US3858361A - Rail grinding machine - Google Patents

Rail grinding machine Download PDF

Info

Publication number
US3858361A
US3858361A US434201A US43420174A US3858361A US 3858361 A US3858361 A US 3858361A US 434201 A US434201 A US 434201A US 43420174 A US43420174 A US 43420174A US 3858361 A US3858361 A US 3858361A
Authority
US
United States
Prior art keywords
grinding
rail sections
rail
carriage
clamping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US434201A
Inventor
Stephen G Behne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemetron Corp
Chemetron Railway Products Inc
Original Assignee
Chemetron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00239293A external-priority patent/US3818650A/en
Application filed by Chemetron Corp filed Critical Chemetron Corp
Priority to US434201A priority Critical patent/US3858361A/en
Application granted granted Critical
Publication of US3858361A publication Critical patent/US3858361A/en
Assigned to HARRIS TRUST AND SAVING BANK, 111 WEST MONROE STREET, CHICAGO, ILLINOIS 60690 reassignment HARRIS TRUST AND SAVING BANK, 111 WEST MONROE STREET, CHICAGO, ILLINOIS 60690 SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEMETRON-RAILWAY PRODUCTS, INC., A DE. CORP.
Assigned to CHEMETRON RAILWAY PRODUCTS, INC., A CORP. OF DE reassignment CHEMETRON RAILWAY PRODUCTS, INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: RAILWAY ACQUISITION CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/004Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding rails, T, I, H or other similar profiles

Definitions

  • ABSTRACT Division of Ser. No. 239,293, March 29, 1972, Pat.
  • n 1 3 26 7a 84 a w 86 /7a 0 66 w 45 90 M 2; f ,1 M 22. w //4 641 $6 w 45% 7 /73 .-/74 mt H4 [4 H 1 t :::IT T: .LZZTL. 'I' ""I” Il 94 g a4 98 9 E 2 6+ 226 250224 40 4a 7 0 a0 4 233 a 35 54 72 I. 7 m l m L g l l /l L fi A I- L ⁇ 34 32 Z5 Z0 Z4 34 +5 Patented Jan. 7, 1975 l4 Sheets-Sheet 1 Patented Jan. 7, 1975 14' Sheets-Sheet 2 Patented Jan. 7, 1975 83 1 14 Sheets-Sheet 3 Pmemted Jan. 7, 1975 3,358,361
  • FIG. 1 A first figure.
  • the present invention is directed towards a new and improved apparatus for grinding contact surfaces adjacent the ends of rail sections, and the like, which sections are subsequently welded into a continuous rail string.
  • US. Pat. No. 3,030,494 which patent is assigned to the same assignees as the present invention, there is shown and described a new and improved method and apparatus for forming a continuous rail string and, more particularly, this patent is concerned with a new and improved method and apparatus comprising in combination several separate or individual subassemblies which coact to produce a continuous rail string in a novel manner and more quickly and easily than heretofore has been possible.
  • One of the individual components or subassemblies of the foregoing patent is concerned with the problem of grinding contact surface areas adjacent the ends of the rail sections to be welded together in order that good electrical contact can be made between the rail sections and the electrodes of the rail welding during the welding of the rail sections end to end.
  • the present invention provides a new and improved apparatus for grinding electrode contact surfaces on rail sections and is an improvement over the showing in the aforementioned patent.
  • the electrode contact grinder of the present invention is well suited for use as a component or subassembly in the rail string production system shown in the aforementioned patent.
  • a rail welder or welding apparatus such as that shown in US. Pat. No. 3,488,467 may be efficiently used in combination additionally with apparatus for grinding the weld upset produced by the rail welded.
  • a suitable weld upset grinder is shown in U.S. Pat. No. 3,566,546, and both of these last two mentioned patents are assigned to the same assignee as the present invention.
  • One of the problems in making a continuous rail string is the fact that the individual rail sections which make up the string, as well as the continuous rail string itself, may have been warped, or twisted about the iongitudinal axis which make it exceedingly difficult for the rail section surfaces to make good contact with the electrodes in the rail welding apparatus.
  • High pressure contact over a relatively large area is needed for the high ampere current flow in making butt welds, particularly in connection with the rail base which is considerably wider in lateral dimension than the relatively narrow rail head surface which is slightly crowned.
  • Another object of the invention is to provide a new and improved apparatus for grinding parallel welding electrode contact surfaces adjacent the ends of rail sections on opposite sides, which surfaces are ground in more uniform and precise manner even though the rail sections are twisted or warped.
  • Another object of the present invention is to provide a new and improved apparatus for grinding welding electrode contact surfaces on opposite surfaces of rail sections, which surfaces are precisely parallel and are of ample size to provide for high amperage current flow with a minimum of contact resistance.
  • Another object of the present invention is to provide a new and improved apparatus for grinding welding electrode, contact surfaces on a pair of rail sections to be welded together in single, automatic operation in a minimum of time.
  • Still another object of the present invention is to provide a new and improved apparatus of the character described employing novel means for compensating for the wear of the abrasive means of the grinder which appears over a period of time.
  • Still another object of the present invention is to provide a new and improved apparatus of the character described, which apparatus is completely automatic in operation utilizing a pair of grinding heads accurately controlled to provide precisely parallel welding electrode contact surfaces on opposite sides of a pair of rail sections.
