US3860979A - Flush tank apparatus - Google Patents

Flush tank apparatus Download PDF

Info

Publication number
US3860979A
US3860979A US223271A US22327172A US3860979A US 3860979 A US3860979 A US 3860979A US 223271 A US223271 A US 223271A US 22327172 A US22327172 A US 22327172A US 3860979 A US3860979 A US 3860979A
Authority
US
United States
Prior art keywords
parts
rod
apertures
bar
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US223271A
Inventor
Sherwood L Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trane US Inc
Original Assignee
American Standard Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Standard Inc filed Critical American Standard Inc
Priority to US223271A priority Critical patent/US3860979A/en
Application granted granted Critical
Publication of US3860979A publication Critical patent/US3860979A/en
Assigned to BANKERS TRUST COMPANY reassignment BANKERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: U.S. PLUMBING, INC., A CORPORATION OF DELAWARE
Assigned to BANKERS TRUST COMPANY reassignment BANKERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMERICAN STANDARD INC., A DE. CORP.,
Anticipated expiration legal-status Critical
Assigned to CHEMICAL BANK, AS COLLATERAL AGENT reassignment CHEMICAL BANK, AS COLLATERAL AGENT ASSIGNMENT OF SECURITY INTEREST Assignors: BANKERS TRUST COMPANY, AS COLLATERAL TRUSTEE
Assigned to AMERICAN STANDARD, INC. reassignment AMERICAN STANDARD, INC. RELEASE OF SECURITY INTEREST (RE-RECORD TO CORRECT DUPLICATES SUBMITTED BY CUSTOMER. THE NEW SCHEDULE CHANGES THE TOTAL NUMBER OF PROPERTY NUMBERS INVOLVED FROM 1133 TO 794. THIS RELEASE OF SECURITY INTEREST WAS PREVIOUSLY RECORDED AT REEL 8869, FRAME 0001.) Assignors: CHASE MANHATTAN BANK, THE (FORMERLY KNOWN AS CHEMICAL BANK)
Assigned to AMERICAN STANDARD, INC. reassignment AMERICAN STANDARD, INC. RELEASE OF SECURITY INTEREST Assignors: CHASE MANHATTAN BANK, THE (FORMERLY KNOWN AS CHEMICAL BANK)
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/18Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float
    • F16K31/20Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve
    • F16K31/24Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve with a transmission with parts linked together from a single float to a single valve
    • F16K31/26Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve with a transmission with parts linked together from a single float to a single valve with the valve guided for rectilinear movement and the float attached to a pivoted arm
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D1/00Water flushing devices with cisterns ; Setting up a range of flushing devices or water-closets; Combinations of several flushing devices
    • E03D1/30Valves for high or low level cisterns; Their arrangement ; Flushing mechanisms in the cistern, optionally with provisions for a pre-or a post- flushing and for cutting off the flushing mechanism in case of leakage

