaction rate then passes through a transition zone where the limiting parameters determining reaction rate shift from catalytic to mass transfer.
  • the reaction shifts to mass transfer control, and the observed reaction rate changes much less with further temperature increases.
  • the reaction is then said to be mass transfer limited. in mass transfer controlled catalytic reactions, one cannot distinguish between a more active catalyst and a less active catalyst because the intrinsic catalyst activity is not determinative of the rate of reaction. Regardless of any increase in catalytic activity above that required for mass transfer control, a greater catalytic conversion rate cannot be achieved for the same set of conditions.
  • instantaneous auto-ignition temperature for a fuel-air admixture as used herein and in the appended elaims is defined to mean that the ignition lag of the fuel-air mixture entering the catalyst is negligible relative to the residence time in the combustion zone of the mixture undergoing combustion.
  • This method can employ an amount of fuel equiva lent in heating value of about 300-1 ,000 pounds of propane per hour per cubic foot of catalyst.
  • the adiabatic flame temperature of fuel-air admixtures at any set of conditions is established by the ratio of fuel to air.
  • the admixtures utilized are generally within the inflammable range or are fuel-lean outside of the inflammable range, but there may be instances of a fuel-air admixture having no clearly defined inflammable range but nevertheless having a theoretical adiabatic flame temperature within the operating conditions of the invention.
  • the proportions of the fuel and air charged to the combustion zone are typically such that there is a stoichiometric excess of oxygen based on complete conversion ofthe fuel to carbon dioxide and water.
  • the free oxygen content is at least about 1.5 times the stoichiometric amount needed for complete combustion of the fuel.
  • the method is described with particularity to air as the non-fuel component, it is well understood that oxygen is the required element to support proper combustion.
  • the oxygen content of the non-fuel component can be varied and the term air" as used herein refers to the non-fuel components ofthe admixtures.
  • the fuel-air admixture fed to the combustion zone may have as low as 10 percent free oxygen by volume or less, which may occur, for example, upon utilization as a source of oxygen ofa waste stream wherein a portion of this oxygen has been reacted.
  • the weight ratio of air to fuel charged to the combustion system is often above about 3():l and some turbines are designed for air-to-fuel ratios of up to about 200 or morezl.
  • the carbonaceous fuels may be gaseous or liquid at normal temperature and pressure.
  • Suitable hydrocarbon fuels may include, for example, low molecular weight aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane; gasoline; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, xylene; naphtha; diesel fuel; jet fuel; other middle distillate fuels; hydrotreated heavier fuels; and the like.
  • the other useful carbonaceous fuels are alcohols such as methanol, ethanol, isopropanol; ethers such as diethylether and aromatic ethers such as ethylphenyl ether; and carbon monoxide.
  • fuel-air admixtures with adiabatic flame temperatures within the range specified herein may be either fuel rich or fuel lean. Where fuel rich mixtures are utilized, additional air or fuel-air admixture may be added to the catalyst zone effluent to provide an overall excess of air for complete combustion of fuel components to carbon dioxide and water. As stated previously, thermal reactions continue beyond the catalyst zone, provided the effluent temperature is substantially above the instantaneous auto-ignition temperature.
  • the fuel-air admixture is generally passed to the catalyst in the combustion zone at a gas velocity prior to or at the inlet to the catalyst in excess of the maximum flame propagating velocity. This may be accomplished by increasing the air flow or by proper design of the inlet to a combustion chamber, e.g., restricting the size of the orifice. This avoids flashback that causes the formation of NO,. Preferably, this velocity is maintained adjacent to the catalyst inlet. Suitable linear gas velocities are usually above about three feet per second, but it should be understood that considerably higher velocities may be required depending upon such factors as temperature, pressure, and composition. At least a significant portion of the combustion occurs in the catalytic zone and may be essentially flameless.