  • Another object of the present invention is to provide a new and improved grinder of the character described wherein the grinding heads move longitudinally of the rail sections and are disposed in grinding contact with opposite sides thereof while moving toward an outer end of the railsection which is held in positive longitudinal alignment with respect to the moving grinding heads.
  • Another object of the present invention is to provide a new and improved rail grinding system of the character described which is readily adjustable to compensate for wear in the abrasive material of the grinder and which is easily controlled to provide precision ground welding electrode, contact surfaces on opposite sides of the rail sections near their ends.
  • a new and improved apparatus in accordance with the present invention comprising squeeze roll means for holding one or more rail sections. in precise, end-toend, longitudinal alignment and. abrasive grinding means including a plurality of wheels mounted on an axis of rotation extending laterally of the rail sections at an acute angle relative to the longitudinal axis thereof.
  • Carriage means is provided for moving said grinding means longitudinally of the rail sections toward the ends thereof, and pressure means exerts force on the grinding means normal to the axis of rotation of the abrasive to provide grinding contact for a length of travel of the carriage and subsequent travel away from the surface of the rail sections. Movement of the grinding means into and out of engagement is accomplished during longitudinal travel of the carriage to provide welding electrode contact surfaces on the rail sections near the ends.
  • FIG. 1 is a longitudinal side elevational view of a new and improved rail grinding apparatus constructed in accordance with the features of the present invention
  • FIG. 2 is a top plan view of the rail grinding apparatus of FIG. 1;
  • FIG. 3 is a transverse cross-sectional view taken substantially along line 3-3 of FIG. 1;
  • FIG. 4 is a fragmentary, transverse, cross-sectional view taken substantially along line 4-4 of FIG. 1;
  • FIG. 5 is a fragmentary, horizontal, cross-sectional view taken substantially along 55 of FIG. 1;
  • FIG. 6 is a fragmentary, longitudinal, cross-sectional view taken substantially along line 6-6 of FIG 3;
  • FIG. 7 is a fragmentary, horizontal, cross-sectional view taken substantially along line 77 of FIG. 1;
  • FIG. 8 is a vertical, transverse, cross-sectional view taken substantially along line 8-8 of FIG. 1;
  • FIG. 9 is a vertical, transverse, cross-sectional view taken substantially along line 99 of FIG. 1;
  • FIG. 10 is a vertical, cross-sectional view similar to FIG. 6, but illustrating the apparatus with the grinding heads and grinding contact with the rail sections;
  • FIG. 11 is a schematic diagram illustrating in animated fashion the path traversed by the grinding heads relative to the rail sections;
  • FIG. 12 is a schematic diagram indicating a fluid control system of the apparatus.
  • FIGS. 13A-E illustrate in schematic form an electrical control system for the grinding apparatus.
  • FIGS. 1, 2, and 3 a new and improved rail grinder referred to generally by the reference numeral in FIGS. 1, 2, and 3.
  • the rail grinder 20 is especially adapted for grinding welding electrode, contact surfaces on opposite surface portions of longitudinal rail sections adjacent the ends thereof so that the rail sections may subsequently be welded together end-to-end in the rail welding apparatus of the type generally shown in U.S. Pat. No. 3,488,467, previously referred to.
  • the rail grinder 20 includes a main frame 22 comprising a rectangular, horizontal base structure 24 and a pair of longitudinal side frames 26 extending vertically upwardly along opposite, longitudinal outer edges of the base.
  • the base structure 24 is constructed of longitudinal side channels 28 connected at the ends and intermediate the ends by a plurality of cross members 30.
  • the rail grinder is mounted for movement along a track comprising a pair of spaced-apart, guide rails 32 and for this purpose pairs of flanged support wheels 34 are mounted on axles 36 supported by the base 24 adjacent opposite ends thereof, as best shown in FIGS. 1 and 2.
  • One of the axles 36 is driven to move the rail grinder along the rails 32 by means of a pair of spockets 38 and a chain drive 40, which sprockets and chain drive interconnect the axle with a reversible, electrically powered main drive gearmotor 42.
  • the main drive, gearmotor 42 includes a reduction gear assembly so that the axle 36 is driven at relatively low speed and high torque in either direction to move the rail grinder up and down the rails 32 to any selected position.
  • Each of the side frames 26 of the main frame structure includes a pair of upright corner posts 44 supported from the base 24 and the posts are structurally interconnected at their upper ends by a pair of longitudinally extending, channels 46.
  • Suitable corner braces 48 of angle iron (FIG. 1) are provided to structurally interconnect the posts 44 with the base side channels 28 and with the upper longitudinal channels 26.
  • transverse cross members 50 are provided at opposite ends of the frame to interconnect the channels 46 and provide a generally rectangular, rigid frame structure.
  • the main frame structure 22 provides support for a movable carriage 60 on which is mounted an upper grinding head 70, a lower grinding head 80, and an exit squeeze roll assembly 90.
  • the carriage 60 is movable longitudinally on the main frame structure 22 and is guided and supported for longitudinal movement by an upper, carriage support rod 52 and a lower carriage support rod 54.
  • the upper support rod or shaft 52 is supported on one of the longitudinal upper channels 46 of a side frame 26 by a plurality of upstanding support brackets 56, as best shown in FIGS. 1 and 3, and the lower support rod 54 is similarly supported by brackets 56 mounted on a lower base side channel 28 as shown.
  • the carriage 60 comprises a pair of generally rectangular, vertical side frames 58, each of which includes a pair of spaced-apart corner posts 62 which are interconnected by a plurality of horizontal cross members 64, as best shown in FIG. 1.