Definitions

  • the mechanism has a number of parts which are interconnected with each other.
  • Such parts include, among others, an inlet valve, an elongated lever coupled to the input valve and having a channel throughout its length for feeding water from said valve along said channel to the tank via a float supported by the lever, and a hush tube coupled to said valve and providing a second path for feeding water into the tank.
  • the mechanism also includes coupling means for quickly connecting parts, such as the lever and the input valve, to each other, or for disconnecting such parts from each other.
  • Such coupling mechanism includes a rod which may be inserted into the apertures of two parts which are to be coupled to each other and having a head at one end, and a longitudinal bar of pliable plastic material mounted so as to be perpendicular to the rod and to overhang the head of the rod, whereby the coupled parts may be uncoupled by defleeting the bar so that the rod may be slid out of the apertures.
  • This invention relates to structures and fittings for a flush tank of the type that is used with a toilet bowl. More particularly, this invention relates to novel and improved mechanisms for controlling the flow of water into a flush tank and for releasing and discharging water from the flush tank into the toilet bowl.
  • the flush tank usually associated with the conventional toilet bowl serves as a reservoir for a limited or predetermined quantity of water.
  • the flush tank is generally filled to its assigned capacity and the water is later discharged from the flush tank into the toilet bowl as may be required to empty the contents of the toilet bowl.
  • Water is usually allowed to enter the conventional flush tank from the local or city water supply system so as to fill the tank to the desired level at a fairly slow rate. When this level has been reached, the flow of water into the flush tank is shut off and remains shut off until, at a later time, the water is discharged into the toilet bowl and another supply of water must be transmitted to the flush tank.
  • a knob or lever mounted on the outside of the conventional flush tank, is manipulated by the user to actuate the mechanism within the flush tank so as to release the water stored therein and to discharge the stored water into the toilet bowl.
  • the operation of the control knob or lever before the full head of water has been accumulated within the flush tank can only result in inefficient and unnecessarily repeated cleansing of the toilet bowl with its obvious consequences.
  • the speedy influx of water into the flush tank as well as the speedy efflux of water are both prime requisites of good and efficient service and proper hygienic conditions.
  • the operating mechanism within the flush tank develops hisses and other noises which are disturbing and unnecessary, and these disturbances should be materially reduced, if not eliminated.
  • the fittings and equipment for a flush tank have been standardized for a long time with relatively little change in their general construction or operation.
  • the fittings are metallic and have remained metallic. They usually comprise a supply inlet valve to control the entrance or influx of water into the flush tank from the local water supply; a tank refill or hush tube which is designed to conduct water from the supply inlet valve into the flush tank when it is to be filled; an overflow preventer, usually in the form of a standing tube or pipe, serving not only to discharge any excessive supply of incoming water into the toilet bowl to prevent overflowing of the flush tank and flooding of the bathroom, but serving also as a safety device to prevent the water fed into the flush tank from being returned to the local water supply system to contaminate it; and a flush valve, generally including a disc mechanism, for coupling the flush tank to the toilet bowl, the disc mechanism being lifted from time to time in response to the operation of the control knob or lever to release the water accumulated in the flush tank into the toilet bowl to drive the contents of the toilet bowl into the sewer system
  • One of the main objects of this invention is to improve the fittings for a flush tank and their construction so that the overall mechanism will be of superior reliability, of improved operational and functional characteristics and capable of filling the flush tank at a much more rapid rate.
  • one of the objects will be to speed up the inflow of water into the flush tank so that repeated and efficient discharges of water from the flush tank may occur at more frequent intervals.
  • Another of the principal objects of this invention is to improve the fittings and mechanism of the flush tank so that they will be lower in manufacturing cost and at the same time freer from problems requiring repair or maintenance.
  • One of the features of this invention is the employment of simple plastic parts substantially throughout the entire construction.
  • Still another of the objects of this invention involves the design and construction of parts making up the overall mechanism of the flush tank so that a relatively unskilled mechanic may readily disassemble the parts and repair or replace any of the parts.
  • One of the parts of the mechanism for accomplishing this objective is a linear pin having a cap or head and a movable retainer bar, so arranged that the cap or head may be moved deflecting the retainer bar, the pin may be moved into its assigned position to serve for example, as a pivot for a pair of cooperating parts or, when desired, the retainer bar may again be deflected so that the head of the pin may be released to enable the pin to be lifted out of its position so as to uncouple the parts which are controlled or coupled by the pin.
  • FIG. 1 shows a perspective of the exterior of the flush tank
  • FIG. 2 illustrates a partial cut-away of the flush tank so as to reveal some of the internal construction of the mechanism incorporated therein;
  • FIG. 3 shows a top plan view of the flush tank with its cover removed
  • FIG. 4 is a view of the internal tank mechanism when viewed along the lines 4-4 of FIG. 3 (with the tank cover in place);
  • FIGS. 5, 6 and 7 show three respective views of the pin and retainer bar construction employed in this invention.
  • FIG. 8 shows a front lateral view of the water supply inlet valve and the mechanism controlling its operation
  • FIG. 9 shows a side view of the mechanism of FIG. 8;
  • FIG. 10 shows a top plan view of the mechanism of FIG. 9
  • FIG. 11 shows a front lateral view of the plunger device of this invention and FIG. 12 a side view of said device;
  • FIG. 13 shows a front lateral view of the rod lever control mechanism which is geared to the plunger device of FIGS. 11 and 12, and
  • FIG. 14 shows a side view of the rod lever control mechanism
  • FIGS. 15 and 16 respectively illustrate a side elevation of certain parts of the water supply inlet valve and a side view of said parts
  • FIGS. 17 and 18 respectively illustrate side elevations of parts, corresponding to those of FIGS. 15 and 16, of an improved modification of said parts;
  • FIG. 18a illustrates a partial top plan view of the FIG. 18 arrangement
  • FIG. 19 is a partial view taken from FIG. 2 to illustrate a divided hush tube
  • FIG. 20 is a partial section taken along lines 2020 of FIG. 19. Throughout the drawing like parts will be designated by like reference characters.
  • FIG. 1 generally illustrates a view of the external mechanism of the flush tank.
  • the flush tank is designated FT, the cover CV; there are two control trip knobs, the upper one designated TNU and the lower one TNL.
  • the water inlet pipe is designated IN and the supply or inlet opening or coupling is designated SI.
  • the discharge opening or coupling D0 is connected by an appropriate pipe P to the toilet bowl (not shown in FIG. 1).
  • water is supplied from the local water supply system through the inlet pipe IN to the flush tank FT.