  • the carbonaceous fuel which when burned with a stoichiometric amount of air (atmospheric composition) at the combustion inlet temperature usually has an adiabatic flame temperature of at least about 3.300F., is combusted essentially adiabatieally in the catalyst zone.
  • the instantaneous auto-ignition temperature of a typical fuel may be below about 2,000F.
  • stable, adiabatic combustion of the fuel below about 3,300F. is extremely difficult to achieve in practical primary combustion systems. It is for this reason that even with gas turbines limited to operating temperatures of 2,000F., the primary combustion is typically at temperatures in excess of 4,000F.
  • combustion in this method is characterized by using a fuel-air admixture, having an adiabatic flame temperature substantially above the instantaneous auto-ignition temperature of the admixture but below a temperature that would result in any substantial formation of NO;.
  • the limits ofthis adiabatic flame temperature are governed largely by residence time and pressure.
  • adiabatic flame temperatures of the admixtures are in the range of about 1,700F. to 3,200F., and preferably are about 2.000F. to 3,000F. Operating at a temperature much in excess of 3,200F. results in the significant formation of NO, even at short contact times; this derogates from the advantages of this invention vis-a-vis a conventional thermal system.
  • a higher temperature within the defined range is desirable, however, because the system will require less catalyst and thermal reactions are an order of magnitude or more faster, but the adiabatic flame temperature employed can depend on such factors as the desired composition of the effluent and the overall design of the system. It thus will be observed that a fuel which would ordinarily burn at such a high temperature as to form NO, is successfully combusted within the defined temperature range without significant formation of NO,.
  • the catalyst used in this method generally operates at a temperature approximating the theoretical adiabatic flame temperature of the fuel-air admixture charged to the combustion zone.
  • the entire catalyst may not be at these temperatures, but preferably a major portion or essentially all, of the catalyst surface is at such operating temperatures. These temperatures are usually in the range of about 1,700-3,200F., preferably about 2,000F. to about 3,000F.
  • the temperature of the catalyst zone is controlled by controlling the combustion of the fuel-air admixture, i.e., adiabatic flame temperature, as well as the uniformity of the mixture. Relatively higher energy fuels can be admixed with larger amounts of air in order to maintain the desired temperature in a combustion zone. At the higher end of the temperature range, shorter residence times of the gas in the combustion zone appear to be desirable in order to lessen the chance of forming NO,..
  • the residence time is governed largely by temperature. pressure, and space throughput; and generally is measured in milliseconds.
  • the residence time of the gases in the catalytic combustion zone and any subsequent thermal combustion zone may be below about 0.1 second, preferably below about 0.05 second.
  • the gas space velocity may often be, for example, in the range of about 0.5 to 10 or more million cubic feet of total gas (standard temperature and pressure) per cubic foot of total combustion zone per hour.
  • typical residence times could be about 30 milliseconds or less; whereas in an automotive turbine engine burining gasoline, the typical residence time may be about 5 milliseconds or less.
  • the total residence time in the combustion system should be sufficient to provide essentially complete combustion of the fuel,-but no so long as to result in th formation of NO,.
  • a method employing the catalyst of the present invention is exemplified in a series of runs in which the fuel is essentially completely combusted, and a low emissions effluent produced.
  • the combustion system comprises a source of preheated air supplied under pressure. A portion of the air is passed through a pipe to the combustion zone, and the remainder is used to cool and dilute the combustion effluent. Unleaded gasoline fuel is atomized into the air passing to the combustion zone countercurrcnt to the air flow to insure intimate mixing.