  • the upper ends of the posts 62 of the carriage side frame 58 adjacent the upper support rod 52 are interconnected by a horizontal, elongated hollow tubular member 66 (FIG. 3), which member is secured to the upper support rod 52 for parallel, longitudinal sliding movement with respect thereto by a pair of guide sleeves 68 slidably disposed on the support rod and interconnected to the tubular member by means of laterally extending, parallel side brackets 72, as best shown in FIGS. 1, 2 and 3.
  • Similar cylindrical guide sleeves 68 are mounted on the lower support rod 54, and these sleeves are connected via a bracket 72 to an elongated, hollow, tubular support member 74 connected to the lower ends of the posts 62 on the opposite carriage side frame 58.
  • both of the'opposite side frames 58 of the movable carriage 60 are supported for longitudinal sliding movement along the respective upper andlower carriage support rods 52 and 54 by means of hollow tubular, upper and lower support members 66 and 74, respectively.
  • the respective side frames 58 in turn are joined by transverse, cross members 76 which structurally tie the side frames together to form an integral relatively rigid box or cagelike carriage base structure.
  • Movement of the carriage longitudinally on the guide rods 52 and 54 from a centered position of FIGS. 1, 2 and 3 in opposite directions is accomplished by means of a pair of left and right, carriage traverse cylinders 78 and 82 mounted with their rod ends extending outwardly in opposite directions and their closed ends interconnected together, as best shown in FIG. 2.
  • cylinders are arranged in coaxial alignment on a central longitudinally extending vertical plane of the rail grinder and the outer end of the piston rod of the lefthand cylinder 78 is pivotally interconnected to an upper cross member 50 at the left-hand end of the main frame 22.
  • Theouter end of the piston rod of the righthand cylinder 82 is pivotally interconnected to a cross plate 84 disposed transversely between a pair of longitudinally extending angles 86 which are parallel and on opposite sides of the right hand cylinder 82.
  • the angles 86 are secured at opposite ends to the upper, transverse cross members 76 on the carriage frame, as best shown in FIGS. 2, 3, and 4.
  • the rail grinder is especially adapted for grinding contact spots for welding electrodes on opposite head and base surfaces of a pair of longitudinally aligned railroad rail sections 100 L and 100 R, which sections are subsequently welded together end-to-end to form a continuous rail string.
  • the left-hand rail section 100 L which is attached to the already completed welded rail string is moved to the left by the exit squeeze roll assembly 90, and the right-hand rail section 100 R is moved to the left by a stationary, separate, incoming squeeze roll assembly 110, which assem bly is substantially identical in operating structure and characteristics to the exit squeeze roll assembly 90 on the carriage except for the fact that the incoming squeeze roll assembly is mounted on a separate table structure 92 (FIG. 1) positioned in fixed relation, relative to track 32.
  • the exit squeeze roll assembly 90 is mounted on and travels with the longitudinally movable main carriage 60.
  • the exit squeeze roll assembly 90 is supported on a platform structure 98 (FIGS. 1, 6 and 10) extending outwardly in cantilever fashion from the left-hand side of the carriage 60, as shown in FIG. I.
  • the exit squeeze roll assembly is driven by a low speed, high torque, reversible, electrically powered gear motor 102 and the incoming squeeze roll assembly III) is driven by a similar gear motor 104.
  • Each of the squeeze roll assemblies includes an upright framework 106 having corner posts of angle iron disposed on opposite sides of the path traversed by the rail sections.
  • the corner posts are interconnected by a plurality of horizontal, laterally transverse cross members 112, as best shown in FIGS. 6 and 10 and the corner posts 108 on the same side of the rail sections are joined by horizontal cross members 114.
  • each squeeze roll assembly includes a lower, drive roll 116 carried on a drive axle 118, which is supported in suitable bearing assemblies at opposite ends and driven by a respective gear motor 102 or 104, as best shown in FIG. 8.
  • each squeeze roll assembly includes an upper, pressure roll 120 adapted to contact the head surface of the rail sections to urge the rail sections downwardly so that the base is in firm driving contact with the drive rolls 116.
  • the upper pressure rolls 120 are supported on horizontal axles 122, which axles are supported for free rotation at opposite ends by bearing assemblies 124.
  • the bearing assemblies 124 are mounted on horizontal, vertically adjustable, support base structures 126.
  • each base structure includes a pair of cylindrical sleeves 128 at opposite ends, which sleeves are slidably disposed on a pair of guide rods 130 supported in parallel, vertical alignment on the inside of the upright frame structures 106 by bearing assemblies 132 at the upper and lower ends, as best shown in FIG. 8.
  • the pressure rolls and drive rolls are journaled about parallel, vertically spaced, horizontal axes and that the upper, pressure rolls are adjustably positioned to move vertically toward and away from the lower drive rolls 116, thereby to hold or release pressure on the rail sections for driving and/or supporting and holding the rail sections in precisely aligned contact between each pair of upper and lower rolls.
  • the squeeze roll gear motors are provided with a braking mechanism used to prevent rotation of the lower drive roll 116 for the purpose of restraining the rail sections against longitudinal translation during a grinding operation as the grinding heads 70 and 80 mounted on the movable carriage 60 traverse back and forth. It should also be appreciated that while the upper pressure rolls are biased downwardly into pressure engagement against the head surface of the rail sections, the rail sections are restrained against vertical and laterally horizontal movement, however, longitudinal translation is permitted when desired by releasing the braking mechanism of one or both gear motors 102 and 104.