  • Either the upper trip knob TNU or the lower trip knob TNL may be pulled or manipulated so as to promptly release the water accumulated within the flush tank FT into the toilet bowl TB.
  • FIG. 2 shows some of the more important components of the fittings and mechanism contained within the flush tank FT.
  • the supply inlet coupling SI is connected to the water inlet valve IV.
  • the opening and closing of the water inlet valve IV is controlled by a plunger PG which is geared to rod lever RL which in turn is adjustably coupled to a lever LV.
  • the lever LV is coupled to the rod lever RL by means of a pivot pin LVX.
  • the rod lever RL controls, by means of its toothed structure RLT, the movement of plunger PG which in turn controls the opening or closing of the valve IV, as well as the speed with which the valve IV is opened or closed.
  • the lever LV will be moved axially about another pivot pin RLX so as to swing the plunger PG in a lateral direction to operate the inlet valve IV.
  • the teeth RLT of rod lever RL mesh with the teeth PGT of plunger PG to impart lateral movement to the plunger to control the valve IV.
  • Each angular displacement of lever LV is therefore accompanied by a corresponding movement of plunger PG and a corresponding change in the size of the opening of valve IV.
  • the valve IV is positioned so that it enables water to enter from the inlet opening or coupling SI into a hush tube I-IT through which water is fed into the tank FT.
  • a similar inlet valve is disclosed in applicant's Pat. No. 3,369,560, issued Feb. 20, 1968, entitled Flush Tank Refill Valve.
  • the rotatable lever LV has a built-in water channel CN extending substantially throughout its length (see FIG. 3) which is coupled by means of a flexible refill tube RFT to the inlet valve IV.
  • the water inlet valve IV When the water inlet valve IV is open, some of the incoming water will flow into the flexible refill tube RFT and through the channel CN of the lever LV to the supply or ballast chamber BL of the float FL.
  • there are two separate and distinct passages for influent water one through the hush tube I-lTand the other through the flexible refill tube RFT and channel (IN to the ballast chamber BL and then to the tank FT.
  • the flush valve FV may be of a conventional type and it is shown in solid lines in FIG. 2. It is employed for controlling the main discharge of water from the flush tank FT through the discharge opening DO and pipe P into the toilet bowl TB. A somewhat more detailed description will now be provided as to the operation of the fluidic and mechanical arrangement broadly illustrated in FIG. 2.
  • the flush valve generally designated FV which may be of any well known construction, is preferably of the type shown and described in the Hurco et al. Pat. No. 2,773,267, issued Dec. 11, 1956, entitled Flush Valve.
  • the flush valve FV includes a rotatable disc device D8 which, in its normally closed position, rests upon a weir or collar WR. When so positioned, water within the tank FT will be unable to traverse or break the seal established between the disc DS and the weir WR. When the water in tank FT is at its highest level, the float FL, which is affixed to lever LV, will be in its uppermost position as shown in FIG. 2, and the inlet valve IV will be closed.
  • the disc DC reaches a position shown in dotted lines in FIG. 2.
  • the disc DS is tilted and thereby raised above the weir WR so that water may then travel rapidly and voluminously through the discharge opening DO and into the toilet bowl TB.
  • the disc device DS is rotated about the pivotal axis FVX of the flush valve FV.
  • the separate knobs TNU and TNL may individually control the operation of the flush valve FV.
  • One of the knobs TNU is coupled to and controls the left lobe or finger of the trip lever TF.
  • the other knob TNL is mechanically coupled to and controls the right lobe or finger of the trip lever TF.
  • the lower lobe or finger of the trip lever TF in turn controls the actuator FVT of the flush valve FV.
  • the trip lever TF By pulling either of the knobs TNU or TNL, the trip lever TF will be rotated clockwise, tilting the actuator FVT from its normal position (shown in solid lines in FIG. 2) to its operated position (shown in dotted lines).
  • the float FL attached to the lever LV will be in its lowermost position, as already mentioned. In this position the water inlet valve IV will be fully opened, permitting water to enter from the supply inlet SI at a rapid pace.
  • the incoming water will flow in one path through the flexible tube RFT and channel CN to the ballast tank BL, and into tank FT, and in another path through the hush tube HT.
  • the rising water will buoy the float FL and cause it to move upwardly in step with the level of water in the flush tank FT.
  • ballast tank BL is a cylindrical chamber which is open at the top to receive water.
  • BLO small opening or several small openings generally designated BLO
  • the tank FT embodies a vertical overflow tube OT which is coupled to the discharge opening DO (see FIG. 4).
  • the upper end of the overflow tube OT is open so that, as water reaches the level of the upper opening, it will be released through the overflow tube OT and through the discharge opening D to the tiolet bowl TB.
  • the overflow tube OT is also employed to permit excess water reaching the tank FT to be discharged into the toilet bowl TB rather than to be fed back to the supply inlet opening SI and in turn to the local water supply system and possibly contaminate the water system.
  • the volume of water entering the ballast tank BL of the float FL during the early stages immediately following the opening of the valve IV will exceed the amount drained through the opening BLO of the ballast tank BL.
  • the effective buoyancy of the tank float FL will be rapidly reduced in the early stages of the opening of inlet valve IV.
  • the plunger CR of the water inlet valve IV (see FIGS. 8, l5 and 17) is advanced to the left to reduce the inflow of water through the flexible tube RFT.
  • water will enter the ballast tank BL at a slower rate than the rate at which water drains out of ballast tank BL through its drain hole or holes BLO.
  • the ballast tank BL empties, it effects an increased buoyancy on the float FL, which quickly rises and shuts off the flow of water into tank FT via the water inlet valve IV.
  • the float FL may be viewed as jumping" through the last segment of its return to its uppermost position to bring about the rapid closing of the water inlet valve IV.
  • the final shutoff of the valve is slow and produces a prolonged hissing sound because the float of the conventional flush tank slowly overcomes the inlet water pressure.
  • the lever LV and its float FL are at or near the uppermost position as shown in FIG. 2, the water inlet valve IV will be fully closed, and no more water will be fed through the supply inlet SI.
  • the lower knob TNL is employed primarily to enable children to conveniently control the operation of the flush tank. On the other hand, taller people can readily reach the upper knob TNU to control the operation of the tank FT. Dual controls are highly desirable especially in situations in which the flush tank FT is elevated considerably above the level of the toilet bowl TB.
  • the upper knob TNU has a threaded cap so that it may be coupled by a stem STU through an appropriate housing or enclosure to the left arm of the trip lever TF.
  • the knob TNU is intended to hold the cover CV closed against the upper rim of the tank FT.
  • a similar stem STL couples the lower knob TNL to the right arm of the trip lever TF via a coupling element K.
  • the relative position and angular displacement of the lever LV can be controlled by two threaded screw members SCI which are located at opposite sides of the pivot pin RLX of the lever RL, as is plainly shown in FIG. 2.