  • the catalyst is of the monolithic, honeycomb-type having a nominal 6-inch diam eter and is disposed within a metal housing as two separate pieces each having parallel flow channels 2% inches in length extending therethrough. There is a small space of about 141 inch between these pieces. Both pieces of catalyst have approximately flow channels per square inch of cross-section with the walls of the channels having a thickness of 10 mils.
  • the catalysts have similar compositions and are composed of a zircon mullite honeycomb support which carries a composite coating of alumina, chromia, and ceria containing palladium.
  • the catalyst for these runs is made by slurrying 2,400 grams of activated alumina powder, less than 40 mesh in size, in a mixer with a solution prepared by dissolving 2526 grams Cr(NO .9H O and 1,382 grams Ce(- NO .6H O in 890 ml. H O. The mixture is dried at 120C. over a weekend. The dried solids are crushed and screened to less than 40 mesh, and then the powder is calcined for four hours at 1,000C. to form the composite of this invention. 3,200 grams of the composite is charged to a 3.4 gallon ball mill along with 3,200 ml. H 0 and 145.4 grams of palladium nitrate. The mill is rolled for .17 hours at 54 RPM.
  • the resulting slurry has a density of 1.63 grams per ml., 21 pH of 4.20 and a viscosity of 12 centiposes.
  • 1625 grams of the as-recovered slurry are diluted with 1,180 ml. of a 1 percent nitric acid solution.
  • the zircon mullite honeycomb is dipped in the diluted slurry and held for one minute, and then withdrawn from the slip and blown with air to remove the excess.
  • the coated honeycomb is dried for 16 hours at C. and then calcined for 2 hours at 500C.
  • the honeycomb is cooled, and showed a pickup of 11.0 weight percent composition.
  • the upstream or initial catalyst in the housing has a catalytic coating which comprises 13.9 weight percent of the catalyst.
  • This coating is 70 weight percent alumina, 14 weight percent Cr O and 16 weight percent CeO based on these components.
  • the catalyst also contains 0.23 weight percent palladium (calculated) disposed in the composite.
  • the subsequent-in-line catalyst has a similar coating of alumina, ceria, and chromia which is 1 1.0 weight percent of the catalyst.
  • the catalyst also contains 0.18 weight percent palladium (calculated) disposed in the coating.
  • the catalysts are brought to reaction temperature by contact with preheated air, and subsequent contact with the air-fuel mixture which causes combustion and raised the catalyst temperature further.
  • the results obtained using this system during two periods of operation in accordance with the present invention are reported in TABLE 11 below as Runs A and B, respectively.
  • the catalysts have zircon mullite honeycomb supports and the initial catalyst has about 600 parallel gas flow channels per square inch of cross-section, while the second catalyst has about 100 channels per square inch.
  • the gas flow path length of the first catalyst is two 15 inches and of the second catalyst is one inch.
  • the free space between the catalysts is 1 inches in the direction of gas flow.
  • the catalysts are nominally 6 inches in diameter and are made as described above for the catalysts used in Runs A and B. Both catalysts contain a composite coating comprising 70 weight percent alumina, 16 weight percent C602 and 14 weight persent Cr O based on these components.
  • the composite coating for the initial catalyst comprises 13.5 weight percent along with 0.26 weight percent palladium dispersed in the composite, and the composite coating for the second catalyst is 15.5 weight percent having 0.25 weight percent palladium dispersed in it.
  • the feeds generally are materials which are subject to oxidation and contain carbon, and may, therefore, be termed carbonaceous, whether they are organic or inorganic in character.
  • the catalysts of this invention are particularly useful in promoting the oxidation of hydrocarbons, oxygen-containing organic components, for example, aldehydes, organic acids, and other intermediate products of combustion, such as carbon monoxide, and the like.
  • oxidation can be accomplished by contacting the gas stream with the catalyst and molecular or free oxygen.
  • the oxygen may be present in the gas stream as part of the effluent, or may be added as air or in some other desired form having a greater or lesser oxygen concentration.
  • the products from such oxidation contain a greater weight ratio of oxygen to carbon than in the material subjected to oxidation and in the case of exhaust purification these final oxidation products are much less harmful than the partially oxidized materials. Many such reaction systems are known in the art.