  • the braking mechanism of exit squeeze roll assembly 90 is released and the left-hand rail section 100 L is restrained against longtudinal translation by clamping means on the other components in the system acting on the rail string such as the welder or another external clamping device.
  • the upper pressure rolls 120 of the squeeze roll assemblies are freely rotatable and may rotate in response to longitudinal translation of the carriage 60 or upon driving rotation of the lower drive rolls 116.
  • support is also provided by a pair of rolls 138 (best shown in FIGS. 4, 6 and 10) mounted on shafts which are joumaled for rotation by pillow blocks 140 carried on horizontal base platforms 142 provided on the carriage 60.
  • the bases 142 are supported from laterally transverse cross members 76 which extend between corner posts 62 of the traveling carriage 60.
  • FIG. 4 it will be seen that the base or bottom surfaces of the rail section 100 L and 100 R roll over and are supported on the freely rotatable guide rolls 138 as the rail sections move longitudinally relative to the carriage.
  • the web guide rolls 144 are mounted on vertical axles which are journaled in fixed and movable support bracket assemblies 146 and 148, respectively, best shown in FIGS. 3, 4, 5 and 6.
  • the upper grinding head includes an upper grinding wheel which comprises a plurality of cylindrical discs or wheels formed of abrasive material and mounted on a common shaft 152.
  • the shaft 152 is supported by pillow block bearings 158 at opposite ends mounted on a pair of support angles 156 (FIG. 4) attached to a rectangular motor base 154 formed of angle iron.
  • the grinding wheel shaft 152 is driven at relatively high speed by an electric motor 160 via a beltdrive 162.
  • the motor base 154 is supported for vertical, relative movement on a rectangular, upper grinding head frame 164 formed of channel iron.
  • a plurality of vertical guide rods 166 are secured at their upper and lower opposite ends in pillow blocks 168 attached to the inside web of the grinding head frame 164 and the motor base 154 is provided with a plurality of bearing sleeves 170 on the sides thereof slidably disposed on the guide rods 166, thus permitting relative vertical adjustment between the motor base 154 and the grinding head frame.
  • the frame 164 in turn is mounted for vertical movement or translation on the carriage 60, and for this purpose, vertical guide rods l72 are provided on the opposite side frames 58 of the carriage.
  • the guide rods are supported at opposite ends by pillow blocks 174 secured to the cross members 64, of the carriage side frames, as best shown in FIGS. 3 and 4.
  • Opposite side members of the upper grinding head frame 164 are provided with cylindrical sleeves 176 which are slidably disposed on the vertical guide rods 172 to permit relative vertical sliding movement of the frame 164 on the carriage 60.
  • Control and vertical sliding movement of the upper grinding head frame 164 on the carriage 60 is accomplished by a pair of upper grinding head cylinders 178, and the piston rods thereof are pivotally interconnected to the grinding head frame by means of clevis and bracket attachments as best shown in FIGS. 6, l0 and 3.
  • the upper, closed ends of the cylinders are'pivotally connected to transverse cross members 76 of the carriage 60 so that when pressurized fluid is introduced into either end of the cylinders the frame 164 can be moved upwardly or downwardly on the carriage into or out of grinding engagement with the head surface of the rail sections 100 L and 100 R.
  • the upper grinding head 70 includes a pair of upper pressure rolls 180 disposed on opposite sides of the grinding wheel axis of rotation as best shown in FIGS. 6 and 10.
  • Each pressure roll is mounted on an axle 182 parallel of the grinding wheel axle 152 and the axles 182 are supported at opposite ends from the grinding head frame 164 by means of support bearing assemblies 184, as best shown in FIGS. 6 and 10.
  • the pressure rolls 180 are in a fixed vertical position relative to the main frame 164 of the upper grinding head 70 while the grinding wheel 150 itself is vertically adjustable with respect to the main frame in order to compensate for wear on the grinding wheel which occurs in consequence of the length of time that grinding engagement with the rail head surfaces of the rail section occurs.
  • the upper grinding head 70 is provided with a control assembly for moving the motor frame 154 relative to and with respect to the main grinding head frame 164.
  • the upper grinding head includes a rectangular adjusting frame 186 which is pivotally secured along one side by means of several pivot pin support assemblies 188 attached to a side member of the main grinding head frame 164 as best shown in FIG. 7.
  • Longitudinal side members 190 of the adjusting frame 186 are pivotally interconnected with parallel side members of the motor base 154 through pivot pin connector assemblies 192 for raising and lowering the motor base 154 with respect to the main grinding head frame 164.
  • Control of the pivotal relation between the pivotable adjusting frame 186 and the vertically movable motor base frame 154 is provided by means of a screw jack 194 (FIGS. 6 and 10).
  • the screw jack is threaded connected to one side member of the adjusting frame 186 and is mounted in vertical position for rotation in either direction to raise or lower the angle of adjusting frame relative to the main grinding head frame.
  • the jack screw is supported in a guide sleeve 196 fastened to a transverse side member of the main grinding head frame 164 and rotation of the jack screw in either direction by a controlled amount is accomplished by means of a slow speed, electric driven, gear motor 198.
  • the adjusting gear motor is mounted on the same transverse side member of the main grinding head frame 164 as the sleeve 196 and is coupled to rotate the jack screw 194 when the motor is energized. From the foregoing, it will be seen that when the adjusting gear motor 198 is driven to rotate in either direction, the grinding wheel 150 is moved up and down relative to the main grinding head frame 164 and the pressure rolls 180 in order to compensate for wear occurring on the grinding wheel 150.