  • the angular position of the lever LV may be controlled and this in turn governs the maximum height to which float FL may be raised. This then determines the maximum level to which the water may rise within tank FT. Each rise in the water level will be accompanied by a delay in the time of closure of the inlet valve IV. The maximum water level of tank FT will be increased and the time interval during which valve IV is opened will be increased by manipulation of screws SCI, as above indicated.
  • the lever LV may be relatively lowered so that a lower level of water will be accumulated within the tank FT and the opening time of valve IV will be reduced. In the latter case, the inlet valve IV will come to complete closure at an earlier time phase.
  • FIGS. 2. and 8, for example, show the mechanism adjacent to and immediately controlling the water inlet valve IV.
  • the plunger PG is movable about its axial pin PGX, but the plunger PG exercises a lateral displacement of the inlet valve IV. That is, the rotary motion of plunger P0 is converted into a lateral or linear displacement of valve IV.
  • the movable mechanism of the inlet valve IV is shown particularly in FIGS. 15 and 16.
  • a modified mechanism is shown in FIGS. 17 and 18.
  • a rubberized cylindrical member RU is fixed within a collar CR.
  • the collar CR supports an O-ring OR.
  • a shoulder 86 on the disk SH of the mechanism of FIG. 15 puts a limit on the amount by which the movable mechanism here shown and described can travel into the external housing of the inlet valve IV.
  • the O-ring OR is located to the right of the flexible tube RFT and of the hush tube HT (which are illustrated in FIG. 2) so that incoming water may be received by these two tubes but cannot pass the O-ring.
  • the slotted segment RM of the mechanism is positioned in a corresponding channel of the plunger PG so that the plunger PG may control and laterally move the slotted segment RM to the left to reduce or to close the opening of the inlet valve IV.
  • the water pressure applied through the supply inlet SI can cause limited movement to the right of the movable mechanism of valve IV, but any movement in the opposite direction is controlled by the plunger PG.
  • FIGS. 17, 18 and 18a show projecting lugs LG and rounded shoulders SG between which the plunger lever PG is positioned and retained.
  • the plunger PG is rotated away from the inlet valve IV to release the movable mechanism of this valve and thereby open the valve.
  • the opening of valve IV as the float FL drops will occur even when the water pressure in the supply inlet SI is low and insufficeint per se to move the rubber member RU away from its seat.
  • the valve IV will be opened regardless of the magnitude of the incoming water pressure.
  • the pivot pins, TFX, RLX, LVX and PGX are several similar general purpose pins employed in this invention to couple two parts together so that one or the other or both of the parts may be rotatable.
  • the general form of these pins is shown in FIGS. 5, 6 and 7.
  • the pin LVX for example, has a cap CP.
  • This pin LVX and its cap CP are associated with a retainer arm RT, forming a unitary structure.
  • the retainer arm RT is flexible, and therefore, one end is movable. Although shown in solid lines in FIG. 5 in its normal position, the retainer arm RT may be deflected by relatively minor finger pressure to the dotted position also shown in FIG. 5.
  • the cap CP of the pin LVX may be released from the retainer arm RT so that the pin LVX may be removed from its opening to sever the parts coupled together by pin LVX.
  • the retainer arm RT is returned to its normal position while the cap CP is in the position shown in FIG. 5, it will be impossible to remove the pin LVX.
  • FIG. 6 shows the cap CP about to be moved into engagement beneath the retainer arm RT so that it may be held by the retainer arm RT.
  • the retainer arm RT is undeflected so that the cap C? may not be removed from its position.
  • the axial pin LVX couples the rod lever RL to the channeled lever LV.
  • the axial pin LVX is held in its assigned position to maintain the two levers coupled to each other.
  • the levers will thence be uncoupled.
  • To recouple the levers RL and LV it is again necessary to deflect the arm RT until the cap CP of pin LVX has been moved back beyond the arm RT.
  • the pin LVX will again serve as a pivot for the two levers.
  • each of the other axial pins TFX, RLX and PGX are similarly constructed and are associated with similar retainer arms and perform in the same general manner.
  • FIGS. 19 and 20 show a modified form of hush tube HT.
  • This hush tube HT has a divider DV to provide two longitudinal channels within tube HT.
  • the divider DV acts as a sort of baffle to slow down the inflow of water through the water inlet valve IV. This has the effect of reducing the turbulence of the water flowing through the inlet valve IV to and past the rubberized member RU of the inlet valve IV. This materially reduces the noise at the inlet valve IV, reducing the noise at this point to a practical nullity.
  • the slope of the sides of the flush tank FT is toward the base of the tank. Due to the slope of the wall of tank FT adjacent to the hush tube HT and due also to the curvature KR at the intersection of the wall and tank base, the water emitted by the hush tube HT will impinge against the tank surface at a very small angle and hence the water will glide smoothly into the base of the tank FT. This smooth, non-turbulent emission substantially reduces noise. Such noise is generated especially in a conventional flush tank in which the hush tube is parallel to the tank walls and emitted water flows squarely (perpendicularly) against the tank base. Thus, because of the taper of the tank wall and the curvature KR, substantially noiseless operation is effected.
  • All of the parts and fittings within the flush tank FT, as well as the flush tank FT itself, are made of plastic materials. They are relatively light in weight and inexpensive; consequently, the cost of manufacture of the various parts of the overall combination will be relatively low. Moreover, all of the parts are readily removed whenever desired and replacements may be made expeditiously by even an inexperienced mechanic, as well as by the home-owner.
  • Operator flushing mechanism for coupling and decoupling two parts to iniate a flushing action in a flush tank for a toilet bowl, both parts being provided with apertures which are to be aligned with each other, comprising a rod which has substantially uniform crosssection and is of sufficient length so as to be fully insertable through the apertures of said parts when they are to be coupled together and to constitute the axis of rotation of either or both of said parts, said rod having an expanded head at one end thereof to limit the extent to which said rod may be inserted through the apertures of said parts, a bar of hardened material which is deflectable, and means to hold one end of said bar in a fixed position so that a portion of said bar will overhang the head of said rod, whereby the rod may be inserted through the apertures of both parts to couple said parts together only by the deflection of the free end of said bar or removed from said apertures of said parts to decouple said parts only by the deflection of the free end of said bar.
  • Operator flushing mechanism including one or more elements each provided with an aperture which is to be aligned with the apertures of the two parts, whereby all of said elements and said two parts may be coupled together, or decoupled from each other, only by the deflection of the free end of said bar.
  • Operator flushing mechanism for rapidly coupling or rapidly decoupling a plurality of parts to iniate a flushing action in a flush tank for a toilet bowl, comprising a separate pair of substantially parallel arms for each of said parts, each arm having an aperture so oriented that all of the apertures may be aligned with each other, a rod of sufficient length so as to be fully insertable through all of said apertures to constitute a common axis for all of said parts, said rod having an expanded head at one end thereof to limit the travel of may be removed from said apertures to decouple said parts only when the free end of said bar is deflected.