  • the catalysts of this invention can also be used for selected oxidation reactions at lower temperatures. In a typical oxidation they can be employed to promote the reaction of various chemical feedstocks by contactperature that would result in any substantial formation of oxides of nitrogen comprising: contacting said fuelair admixture with an oxidation catalyst having a surface area of at least 20 m /g after calcination for 2 ing the feedstock or compound with the catalyst in the hours at 1,200C. consisting essentially of (a) a presence of free oxygen preferably molecular oxygen.
  • a method as defined in claim 1 said composite consisting essentially of about 50 to 95 weight percent alumina. 2 to 25 weight percent ceria, and 2 to 25 weight percent chromia.
  • a method as defined in claim 1 further comprising depositing said composite on a relatively inert substrate to form a coating thereon prior to said platinum group metal addition.
  • platinum group metal is selected from the group consisting of platinum, palladium, platinum-palladium alloys, and mixtures thereof.
  • a method for the essentially adiabatic combustion of an intimate admixture comprising carbonaceous fuel in vaporous form and air, said fuel when burned with a stoichiometric amount of air having an adiabatic flame temperature of at least about 3,300F., comprising essentially adiabatically combusting at least a portion of said admixture in a catalytic zone through contact'with an oxidation catalyst having a surface area of at least 20 m /g after calcination for two hours at 1,200C.
  • a catalytically active, calcined composite of alumina, ceria, and chromia consisting essentially of (a) a catalytically active, calcined composite of alumina, ceria, and chromia and (b) a catalytically-effective amount of platinum group metal added thereto after calcination of said composite at a temperature of at least 850C.
  • said oxidation catalyst having a temperature of about l,7()0F. to 3.000F.. said admixture having an adiabatic flame temperature of about 1,700 to 3.0()0F.
  • the volume of free oxygen to fuel charged to the combustion system being at least about 1.5 times the stoichiometric amount needed for complete combustion of said fuel, and said admixture being in the inflammable range or on the fuel-lean side outside of the inflammable range and having a gas velocity prior to or at the inlet to said catalyst in excess of the maximum flame propagating velocity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
US423096A 1973-12-10 1973-12-10 Method for catalytically supported thermal combustion Expired - Lifetime US3870455A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US423096A US3870455A (en) 1973-12-10 1973-12-10 Method for catalytically supported thermal combustion
JP49140385A JPS50105536A (pt) 1973-12-10 1974-12-06
AU76160/74A AU500099B2 (en) 1973-12-10 1974-12-06 Catalytically supported thermal combustion
FR7440045A FR2253556B1 (pt) 1973-12-10 1974-12-06
CH1629774A CH613639A5 (pt) 1973-12-10 1974-12-09
BR10283/74A BR7410283A (pt) 1973-12-10 1974-12-09 Processo para manter,cataliticamente,a termo-combustao de combustiveis carbonaceos e processo para fazer a combustao,essencialmente adiabatica de uma mistura intima que compreende um combustivel carbonaceo,em forma de vapor de ar
CA215,697A CA1042777A (en) 1973-12-10 1974-12-09 Method for catalytically supported thermal combustion
IT54426/74A IT1024368B (it) 1973-12-10 1974-12-09 Metodo per la combustione termica catalitica di combustibili careoniosi
DE19742458219 DE2458219A1 (de) 1973-12-10 1974-12-09 Verfahren zum katalytisch-aufrechterhaltenen, thermischen verbrennen
ES432717A ES432717A1 (es) 1973-12-10 1974-12-09 Un metodo para la combustion termica soportada catalitica- mente de un combustible carbonoso.
SE7415423A SE448348B (sv) 1973-12-10 1974-12-10 Oxidationskatalysator, sett att framstella denna samt anvendning av katalysatorn for forbrenning av kolhaltigt brensle
AR256849A AR223127A1 (es) 1973-12-10 1974-12-10 Un metodo para la combustion termica cataliticamente soportada de combustibles carbonaceos
BE151363A BE823187A (fr) 1973-12-10 1974-12-10 Procede de combustion thermique entretenue par catalyse
GB5345974A GB1474588A (en) 1973-12-10 1974-12-10 Oxidic catalyst compositions containing a platinum group metal
SE8005917A SE8005917L (sv) 1973-12-10 1980-08-22 Katalysator jemte sett att framstella densamma liksom even sett att genomfora forbrenning i nervaro av nemnda katalysator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US423096A US3870455A (en) 1973-12-10 1973-12-10 Method for catalytically supported thermal combustion