  • the adjusting gear motor 198 is energized for a selected period or number of revolutions to lower the grinding wheel 150 to provide the same desired depth of grind or grinding pressure as originally set up.
  • the lower grinding head 80 includes an abrasive grinding wheel 200 comprising a plurality of grinding wheel discs mounted on a common shaft 202.
  • the lower shaft is aligned at an acute angle with respect to the longitudinal axis of the rail sections as best shown in FIG. 5 and while both the upper and lower grinding wheel shafts are horizontal, they are not parallel.
  • the lower grinding wheel 200 is adapted to move upwardly into contact against the under surfaces of the base of the rail sections and it has been found that by adjusting the axis of rotation of the grinding wheel away from a perpendicular to a lateral direction to an acute angle relative to the longitudinal axis of the rail section better grinding occurs.
  • the upper shaft 152 laterally perpendicular and horizontal, and the lower shaft 202 horizontal but at an acute angle in a lateral direction with respect to the longitudinal axis of the rail sections
  • slight variations comprising twists or winds in the rail sections are better compensated for as the spot grinding occurs.
  • the clamping effect on the rail sections between the upper and lower grinding wheels moving longitudinally toward the ends of the rail sections produces welding electrode contact surfaces that are exactly parallel.
  • the lower grinding head 80 is substantially similar to the upper grinding head and includes a pair of pressure rolls 204 disposed on opposite sides of the guiding wheel 200 for guiding contact with the rail base.
  • the guiding wheel axle 202 is supported on a pair of pillow block bearings 206 mounted on a pair of angles 208 which are attached to a rectangular lower motor base frame 210 formed of angle iron.
  • the lower motor base frame 210 is mounted for vertical sliding movement with respect to a larger lower grinding head main frame 212 formed of channels and of rectangular shape as shown.
  • the lower motor base frame 210 is supported for vertical sliding movement with respect to the lower grinding head main frame 212 by a plurality of vertical guide rodls 214 secured to the inside surface of the main frame by bearing blocks 216 at opposite ends of the guide rods.
  • Sleeves 218 are mounted for sliding disposition on the guide rods 214, and the sleeves are attached to side members of the motor base frame 210 so that the motor base frame is slidable in continuously parallel and vertical translation with respect to the lower grinding head mainframe.
  • the grinding head main frame in turn is mounted for vertical translation with respect to the carriage 60 on vertical guide rods 220 supported at opposite ends by bearing blocks 222 attached to the carrier side frame cross members 64, as best shown in FIG. 4.
  • Opposite side members of the lower grinding head frame are provided with sleeves 224 slidably disposed on the guide rods 220, as best shown in FIGS. 3, 4 and 5, and the lower grinding head main frame is controlled for movement up and down on the traverse carriage 60 by means of a pair of lower grinding head control cylinders 226 having the upper ends of their piston rod pivotally connected to the grinding head main frame through connector bracket 228, as best shown in FIGS. 6 and 10.
  • the lower ends of the lower head control cylinders are pivotally connected to transverse cross members 76 of the carriage 60 as shown in FIG.
  • the lower grinding wheel is driven by an electric motor 230 secured to the underside of a motor base 210 and the motor is drivingly interconnected with the lower grinding head shaft 202 via a belt drive 232.
  • the grinding head main frame 212 When pressurized fluid is introduced into the lower end of the lower grinding head control cylinders 226, the grinding head main frame 212. is moved upwardly on the carriage 60 until the lower grinding head pressure rolls 204 contact the underside of the rail sections L and 100 R. Adjustment of the depth of grind is controlled by means of a motor driven jack screw 234 supported for rotation in a vertical bearing assembly 236 mounted on the inside of a transverse cross member of the grinding head main frame. The lower end of the jack screw is pivotally connected to a transverse side member of a lower adjusting frame 238 and the upper end of the jack screw is driven to rotate in either direction at a low speed by means of a lower grinding

Abstract

Apparatus for grinding surfaces adjacent the ends of a pair of rail sections to be welded together comprising means for holding the rail sections in end-to-end aligned, longitudinal relation, abrasive grinding means movable about an axis of rotation extending laterally of the rail sections and at an acute angle relative to the longitudinal axis thereof mounted on carriage means slidable longitudinally of the rail section, and pressure means for moving the abrasive member into contact with the surface of the rail sections during longitudinal travel by the carriage.

Description

United States Patent 1191 1111 3,858,361 Behne Jan. 7, 1975 RAIL GRINDING MACIIINE 2,907,151 /1959 Peterson 51/326 3,129,535 4/1964 Sl tt 51/140 [75] Inventor Stephen Behne Janesvllle, 3,566,546 3/1971 Lii idfi rk 51/140 [73] Assignee: Chemetron Corporation, Chicago, 3,701,219 10/1972 Sterna 51/l40 lll. Primary Examiner-Othell M. Simpson [22] Elm: 1974 Attorney, Agent, or Firm-Mason, Kolehmainen, 21] App]. No.2 434,201 Rathbum & y
Related U.S. Application Data [57] ABSTRACT [62] Division of Ser. No. 239,293, March 29, 1972, Pat.