Abstract

This application relates to flush tank mechanism for a toilet bowl. The mechanism has a number of parts which are interconnected with each other. Such parts include, among others, an inlet valve, an elongated lever coupled to the input valve and having a channel throughout its length for feeding water from said valve along said channel to the tank via a float supported by the lever, and a hush tube coupled to said valve and providing a second path for feeding water into the tank. The mechanism also includes coupling means for quickly connecting parts, such as the lever and the input valve, to each other, or for disconnecting such parts from each other. Such coupling mechanism includes a rod which may be inserted into the apertures of two parts which are to be coupled to each other and having a head at one end, and a longitudinal bar of pliable plastic material mounted so as to be perpendicular to the rod and to overhang the head of the rod, whereby the coupled parts may be uncoupled by deflecting the bar so that the rod may be slid out of the apertures.

Description

United States Patent [191 Young [4 1 Jan. 21, 1975 1 FLUSH TANK APPARATUS [75] Inventor: Sherwood L. Young, Monson, Mass.
[73] Assignee: American Standard Inc., New York,
22 Filed: Feb. 3, 1972 211 Appl. No.: 223,271
Related U.S. Application Data [63] Continuation of Ser. Nos. 754,669, Aug 22, 1968, Pat. No. 3,533,437, and Ser. No. 54,065, June 1, 1970, Pat. No. 3,654,637.
[52] U.S. Cl 4/249, 4/57 P [51] Int. Cl E03d 5/02 [58] Field of Search 4/67 R, 67 A, 56, 70, 30, 4/87, 41, 92, 57 R, 57 P, 68, 249, 250
[56] References Cited UNITED STATES PATENTS 994,793 6/1911 Schwiesow 4/67 R 1,525,475 2/1925 Tutt 4/67 R 1,568,611 l/1926 Morgan... 4/67 R 2,528,441 10/1950 Kolar 4/56 2,534,524 12/1950 Molloy 4/30 2,543,438 2/1951 Cochran..... 2,760,204 8/1956 Joanis 2,849,725 9/1958 Armstrong et al. 4/67 R Primary Examiner-l-lenry K. Artis Attorney, Agent, or Firm-Robert G. Crooks; James J. Salerno; Jefferson Ehrlich [57] ABSTRACT This application relates to flush tank mechanism for a toilet bowl. The mechanism has a number of parts which are interconnected with each other. Such parts include, among others, an inlet valve, an elongated lever coupled to the input valve and having a channel throughout its length for feeding water from said valve along said channel to the tank via a float supported by the lever, and a hush tube coupled to said valve and providing a second path for feeding water into the tank. The mechanism also includes coupling means for quickly connecting parts, such as the lever and the input valve, to each other, or for disconnecting such parts from each other. Such coupling mechanism includes a rod which may be inserted into the apertures of two parts which are to be coupled to each other and having a head at one end, and a longitudinal bar of pliable plastic material mounted so as to be perpendicular to the rod and to overhang the head of the rod, whereby the coupled parts may be uncoupled by defleeting the bar so that the rod may be slid out of the apertures.
6 Claims, 21 Drawing Figures PATENTEDJANZWB 3,860,979
SHEET 1 OF 4 I 1 I W FLUSH TANK APPARATUS This is a continuation of application Ser. No. 754,669, filed Aug. 22, 1968, now Pat. No. 3,533,437, issued /13/70 and of appl. Ser. No. 54,065, filed June I, 1970, now Pat. No. 3,654,637.
This invention relates to structures and fittings for a flush tank of the type that is used with a toilet bowl. More particularly, this invention relates to novel and improved mechanisms for controlling the flow of water into a flush tank and for releasing and discharging water from the flush tank into the toilet bowl.
As is well known, the flush tank usually associated with the conventional toilet bowl serves as a reservoir for a limited or predetermined quantity of water. The flush tank is generally filled to its assigned capacity and the water is later discharged from the flush tank into the toilet bowl as may be required to empty the contents of the toilet bowl. Water is usually allowed to enter the conventional flush tank from the local or city water supply system so as to fill the tank to the desired level at a fairly slow rate. When this level has been reached, the flow of water into the flush tank is shut off and remains shut off until, at a later time, the water is discharged into the toilet bowl and another supply of water must be transmitted to the flush tank. Usually a knob or lever, mounted on the outside of the conventional flush tank, is manipulated by the user to actuate the mechanism within the flush tank so as to release the water stored therein and to discharge the stored water into the toilet bowl. It is a general and common experience that the inflow of water to fill the flush tank to its full capacity, because of the slow rate of water influx, requires considerable time before the predetermined level is reached. Because of this long delay, discharges of a full head of water from the flush tank can only occur at relatively long time intervals. This is obviously a handicap in many eventualities. For one thing, the number of uses of the facilities is definitely reduced or limited by the long intervals. As another factor, the operation of the control knob or lever before the full head of water has been accumulated within the flush tank can only result in inefficient and unnecessarily repeated cleansing of the toilet bowl with its obvious consequences. The speedy influx of water into the flush tank as well as the speedy efflux of water are both prime requisites of good and efficient service and proper hygienic conditions. As a third factor, the operating mechanism within the flush tank develops hisses and other noises which are disturbing and unnecessary, and these disturbances should be materially reduced, if not eliminated.
The fittings and equipment for a flush tank have been standardized for a long time with relatively little change in their general construction or operation. Basically, the fittings are metallic and have remained metallic. They usually comprise a supply inlet valve to control the entrance or influx of water into the flush tank from the local water supply; a tank refill or hush tube which is designed to conduct water from the supply inlet valve into the flush tank when it is to be filled; an overflow preventer, usually in the form of a standing tube or pipe, serving not only to discharge any excessive supply of incoming water into the toilet bowl to prevent overflowing of the flush tank and flooding of the bathroom, but serving also as a safety device to prevent the water fed into the flush tank from being returned to the local water supply system to contaminate it; and a flush valve, generally including a disc mechanism, for coupling the flush tank to the toilet bowl, the disc mechanism being lifted from time to time in response to the operation of the control knob or lever to release the water accumulated in the flush tank into the toilet bowl to drive the contents of the toilet bowl into the sewer system.
One of the main objects of this invention is to improve the fittings for a flush tank and their construction so that the overall mechanism will be of superior reliability, of improved operational and functional characteristics and capable of filling the flush tank at a much more rapid rate. As already suggested hereinabove, one of the objects will be to speed up the inflow of water into the flush tank so that repeated and efficient discharges of water from the flush tank may occur at more frequent intervals.
Another of the principal objects of this invention is to improve the fittings and mechanism of the flush tank so that they will be lower in manufacturing cost and at the same time freer from problems requiring repair or maintenance. One of the features of this invention is the employment of simple plastic parts substantially throughout the entire construction.
Still another of the objects of this invention involves the design and construction of parts making up the overall mechanism of the flush tank so that a relatively unskilled mechanic may readily disassemble the parts and repair or replace any of the parts. One of the parts of the mechanism for accomplishing this objective is a linear pin having a cap or head and a movable retainer bar, so arranged that the cap or head may be moved deflecting the retainer bar, the pin may be moved into its assigned position to serve for example, as a pivot for a pair of cooperating parts or, when desired, the retainer bar may again be deflected so that the head of the pin may be released to enable the pin to be lifted out of its position so as to uncouple the parts which are controlled or coupled by the pin.
This invention will be better understood from the more detailed description hereinafter following when read in connection with the accompanying drawing in which FIG. 1 shows a perspective of the exterior of the flush tank;
FIG. 2 illustrates a partial cut-away of the flush tank so as to reveal some of the internal construction of the mechanism incorporated therein;
FIG. 3 shows a top plan view of the flush tank with its cover removed;
FIG. 4 is a view of the internal tank mechanism when viewed along the lines 4-4 of FIG. 3 (with the tank cover in place);
FIGS. 5, 6 and 7 show three respective views of the pin and retainer bar construction employed in this invention;
FIG. 8 shows a front lateral view of the water supply inlet valve and the mechanism controlling its operation; FIG. 9 shows a side view of the mechanism of FIG. 8;
FIG. 10 shows a top plan view of the mechanism of FIG. 9;
FIG. 11 shows a front lateral view of the plunger device of this invention and FIG. 12 a side view of said device;
FIG. 13 shows a front lateral view of the rod lever control mechanism which is geared to the plunger device of FIGS. 11 and 12, and
FIG. 14 shows a side view of the rod lever control mechanism;
FIGS. 15 and 16 respectively illustrate a side elevation of certain parts of the water supply inlet valve and a side view of said parts;
FIGS. 17 and 18 respectively illustrate side elevations of parts, corresponding to those of FIGS. 15 and 16, of an improved modification of said parts;
FIG. 18a illustrates a partial top plan view of the FIG. 18 arrangement;
FIG. 19 is a partial view taken from FIG. 2 to illustrate a divided hush tube; and
FIG. 20 is a partial section taken along lines 2020 of FIG. 19. Throughout the drawing like parts will be designated by like reference characters.