Publications (1)

Publication Number Publication Date
US3870455A true US3870455A (en) 1975-03-11

Family

ID=23677665

Family Applications (1)

Application Number Title Priority Date Filing Date
US423096A Expired - Lifetime US3870455A (en) 1973-12-10 1973-12-10 Method for catalytically supported thermal combustion

Country Status (12)

Country Link
US (1) US3870455A (pt)
JP (1) JPS50105536A (pt)
AR (1) AR223127A1 (pt)
AU (1) AU500099B2 (pt)
BE (1) BE823187A (pt)
BR (1) BR7410283A (pt)
CA (1) CA1042777A (pt)
CH (1) CH613639A5 (pt)
DE (1) DE2458219A1 (pt)
ES (1) ES432717A1 (pt)
FR (1) FR2253556B1 (pt)
IT (1) IT1024368B (pt)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982879A (en) * 1971-05-13 1976-09-28 Engelhard Minerals & Chemicals Corporation Furnace apparatus and method
US4147808A (en) * 1976-11-08 1979-04-03 The Procter & Gamble Company Beverage carbonation device and process
WO1981000970A1 (en) * 1979-10-03 1981-04-16 Acurex Corp Catalyst compositions,their method of formulation and combustion processes using the catalyst compositions
US4287856A (en) * 1978-05-08 1981-09-08 Johnson, Matthey & Co., Limited Engines
US4299192A (en) * 1978-05-08 1981-11-10 Johnson, Matthey & Co., Limited Catalytic combustion
US4337028A (en) * 1980-05-27 1982-06-29 The United States Of America As Represented By The United States Environmental Protection Agency Catalytic monolith, method of its formulation and combustion process using the catalytic monolith
EP0198948A2 (en) * 1985-04-11 1986-10-29 Nippon Shokubai Kagaku Kogyo Co., Ltd Catalytic combustor for combustion of lower hydrocarbon fuel
EP0244338A2 (en) * 1986-04-30 1987-11-04 International Fuel Cells Corporation Steam reforming catalyst
EP0381063A1 (de) * 1989-02-01 1990-08-08 Degussa Ag Verfahren zur Herstellung eines Trägermaterials für platingruppenmetallhaltige Dreiweg-Katalysatoren mit verringerter Neigung zur H2S-Emission
US5000929A (en) * 1987-11-07 1991-03-19 Nippon Shokubai Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst
US5071816A (en) * 1989-05-08 1991-12-10 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purification of exhaust gas from diesel engine
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5254797A (en) * 1989-06-07 1993-10-19 Ngk Insulators, Ltd. Method of treating exhaust gas
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
FR2726774A1 (fr) * 1994-11-15 1996-05-15 Inst Francais Du Petrole Catalyseur de combustion et procede de combustion utilisant un tel catalyseur
EP0949873A1 (en) * 1996-12-30 1999-10-20 BROWN & WILLIAMSON TOBACCO CORPORATION Smokeless method and article utilizing catalytic heat source for controlling products of combustion
US6284210B1 (en) 1994-11-15 2001-09-04 Institut Francais Du Petrole Combustion catalyst and combustion process using such a catalyst
US20030007912A1 (en) * 2001-05-09 2003-01-09 Silver Ronald G. Shift converter having an improved catalyst composition
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US20040187384A1 (en) * 2003-03-28 2004-09-30 Zissis Dardas High performance fuel processing system for fuel cell power plant
US20060035182A1 (en) * 2004-08-13 2006-02-16 Hesse David J Detonation safety in microchannels
US11135569B2 (en) * 2011-07-14 2021-10-05 Treibacher Industrie Ag Ceria zirconia alumina composition with enhanced thermal stability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299156A (en) * 1963-06-21 1967-01-17 Dow Chemical Co Dehydrocyclization catalyst and process
US3565830A (en) * 1963-02-07 1971-02-23 Engelhard Min & Chem Coated film of catalytically active oxide on a refractory support
US3741725A (en) * 1971-08-12 1973-06-26 J Graham Catalytic control of auto exhaust emissions
US3789022A (en) * 1971-08-19 1974-01-29 Diamond Shamrock Corp Catalyst for oxidation of hydrocarbons and carbon monoxide
US3794588A (en) * 1971-09-23 1974-02-26 Du Pont Highly-active supported catalysts
US3810732A (en) * 1971-07-01 1974-05-14 Siemens Ag Method and apparatus for flameless combustion of gaseous or vaporous fuel-air mixtures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565830A (en) * 1963-02-07 1971-02-23 Engelhard Min & Chem Coated film of catalytically active oxide on a refractory support
US3299156A (en) * 1963-06-21 1967-01-17 Dow Chemical Co Dehydrocyclization catalyst and process
US3810732A (en) * 1971-07-01 1974-05-14 Siemens Ag Method and apparatus for flameless combustion of gaseous or vaporous fuel-air mixtures
US3741725A (en) * 1971-08-12 1973-06-26 J Graham Catalytic control of auto exhaust emissions
US3789022A (en) * 1971-08-19 1974-01-29 Diamond Shamrock Corp Catalyst for oxidation of hydrocarbons and carbon monoxide
US3794588A (en) * 1971-09-23 1974-02-26 Du Pont Highly-active supported catalysts