3,818,650. Apparatus for grmdmg surfaces ad acent the ends of a pair of rail sections to be welded together comprising [52] U.S. Cl 51/80 R means for holding the rail sections in end'to'end [51] Int Cl H B241, 1/00 1324b 46/01 'B24b 7/00 aligned, longitudinal relation, abrasive grinding means [58] Field of Search 51/72 R 6 R 31 32 movable about an axis of rotation extending laterally 178 241LG of the rail sections and at an acute angle relative to the longitudinal axis thereof mounted on carriage [56] References Cited means slidable longitudinally of the rail section, and pressure means for moving the abrasive member into UNITED STATES PATENTS contact with the surface of the rail sections during lon- FOX I I i I travel the carriage 2,859,567 11/1958 Berry 2,906,064 9/1959 Ackermann 51/178 12 Claims, 17 Drawing Figures 68 3; 65 2 fi 72 n 72 [56 72 g 72 ,5? 6 L 1 l v; a Q
n 1 =3 26 7a 84 a w 86 /7a 0 66 w 45 90 M 2; f ,1 M 22. w //4 641 $6 w 45% 7 /73 .-/74 mt H4 [4 H 1 t :::IT T: .LZZTL. 'I' ""I" Il 94 g a4 98 9 E 2 6+ 226 250224 40 4a 7 0 a0 4 233 a 35 54 72 I. 7 m l m L g l l /l L fi A I- L \34 32 Z5 Z0 Z4 34 +5 Patented Jan. 7, 1975 l4 Sheets-Sheet 1 Patented Jan. 7, 1975 14' Sheets-Sheet 2 Patented Jan. 7, 1975 83 1 14 Sheets-Sheet 3 Pmemted Jan. 7, 1975 3,358,361
14 Sheets-Sheet 4 PmtentM Jan. 7, 1975 14 Sheets-Sheet 5 Pmmmd Jan. 7, RWYS l4 Sheets-Sheet 6 Patented Jan. 7, 1975 14 SheetsSheet 8 w: 69 Mk Patented Jan. 7, 1975 3,858,361
14 Sheets-Sheet l0 7 I II E:
no on E Patented Jan. 7, 1975 l4 Sheets-Sheet 14 542C 55 a M are FIG. we
FIG. I36
FIG. 60
FIG.
1 RAIL GRINDING MACHINE This application is a division of copending US. Pat. application, Ser. No. 239,293, filed Mar. 29, 1972 now US. Pat. No. 3,818,650.
The present invention is directed towards a new and improved apparatus for grinding contact surfaces adjacent the ends of rail sections, and the like, which sections are subsequently welded into a continuous rail string. In the US. Pat. No. 3,030,494 which patent is assigned to the same assignees as the present invention, there is shown and described a new and improved method and apparatus for forming a continuous rail string and, more particularly, this patent is concerned with a new and improved method and apparatus comprising in combination several separate or individual subassemblies which coact to produce a continuous rail string in a novel manner and more quickly and easily than heretofore has been possible. One of the individual components or subassemblies of the foregoing patent is concerned with the problem of grinding contact surface areas adjacent the ends of the rail sections to be welded together in order that good electrical contact can be made between the rail sections and the electrodes of the rail welding during the welding of the rail sections end to end.
The present invention provides a new and improved apparatus for grinding electrode contact surfaces on rail sections and is an improvement over the showing in the aforementioned patent. The electrode contact grinder of the present invention is well suited for use as a component or subassembly in the rail string production system shown in the aforementioned patent. In conjunction with the present invention, a rail welder or welding apparatus such as that shown in US. Pat. No. 3,488,467 may be efficiently used in combination additionally with apparatus for grinding the weld upset produced by the rail welded. A suitable weld upset grinder is shown in U.S. Pat. No. 3,566,546, and both of these last two mentioned patents are assigned to the same assignee as the present invention.
One of the problems in making a continuous rail string is the fact that the individual rail sections which make up the string, as well as the continuous rail string itself, may have been warped, or twisted about the iongitudinal axis which make it exceedingly difficult for the rail section surfaces to make good contact with the electrodes in the rail welding apparatus. High pressure contact over a relatively large area is needed for the high ampere current flow in making butt welds, particularly in connection with the rail base which is considerably wider in lateral dimension than the relatively narrow rail head surface which is slightly crowned. In the past it has been a difficult problem to grind suitable planar contact surfaces on those portions of the rail sections with accuracy and consistency so that high amperage current flow between the electrodes can be accommodated with minimum electrical resistance. This is particularly true when the end portions of the individual rail sections or the rail string are twisted about the longitudinal axis. When this occurs it is necessary to make a deeper grind to insure that ample surface area is provided for electrode contact. The problem is more acute with the relatively wide base portion of the rail sections than it is with the crowned head surfaces, however the grinding apparatus, in accordance with the present invention eliminates or greatly reduces the foregoing problems and provides for more uniform and better welds in making a continuous rail string than heretofore possible.
It is an object of the present invention to provide a new and improved apparatus for grinding welding electrode, contact surfaces adjacent the ends of rail sections which are to be welded together into a continuous rail string.
Another object of the invention is to provide a new and improved apparatus for grinding parallel welding electrode contact surfaces adjacent the ends of rail sections on opposite sides, which surfaces are ground in more uniform and precise manner even though the rail sections are twisted or warped.
Another object of the present invention is to provide a new and improved apparatus for grinding welding electrode contact surfaces on opposite surfaces of rail sections, which surfaces are precisely parallel and are of ample size to provide for high amperage current flow with a minimum of contact resistance.