FIG. 1 generally illustrates a view of the external mechanism of the flush tank. The flush tank is designated FT, the cover CV; there are two control trip knobs, the upper one designated TNU and the lower one TNL. The water inlet pipe is designated IN and the supply or inlet opening or coupling is designated SI. At the bottom of the tank, the discharge opening or coupling D0 is connected by an appropriate pipe P to the toilet bowl (not shown in FIG. 1). As will be described hereinafter, water is supplied from the local water supply system through the inlet pipe IN to the flush tank FT. Either the upper trip knob TNU or the lower trip knob TNL may be pulled or manipulated so as to promptly release the water accumulated within the flush tank FT into the toilet bowl TB.
FIG. 2 shows some of the more important components of the fittings and mechanism contained within the flush tank FT. The supply inlet coupling SI is connected to the water inlet valve IV. The opening and closing of the water inlet valve IV is controlled by a plunger PG which is geared to rod lever RL which in turn is adjustably coupled to a lever LV. The lever LV is coupled to the rod lever RL by means of a pivot pin LVX. The rod lever RL controls, by means of its toothed structure RLT, the movement of plunger PG which in turn controls the opening or closing of the valve IV, as well as the speed with which the valve IV is opened or closed. The lever LV will be moved axially about another pivot pin RLX so as to swing the plunger PG in a lateral direction to operate the inlet valve IV. The teeth RLT of rod lever RL mesh with the teeth PGT of plunger PG to impart lateral movement to the plunger to control the valve IV. Each angular displacement of lever LV is therefore accompanied by a corresponding movement of plunger PG and a corresponding change in the size of the opening of valve IV.
The valve IV is positioned so that it enables water to enter from the inlet opening or coupling SI into a hush tube I-IT through which water is fed into the tank FT. A similar inlet valve is disclosed in applicant's Pat. No. 3,369,560, issued Feb. 20, 1968, entitled Flush Tank Refill Valve. The rotatable lever LV has a built-in water channel CN extending substantially throughout its length (see FIG. 3) which is coupled by means of a flexible refill tube RFT to the inlet valve IV. When the water inlet valve IV is open, some of the incoming water will flow into the flexible refill tube RFT and through the channel CN of the lever LV to the supply or ballast chamber BL of the float FL. Thus, there are two separate and distinct passages for influent water, one through the hush tube I-lTand the other through the flexible refill tube RFT and channel (IN to the ballast chamber BL and then to the tank FT.
The flush valve FV may be of a conventional type and it is shown in solid lines in FIG. 2. It is employed for controlling the main discharge of water from the flush tank FT through the discharge opening DO and pipe P into the toilet bowl TB. A somewhat more detailed description will now be provided as to the operation of the fluidic and mechanical arrangement broadly illustrated in FIG. 2.
The flush valve generally designated FV, which may be of any well known construction, is preferably of the type shown and described in the Hurco et al. Pat. No. 2,773,267, issued Dec. 11, 1956, entitled Flush Valve. The flush valve FV includes a rotatable disc device D8 which, in its normally closed position, rests upon a weir or collar WR. When so positioned, water within the tank FT will be unable to traverse or break the seal established between the disc DS and the weir WR. When the water in tank FT is at its highest level, the float FL, which is affixed to lever LV, will be in its uppermost position as shown in FIG. 2, and the inlet valve IV will be closed. However, when the flush valve FV is operated to release the water of tank FT, the disc DC reaches a position shown in dotted lines in FIG. 2. The disc DS is tilted and thereby raised above the weir WR so that water may then travel rapidly and voluminously through the discharge opening DO and into the toilet bowl TB. The disc device DS is rotated about the pivotal axis FVX of the flush valve FV. When the tank water is discharged, float FL will be at its lowermost position and the pressure of the water at the supply inlet will cause the inlet valve IV to be opened.
The separate knobs TNU and TNL may individually control the operation of the flush valve FV. One of the knobs TNU is coupled to and controls the left lobe or finger of the trip lever TF. The other knob TNL is mechanically coupled to and controls the right lobe or finger of the trip lever TF. The lower lobe or finger of the trip lever TF in turn controls the actuator FVT of the flush valve FV. By pulling either of the knobs TNU or TNL, the trip lever TF will be rotated clockwise, tilting the actuator FVT from its normal position (shown in solid lines in FIG. 2) to its operated position (shown in dotted lines). In other words, the manipulation or operation of either of the knobs TNU or TNL will result in a rotation of the three-fingered trip lever TF in a clockwise direction through a predetermined angle to rotate the disc DS about its pivot F VX and thereby to release the flush valve FV, hence breaking the seal between the disc DS and the weir WR. Consquently, the water in the tank FT will be promptly discharged over the weir WR and through the discharge opening DO into the toilet bowl TB.
After the water within the tank FT has receded below the rim of the weir WR, the float FL attached to the lever LV will be in its lowermost position, as already mentioned. In this position the water inlet valve IV will be fully opened, permitting water to enter from the supply inlet SI at a rapid pace. The incoming water will flow in one path through the flexible tube RFT and channel CN to the ballast tank BL, and into tank FT, and in another path through the hush tube HT. As water enters the flush tank FT and rises in level, the rising water will buoy the float FL and cause it to move upwardly in step with the level of water in the flush tank FT. Thus, water will be entering the tank FT not only through the hush tube HT but also from the parallel path of the flexible tube RFT and the channel CN of the lever LV and into the ballast tank BL of the float The ballast tank BL is a cylindrical chamber which is open at the top to receive water. However, there is a small opening or several small openings generally designated BLO, within the ballast tank BL through which water fed to the ballast tank BL will be released into the flush tank FT. Hence, the joint reception of water by tank FT, through the hush tube HT and the ballast tank BL, speeds up the accumulation of water within tank FT. As the level of the water in tank FT rises further, the rotation of the lever LV in a counterclockwise direction about its pivotal axis RLX gradually, but fairly rapidly, closes the water inlet valve IV, thereby reducing the inflow of water into the tank FT. This reduction in water accumulation in tank FT occurs only near the end of the travel of the lever LV. Thus, the water accumulation within the tank FT will generally be at a rapid pace, faster than is now achieved in conventional flush tanks. The time interval required to fill tank FT, reduced by the dual entrance paths, makes the tank FT available for more rapid sequential operations when associated with the improved mechanism.
The tank FT embodies a vertical overflow tube OT which is coupled to the discharge opening DO (see FIG. 4). The upper end of the overflow tube OT is open so that, as water reaches the level of the upper opening, it will be released through the overflow tube OT and through the discharge opening D to the tiolet bowl TB. The overflow tube OT is also employed to permit excess water reaching the tank FT to be discharged into the toilet bowl TB rather than to be fed back to the supply inlet opening SI and in turn to the local water supply system and possibly contaminate the water system.
In accordance with this invention, the volume of water entering the ballast tank BL of the float FL during the early stages immediately following the opening of the valve IV will exceed the amount drained through the opening BLO of the ballast tank BL. Hence, the effective buoyancy of the tank float FL will be rapidly reduced in the early stages of the opening of inlet valve IV. As the float FL rises further and reaches the set or predetermined water level in the tank FT, the plunger CR of the water inlet valve IV (see FIGS. 8, l5 and 17) is advanced to the left to reduce the inflow of water through the flexible tube RFT. Hence water will enter the ballast tank BL at a slower rate than the rate at which water drains out of ballast tank BL through its drain hole or holes BLO. As the ballast tank BL empties, it effects an increased buoyancy on the float FL, which quickly rises and shuts off the flow of water into tank FT via the water inlet valve IV. The float FL may be viewed as jumping" through the last segment of its return to its uppermost position to bring about the rapid closing of the water inlet valve IV. In a conventional water inlet valve, the final shutoff of the valve is slow and produces a prolonged hissing sound because the float of the conventional flush tank slowly overcomes the inlet water pressure. As already indicated, when the lever LV and its float FL are at or near the uppermost position as shown in FIG. 2, the water inlet valve IV will be fully closed, and no more water will be fed through the supply inlet SI.
It is, of course, one of the features of this invention to provide two separate and distinct main avenues or paths for simultaneously feeding water from the supply inlet to the flush tank FT. One of these main supply channels is provided by the flexible tube RFT and channel CN to ballast tank BL and the other by the hush tube HT, as already observed. The channel and other port dimensions have been selected to provide the proper time interval for tank tillage.
The lower knob TNL is employed primarily to enable children to conveniently control the operation of the flush tank. On the other hand, taller people can readily reach the upper knob TNU to control the operation of the tank FT. Dual controls are highly desirable especially in situations in which the flush tank FT is elevated considerably above the level of the toilet bowl TB.