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982879A (en) * 1971-05-13 1976-09-28 Engelhard Minerals & Chemicals Corporation Furnace apparatus and method
US4147808A (en) * 1976-11-08 1979-04-03 The Procter & Gamble Company Beverage carbonation device and process
US4287856A (en) * 1978-05-08 1981-09-08 Johnson, Matthey & Co., Limited Engines
US4299192A (en) * 1978-05-08 1981-11-10 Johnson, Matthey & Co., Limited Catalytic combustion
WO1981000970A1 (en) * 1979-10-03 1981-04-16 Acurex Corp Catalyst compositions,their method of formulation and combustion processes using the catalyst compositions
US4337028A (en) * 1980-05-27 1982-06-29 The United States Of America As Represented By The United States Environmental Protection Agency Catalytic monolith, method of its formulation and combustion process using the catalytic monolith
EP0198948A2 (en) * 1985-04-11 1986-10-29 Nippon Shokubai Kagaku Kogyo Co., Ltd Catalytic combustor for combustion of lower hydrocarbon fuel
EP0198948A3 (en) * 1985-04-11 1988-09-21 Nippon Shokubai Kagaku Kogyo Co., Ltd Catalytic combustor for combustion of lower hydrocarbon fuel
EP0244338A2 (en) * 1986-04-30 1987-11-04 International Fuel Cells Corporation Steam reforming catalyst
EP0244338A3 (en) * 1986-04-30 1988-08-24 International Fuel Cells Corporation Steam reforming catalyst
US5000929A (en) * 1987-11-07 1991-03-19 Nippon Shokubai Kagaku Kogyo Co., Ltd. Exhaust gas purification catalyst
EP0381063A1 (de) * 1989-02-01 1990-08-08 Degussa Ag Verfahren zur Herstellung eines Trägermaterials für platingruppenmetallhaltige Dreiweg-Katalysatoren mit verringerter Neigung zur H2S-Emission
US5071816A (en) * 1989-05-08 1991-12-10 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purification of exhaust gas from diesel engine
US5254797A (en) * 1989-06-07 1993-10-19 Ngk Insulators, Ltd. Method of treating exhaust gas
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
FR2726774A1 (fr) * 1994-11-15 1996-05-15 Inst Francais Du Petrole Catalyseur de combustion et procede de combustion utilisant un tel catalyseur
EP0712661A1 (fr) * 1994-11-15 1996-05-22 Institut Français du Pétrole Catalyseur de combustion et procédé de combustion utilisant un tel catalyseur
US6284210B1 (en) 1994-11-15 2001-09-04 Institut Francais Du Petrole Combustion catalyst and combustion process using such a catalyst
EP0949873A1 (en) * 1996-12-30 1999-10-20 BROWN & WILLIAMSON TOBACCO CORPORATION Smokeless method and article utilizing catalytic heat source for controlling products of combustion
EP0949873A4 (en) * 1996-12-30 2005-03-23 Brown & Williamson Tobacco SMOKED PRODUCT WITH A CATALYTIC HEAT SOURCE FOR CONTROLLING THE COMBUSTION PRODUCTS AND MANUFACTURING METHOD
US20030007912A1 (en) * 2001-05-09 2003-01-09 Silver Ronald G. Shift converter having an improved catalyst composition
US20030235526A1 (en) * 2002-03-28 2003-12-25 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US20030186805A1 (en) * 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US7166263B2 (en) 2002-03-28 2007-01-23 Utc Fuel Cells, Llc Ceria-based mixed-metal oxide structure, including method of making and use
US20070093382A1 (en) * 2002-03-28 2007-04-26 Vanderspurt Thomas H Ceria-based mixed-metal oxide structure, including method of making and use
US7612011B2 (en) 2002-03-28 2009-11-03 Utc Power Corporation Ceria-based mixed-metal oxide structure, including method of making and use
US20040187384A1 (en) * 2003-03-28 2004-09-30 Zissis Dardas High performance fuel processing system for fuel cell power plant
US6932848B2 (en) 2003-03-28 2005-08-23 Utc Fuel Cells, Llc High performance fuel processing system for fuel cell power plant
US20060035182A1 (en) * 2004-08-13 2006-02-16 Hesse David J Detonation safety in microchannels
US8517717B2 (en) * 2004-08-13 2013-08-27 Velocys, Inc. Detonation safety in microchannels
US11135569B2 (en) * 2011-07-14 2021-10-05 Treibacher Industrie Ag Ceria zirconia alumina composition with enhanced thermal stability