Another object of the present invention is to provide a new and improved apparatus for grinding welding electrode, contact surfaces on a pair of rail sections to be welded together in single, automatic operation in a minimum of time.
Still another object of the present invention is to provide a new and improved apparatus of the character described employing novel means for compensating for the wear of the abrasive means of the grinder which appears over a period of time.
Still another object of the present invention is to provide a new and improved apparatus of the character described, which apparatus is completely automatic in operation utilizing a pair of grinding heads accurately controlled to provide precisely parallel welding electrode contact surfaces on opposite sides of a pair of rail sections.
Another object of the present invention is to provide a new and improved grinder of the character described wherein the grinding heads move longitudinally of the rail sections and are disposed in grinding contact with opposite sides thereof while moving toward an outer end of the railsection which is held in positive longitudinal alignment with respect to the moving grinding heads.
Another object of the present invention is to provide a new and improved rail grinding system of the character described which is readily adjustable to compensate for wear in the abrasive material of the grinder and which is easily controlled to provide precision ground welding electrode, contact surfaces on opposite sides of the rail sections near their ends.
These and other objects and advantages of the present invention are accomplished in one embodiment of a new and improved apparatus in accordance with the present invention comprising squeeze roll means for holding one or more rail sections. in precise, end-toend, longitudinal alignment and. abrasive grinding means including a plurality of wheels mounted on an axis of rotation extending laterally of the rail sections at an acute angle relative to the longitudinal axis thereof. Carriage means is provided for moving said grinding means longitudinally of the rail sections toward the ends thereof, and pressure means exerts force on the grinding means normal to the axis of rotation of the abrasive to provide grinding contact for a length of travel of the carriage and subsequent travel away from the surface of the rail sections. Movement of the grinding means into and out of engagement is accomplished during longitudinal travel of the carriage to provide welding electrode contact surfaces on the rail sections near the ends.
For a better understanding of the present invention reference should be had to the following detailed description and appended claims, taken in conjunction with the drawings, in which:
FIG. 1 is a longitudinal side elevational view of a new and improved rail grinding apparatus constructed in accordance with the features of the present invention;
FIG. 2 is a top plan view of the rail grinding apparatus of FIG. 1;
FIG. 3 is a transverse cross-sectional view taken substantially along line 3-3 of FIG. 1;
FIG. 4 is a fragmentary, transverse, cross-sectional view taken substantially along line 4-4 of FIG. 1;
FIG. 5 is a fragmentary, horizontal, cross-sectional view taken substantially along 55 of FIG. 1;
FIG. 6 is a fragmentary, longitudinal, cross-sectional view taken substantially along line 6-6 of FIG 3;
FIG. 7 is a fragmentary, horizontal, cross-sectional view taken substantially along line 77 of FIG. 1;
FIG. 8 is a vertical, transverse, cross-sectional view taken substantially along line 8-8 of FIG. 1;
FIG. 9 is a vertical, transverse, cross-sectional view taken substantially along line 99 of FIG. 1;
FIG. 10 is a vertical, cross-sectional view similar to FIG. 6, but illustrating the apparatus with the grinding heads and grinding contact with the rail sections;
FIG. 11 is a schematic diagram illustrating in animated fashion the path traversed by the grinding heads relative to the rail sections;
FIG. 12 is a schematic diagram indicating a fluid control system of the apparatus; and
FIGS. 13A-E illustrate in schematic form an electrical control system for the grinding apparatus.
Referring now, more particularly to the drawings, in accordance with the present invention there is provided a new and improved rail grinder referred to generally by the reference numeral in FIGS. 1, 2, and 3. The rail grinder 20 is especially adapted for grinding welding electrode, contact surfaces on opposite surface portions of longitudinal rail sections adjacent the ends thereof so that the rail sections may subsequently be welded together end-to-end in the rail welding apparatus of the type generally shown in U.S. Pat. No. 3,488,467, previously referred to.
The rail grinder 20 includes a main frame 22 comprising a rectangular, horizontal base structure 24 and a pair of longitudinal side frames 26 extending vertically upwardly along opposite, longitudinal outer edges of the base. As best shown in FIGS. 1, 2, and 3, the base structure 24 is constructed of longitudinal side channels 28 connected at the ends and intermediate the ends by a plurality of cross members 30.
The rail grinder is mounted for movement along a track comprising a pair of spaced-apart, guide rails 32 and for this purpose pairs of flanged support wheels 34 are mounted on axles 36 supported by the base 24 adjacent opposite ends thereof, as best shown in FIGS. 1 and 2. One of the axles 36 is driven to move the rail grinder along the rails 32 by means of a pair of spockets 38 and a chain drive 40, which sprockets and chain drive interconnect the axle with a reversible, electrically powered main drive gearmotor 42. The main drive, gearmotor 42 includes a reduction gear assembly so that the axle 36 is driven at relatively low speed and high torque in either direction to move the rail grinder up and down the rails 32 to any selected position.
Each of the side frames 26 of the main frame structure includes a pair of upright corner posts 44 supported from the base 24 and the posts are structurally interconnected at their upper ends by a pair of longitudinally extending, channels 46. Suitable corner braces 48 of angle iron (FIG. 1) are provided to structurally interconnect the posts 44 with the base side channels 28 and with the upper longitudinal channels 26. In addition, transverse cross members 50 are provided at opposite ends of the frame to interconnect the channels 46 and provide a generally rectangular, rigid frame structure.