The upper knob TNU has a threaded cap so that it may be coupled by a stem STU through an appropriate housing or enclosure to the left arm of the trip lever TF. The knob TNU is intended to hold the cover CV closed against the upper rim of the tank FT. A similar stem STL couples the lower knob TNL to the right arm of the trip lever TF via a coupling element K.
The relative position and angular displacement of the lever LV can be controlled by two threaded screw members SCI which are located at opposite sides of the pivot pin RLX of the lever RL, as is plainly shown in FIG. 2. By moving these screws SC] in relatively opposite directions, the angular position of the lever LV may be controlled and this in turn governs the maximum height to which float FL may be raised. This then determines the maximum level to which the water may rise within tank FT. Each rise in the water level will be accompanied by a delay in the time of closure of the inlet valve IV. The maximum water level of tank FT will be increased and the time interval during which valve IV is opened will be increased by manipulation of screws SCI, as above indicated. Conversely, by reversing the relative adjustments of the two screws SCI, the lever LV may be relatively lowered so that a lower level of water will be accumulated within the tank FT and the opening time of valve IV will be reduced. In the latter case, the inlet valve IV will come to complete closure at an earlier time phase.
It will be observed that the float FL is permanently fastened to the channeled lever LV by a plastic threaded screw 5C These two elements are therefore caused to move together so that each change in the vertical elevation of the float FL will be accompanied by a corresponding angular displacement of lever LV.
FIGS. 2. and 8, for example, show the mechanism adjacent to and immediately controlling the water inlet valve IV. The plunger PG is movable about its axial pin PGX, but the plunger PG exercises a lateral displacement of the inlet valve IV. That is, the rotary motion of plunger P0 is converted into a lateral or linear displacement of valve IV.
The movable mechanism of the inlet valve IV is shown particularly in FIGS. 15 and 16. A modified mechanism is shown in FIGS. 17 and 18. A rubberized cylindrical member RU is fixed within a collar CR. The collar CR supports an O-ring OR. A shoulder 86 on the disk SH of the mechanism of FIG. 15 puts a limit on the amount by which the movable mechanism here shown and described can travel into the external housing of the inlet valve IV. The O-ring OR is located to the right of the flexible tube RFT and of the hush tube HT (which are illustrated in FIG. 2) so that incoming water may be received by these two tubes but cannot pass the O-ring. The slotted segment RM of the mechanism is positioned in a corresponding channel of the plunger PG so that the plunger PG may control and laterally move the slotted segment RM to the left to reduce or to close the opening of the inlet valve IV. The water pressure applied through the supply inlet SI can cause limited movement to the right of the movable mechanism of valve IV, but any movement in the opposite direction is controlled by the plunger PG.
FIGS. 17, 18 and 18a show projecting lugs LG and rounded shoulders SG between which the plunger lever PG is positioned and retained. Hence, when the float FL drops as the flush tank FT empties, the plunger PG is rotated away from the inlet valve IV to release the movable mechanism of this valve and thereby open the valve. The opening of valve IV as the float FL drops will occur even when the water pressure in the supply inlet SI is low and insufficeint per se to move the rubber member RU away from its seat. Thus, by the construction of FIGS. 17 and 18, the valve IV will be opened regardless of the magnitude of the incoming water pressure.
The pivot pins, TFX, RLX, LVX and PGX are several similar general purpose pins employed in this invention to couple two parts together so that one or the other or both of the parts may be rotatable. The general form of these pins is shown in FIGS. 5, 6 and 7. The pin LVX, for example, has a cap CP. This pin LVX and its cap CP are associated with a retainer arm RT, forming a unitary structure. The retainer arm RT is flexible, and therefore, one end is movable. Although shown in solid lines in FIG. 5 in its normal position, the retainer arm RT may be deflected by relatively minor finger pressure to the dotted position also shown in FIG. 5. In the latter or dotted position, the cap CP of the pin LVX may be released from the retainer arm RT so that the pin LVX may be removed from its opening to sever the parts coupled together by pin LVX. On the other hand, when the retainer arm RT is returned to its normal position while the cap CP is in the position shown in FIG. 5, it will be impossible to remove the pin LVX. FIG. 6 shows the cap CP about to be moved into engagement beneath the retainer arm RT so that it may be held by the retainer arm RT. On the other hand, in FIG. 7, the retainer arm RT is undeflected so that the cap C? may not be removed from its position.
It will be observed from FIGS. 2 and 3 that the axial pin LVX couples the rod lever RL to the channeled lever LV. In those figures the axial pin LVX is held in its assigned position to maintain the two levers coupled to each other. However, should it be desired to uncouple or sever the two levers from each other, it is only necessary to deflect the retainer arm RT and hold it deflected until the cap CP is slid beyond the retainer arm to remove the pin LVX. The levers will thence be uncoupled. To recouple the levers RL and LV, it is again necessary to deflect the arm RT until the cap CP of pin LVX has been moved back beyond the arm RT. Hence, the pin LVX will again serve as a pivot for the two levers. Obviously, each of the other axial pins TFX, RLX and PGX are similarly constructed and are associated with similar retainer arms and perform in the same general manner.
FIGS. 19 and 20 show a modified form of hush tube HT. This hush tube HT has a divider DV to provide two longitudinal channels within tube HT. The divider DV acts as a sort of baffle to slow down the inflow of water through the water inlet valve IV. This has the effect of reducing the turbulence of the water flowing through the inlet valve IV to and past the rubberized member RU of the inlet valve IV. This materially reduces the noise at the inlet valve IV, reducing the noise at this point to a practical nullity.
It is also observed from FIG. 19 that the slope of the sides of the flush tank FT is toward the base of the tank. Due to the slope of the wall of tank FT adjacent to the hush tube HT and due also to the curvature KR at the intersection of the wall and tank base, the water emitted by the hush tube HT will impinge against the tank surface at a very small angle and hence the water will glide smoothly into the base of the tank FT. This smooth, non-turbulent emission substantially reduces noise. Such noise is generated especially in a conventional flush tank in which the hush tube is parallel to the tank walls and emitted water flows squarely (perpendicularly) against the tank base. Thus, because of the taper of the tank wall and the curvature KR, substantially noiseless operation is effected.
Thus, in accordance with this invention, two distinct sources of noise are effectively suppressed from the tank operation.
All of the parts and fittings within the flush tank FT, as well as the flush tank FT itself, are made of plastic materials. They are relatively light in weight and inexpensive; consequently, the cost of manufacture of the various parts of the overall combination will be relatively low. Moreover, all of the parts are readily removed whenever desired and replacements may be made expeditiously by even an inexperienced mechanic, as well as by the home-owner.
It will be apparent that the structures and features which are described and illustrated and claimed are capable of a wide range of variations for accomplishing the same or similar objectives.
What is claimed is:
l. Operator flushing mechanism for coupling and decoupling two parts to iniate a flushing action in a flush tank for a toilet bowl, both parts being provided with apertures which are to be aligned with each other, comprising a rod which has substantially uniform crosssection and is of sufficient length so as to be fully insertable through the apertures of said parts when they are to be coupled together and to constitute the axis of rotation of either or both of said parts, said rod having an expanded head at one end thereof to limit the extent to which said rod may be inserted through the apertures of said parts, a bar of hardened material which is deflectable, and means to hold one end of said bar in a fixed position so that a portion of said bar will overhang the head of said rod, whereby the rod may be inserted through the apertures of both parts to couple said parts together only by the deflection of the free end of said bar or removed from said apertures of said parts to decouple said parts only by the deflection of the free end of said bar.
2. Operator flushing mechanism according to claim 1 in which one of the parts is a lever which is rotatable about the apertures of both parts.
3. Operator flushing mechanism according to claim 1 including one or more elements each provided with an aperture which is to be aligned with the apertures of the two parts, whereby all of said elements and said two parts may be coupled together, or decoupled from each other, only by the deflection of the free end of said bar.
4. Operator flushing mechanism for rapidly coupling or rapidly decoupling a plurality of parts to iniate a flushing action in a flush tank for a toilet bowl, comprising a separate pair of substantially parallel arms for each of said parts, each arm having an aperture so oriented that all of the apertures may be aligned with each other, a rod of sufficient length so as to be fully insertable through all of said apertures to constitute a common axis for all of said parts, said rod having an expanded head at one end thereof to limit the travel of may be removed from said apertures to decouple said parts only when the free end of said bar is deflected.
5. Operator flushing mechanism according to claim 3 in which said bar is made of plastic material.
6. Mechanism according to claim 4 in which said rod is made of plastic material.