Also Published As

Publication number Publication date
IT1024368B (it) 1978-06-20
FR2253556A1 (pt) 1975-07-04
CA1042777A (en) 1978-11-21
AU500099B2 (en) 1979-05-10
BE823187A (fr) 1975-06-10
ES432717A1 (es) 1977-03-01
AU7616074A (en) 1976-06-10
JPS50105536A (pt) 1975-08-20
DE2458219A1 (de) 1975-06-12
CH613639A5 (pt) 1979-10-15
BR7410283A (pt) 1976-06-29
FR2253556B1 (pt) 1981-09-25
AR223127A1 (es) 1981-07-31

Similar Documents

Publication Publication Date Title
US4021185A (en) Compositions and methods for high temperature stable catalysts
US3956188A (en) Compositions and methods for high temperature stable catalysts
US3870455A (en) Method for catalytically supported thermal combustion
US4056489A (en) High temperature stable catalyst composition and method for its preparation
US4088435A (en) Method for the combustion of carbonaceous fuels utilizing high temperature stable catalysts
US3966391A (en) Method of combustion using high temperature stable catalysts
US3993572A (en) Rare earth containing catalyst composition
US4089810A (en) Catalyst
US3972837A (en) Catalyst for purifying automotive exhaust gases
US4171287A (en) Catalyst compositions and the method of manufacturing them
US5137862A (en) Oxidation catalysts
US4791091A (en) Catalyst for treatment of exhaust gases from internal combustion engines and method of manufacturing the catalyst
EP0545931B1 (en) Preparation of three-way catalysts with highly dispersed ceria
US4714694A (en) Aluminum-stabilized ceria catalyst compositions, and methods of making the same
US5899679A (en) Catalytic combustion process using a plurality of successive catalytic zones
JP4911893B2 (ja) 層状触媒複合体
US4585752A (en) Catalyst composition for ultra high temperature operation
US4793797A (en) Method of catalytic combustion using heat-resistant catalyst
US5263998A (en) Catalysts
US3945946A (en) Compositions and methods for high temperature stable catalysts
US4206087A (en) Catalyst for reducing pollutants in waste gas streams and process for preparing the catalyst
US4996180A (en) Catalyst of copper oxide and ceria
US4008037A (en) Compositions and methods for high temperature stable catalysts
US5051392A (en) Multifunctional catalyst for treating exhaust fumes from internal combustion engines, containing uranium, at least one uranium promotor and at least one precious metal, and its preparation
JPH067923B2 (ja) スリー・ウエイ触媒およびその製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENGELHARD CORPORATION 70 WOOD AVENUE SOUTH, METRO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PHIBRO CORPORATION, A CORP. OF DE;REEL/FRAME:003968/0801

Effective date: 19810518

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)