Claims (6)

1. Operator flushing mechanism for coupling and decoupling two parts to iniate a flushing action in a flush tank for a toilet bowl, both parts being provided with apertures which are to be aligned with each other, comprising a rod which has substantially uniform cross-section and is of sufficient length so as to be fully insertable through the apertures of said parts when they are to be coupled together and to constitute the axis of rotation of either or both of said parts, said rod having an expanded head at one end thereof to limit the extent to which said rod may be inserted through the apertures of said parts, a bar of hardened material which is deflectable, and means to hold one end of said bar in a fixed position so that a portion of said bar will overhang the head of said rod, whereby the rod may be inserted through the apertures of both parts to couple said parts together only by the deflection of the free end of said bar or removed from said apertures of said parts to decouple said parts only by the deflection of the free end of said bar.
2. Operator flushing mechanism according to claim 1 in which one of the parts is a lever which is rotatable about the apertures of both parts.
3. Operator flushing mechanism according to claim 1 including one or more elements each provided with an aperture which is to be aligned with the apertures of the two parts, whereby all of said elements and said two parts may be coupled together, or decoupled from each other, only by the deflection of the free end of said bar.
4. Operator flushing mechanism for rapidly coupling or rapidly decoupling a plurality of parts to iniate a flushing action in a flush tank for a toilet bowl, comprising a separate pair of substantially parallel arms for each of said parts, each arm having an aperture so oriented that all of the apertures may be aligned with each other, a rod of sufficient length so as to be fully insertable through all of said apertures to constitute a common axis for all of said parts, said rod having an expanded head at one end thereof to limit the travel of said rod through said apertures, a slender substantially linear bar which is held stationary at one end and is made of a material permitting the deflection of its free end upon the application of pressure thereto, the free end of said bar being normally positioned over the head of said rod, whereby the rod may be inserted through all of said apertures to couple said parts together only when the free end of said bar is deflected or the rod may be removed from said apertures to decouple said parts only when the free end of said bar is deflected.
5. Operator flushing mechanism according to claim 3 in which said bar is made of plastic material.
6. Mechanism according to claim 4 in which said rod is made of plastic material.
US223271A 1968-08-22 1972-02-03 Flush tank apparatus Expired - Lifetime US3860979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US223271A US3860979A (en) 1968-08-22 1972-02-03 Flush tank apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75466968A 1968-08-22 1968-08-22
US223271A US3860979A (en) 1968-08-22 1972-02-03 Flush tank apparatus

Publications (1)

Publication Number Publication Date
US3860979A true US3860979A (en) 1975-01-21

Family

ID=26917612

Family Applications (1)

Application Number Title Priority Date Filing Date
US223271A Expired - Lifetime US3860979A (en) 1968-08-22 1972-02-03 Flush tank apparatus

Country Status (1)

Country Link
US (1) US3860979A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US994793A (en) * 1911-02-09 1911-06-13 William Schwiesow Gasolene-tank.
US1525475A (en) * 1924-01-18 1925-02-10 Tutt Leo Harry Valve-closing mechanism for water closets
US1568611A (en) * 1925-07-02 1926-01-05 Northern Indiana Brass Co Push lever for operating closet-tank valves
US2528441A (en) * 1949-07-23 1950-10-31 Kolar John Axial operated flush tank valve
US2534524A (en) * 1946-05-31 1950-12-19 James F Molloy Fluid operated toilet flusher
US2543438A (en) * 1949-01-13 1951-02-27 Francis R Cochran Flush valve system
US2760204A (en) * 1955-07-26 1956-08-28 Marvin A Joanis Flush tank control system
US2849725A (en) * 1955-12-28 1958-09-02 Armstrong Thomas Flushing valves for cisterns

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US994793A (en) * 1911-02-09 1911-06-13 William Schwiesow Gasolene-tank.
US1525475A (en) * 1924-01-18 1925-02-10 Tutt Leo Harry Valve-closing mechanism for water closets
US1568611A (en) * 1925-07-02 1926-01-05 Northern Indiana Brass Co Push lever for operating closet-tank valves
US2534524A (en) * 1946-05-31 1950-12-19 James F Molloy Fluid operated toilet flusher
US2543438A (en) * 1949-01-13 1951-02-27 Francis R Cochran Flush valve system
US2528441A (en) * 1949-07-23 1950-10-31 Kolar John Axial operated flush tank valve
US2760204A (en) * 1955-07-26 1956-08-28 Marvin A Joanis Flush tank control system
US2849725A (en) * 1955-12-28 1958-09-02 Armstrong Thomas Flushing valves for cisterns

Similar Documents

Publication Publication Date Title
US4497076A (en) Dual flush system for controlling flush water in water closet
US4141092A (en) Dual-flush, tank-actuating device
US4748699A (en) Water closet limited flush volume control system
US4406024A (en) Flushing controller for toilet
US5301373A (en) Dual flush mechanism
IL150803A0 (en) Flushing mechanism for a dual flush cistern
US3906554A (en) Selective toilet flushing arrangement
US5524297A (en) Two-level flush valve
US5319809A (en) Dual mode flush mechanism for toilets
US5175894A (en) Toilet flushing device
US3533437A (en) Flush tank apparatus
US3654637A (en) Flush tank apparatus
US5105480A (en) Toilet flush valve apparatus
US3823425A (en) Toilet tank discharge control for selectively discharging variable amounts of water
US3380077A (en) Double flushing valve
US3860979A (en) Flush tank apparatus
US5216761A (en) Flush volume controls for toilets
US3810261A (en) Flush valve assembly for tank
US4601071A (en) Flush system
US4840196A (en) Bi-stable, three condition flush tank system
US3869733A (en) Multi level holding tank discharge system
CN105971078B (en) Water-saving closestool and intelligent flushing system
US1225278A (en) Flush-valve.
US3639918A (en) Flushing apparatus
US420327A (en) Flushing mechanism for water-closets

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANKERS TRUST COMPANY

Free format text: SECURITY INTEREST;ASSIGNOR:AMERICAN STANDARD INC., A DE. CORP.,;REEL/FRAME:004905/0035

Effective date: 19880624

Owner name: BANKERS TRUST COMPANY, 4 ALBANY STREET 9TH FLOOR,

Free format text: SECURITY INTEREST;ASSIGNOR:U.S. PLUMBING, INC., A CORPORATION OF DELAWARE;REEL/FRAME:004905/0159

Effective date: 19880624

Owner name: BANKERS TRUST COMPANY, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:U.S. PLUMBING, INC., A CORPORATION OF DELAWARE;REEL/FRAME:004905/0159

Effective date: 19880624

AS Assignment

Owner name: CHEMICAL BANK, AS COLLATERAL AGENT, NEW YORK

Free format text: ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:BANKERS TRUST COMPANY, AS COLLATERAL TRUSTEE;REEL/FRAME:006565/0753

Effective date: 19930601

AS Assignment

Owner name: AMERICAN STANDARD, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST (RE-RECORD TO CORRECT DUPLICATES SUBMITTED BY CUSTOMER. THE NEW SCHEDULE CHANGES THE TOTAL NUMBER OF PROPERTY NUMBERS INVOLVED FROM 1133 TO 794. THIS RELEASE OF SECURITY INTEREST WAS PREVIOUSLY RECORDED AT REEL 8869, FRAME 0001.);ASSIGNOR:CHASE MANHATTAN BANK, THE (FORMERLY KNOWN AS CHEMICAL BANK);REEL/FRAME:009123/0300

Effective date: 19970801

AS Assignment

Owner name: AMERICAN STANDARD, INC., NEW JERSEY

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CHASE MANHATTAN BANK, THE (FORMERLY KNOWN AS CHEMICAL BANK);REEL/FRAME:008869/0001

Effective date: 19970801