In accordance with the present invention, the main frame structure 22 provides support for a movable carriage 60 on which is mounted an upper grinding head 70, a lower grinding head 80, and an exit squeeze roll assembly 90. As best shown in FIGS. 1 and 3, the carriage 60 is movable longitudinally on the main frame structure 22 and is guided and supported for longitudinal movement by an upper, carriage support rod 52 and a lower carriage support rod 54. The upper support rod or shaft 52 is supported on one of the longitudinal upper channels 46 of a side frame 26 by a plurality of upstanding support brackets 56, as best shown in FIGS. 1 and 3, and the lower support rod 54 is similarly supported by brackets 56 mounted on a lower base side channel 28 as shown. The carriage 60 comprises a pair of generally rectangular, vertical side frames 58, each of which includes a pair of spaced-apart corner posts 62 which are interconnected by a plurality of horizontal cross members 64, as best shown in FIG. 1.
The upper ends of the posts 62 of the carriage side frame 58 adjacent the upper support rod 52 are interconnected by a horizontal, elongated hollow tubular member 66 (FIG. 3), which member is secured to the upper support rod 52 for parallel, longitudinal sliding movement with respect thereto by a pair of guide sleeves 68 slidably disposed on the support rod and interconnected to the tubular member by means of laterally extending, parallel side brackets 72, as best shown in FIGS. 1, 2 and 3. Similar cylindrical guide sleeves 68 are mounted on the lower support rod 54, and these sleeves are connected via a bracket 72 to an elongated, hollow, tubular support member 74 connected to the lower ends of the posts 62 on the opposite carriage side frame 58.
From the foregoing description it will be seen that both of the'opposite side frames 58 of the movable carriage 60 are supported for longitudinal sliding movement along the respective upper andlower carriage support rods 52 and 54 by means of hollow tubular, upper and lower support members 66 and 74, respectively. The respective side frames 58 in turn are joined by transverse, cross members 76 which structurally tie the side frames together to form an integral relatively rigid box or cagelike carriage base structure.
Movement of the carriage longitudinally on the guide rods 52 and 54 from a centered position of FIGS. 1, 2 and 3 in opposite directions is accomplished by means of a pair of left and right, carriage traverse cylinders 78 and 82 mounted with their rod ends extending outwardly in opposite directions and their closed ends interconnected together, as best shown in FIG. 2. The
cylinders are arranged in coaxial alignment on a central longitudinally extending vertical plane of the rail grinder and the outer end of the piston rod of the lefthand cylinder 78 is pivotally interconnected to an upper cross member 50 at the left-hand end of the main frame 22. Theouter end of the piston rod of the righthand cylinder 82 is pivotally interconnected to a cross plate 84 disposed transversely between a pair of longitudinally extending angles 86 which are parallel and on opposite sides of the right hand cylinder 82. The angles 86 are secured at opposite ends to the upper, transverse cross members 76 on the carriage frame, as best shown in FIGS. 2, 3, and 4.
Referring to FIG. 2, when the carriage 60 is in a centered position, the piston rod in the left-hand cylinder 78 is fully extended and the piston rod in the right-hand cylinder 82 is fully retracted. In order to move the carriage to the left of center position, as shown in FIG. 10, pressurized fluid is introduced into the cylinder 78 causing the piston rod to retract inwardly into the cylinder. In order to move the carriage from the carriage left position back to the center position, the flow of pressurized fluid into the cylinder 78 is reversed so that the piston rod is extended outwardly to a fully extended, outward position. To initiate right of center movement of the carriage from the center position to a right of center position (as indicated by dotted lines of the grinding wheels shown in FIG. pressurized fluid is introduced into the right-hand cylinder 82 causing the piston rod to be extended to a fully outward position. To return the carriage to the center position, the fluid flow is reversed to again retract the piston rod in the cylinder 82. From the foregoing it will be seen that the right-hand and left-hand carriage traverse cylinders 78 and 82 control and set up left and right carriage traverse in a direction longitudinally of the grinder in both directions from a centered position. The length of stroke of the piston rod in each cylinder can be readily controlled and adjusted in order to provide the desired amount of carriage travel required.
In accordance with the present invention, the rail grinder is especially adapted for grinding contact spots for welding electrodes on opposite head and base surfaces of a pair of longitudinally aligned railroad rail sections 100 L and 100 R, which sections are subsequently welded together end-to-end to form a continuous rail string. After the spot or contact grinding has been completed by the upper and lower grinding heads 70 and 80 on the traveling carriage 60, the left-hand rail section 100 L, which is attached to the already completed welded rail string is moved to the left by the exit squeeze roll assembly 90, and the right-hand rail section 100 R is moved to the left by a stationary, separate, incoming squeeze roll assembly 110, which assem bly is substantially identical in operating structure and characteristics to the exit squeeze roll assembly 90 on the carriage except for the fact that the incoming squeeze roll assembly is mounted on a separate table structure 92 (FIG. 1) positioned in fixed relation, relative to track 32. As described the exit squeeze roll assembly 90 is mounted on and travels with the longitudinally movable main carriage 60.
As viewed in FIGS. 1 and 2, after each new rail section is added to the continuous string of welded together rail sections additional new rail sections 100 R are brought into the grinder 20 from right to left (FIG. I) and the section 100 L and 100 R are in longitudinal alignment positioned with their ends in closely spaced apart, parallel facing relation as illustrated best in FIGS. 6 and 10. The rail section 100 L on the rail string is moved from right to left by the exit squeeze roll assembly until the right-hand end face is positioned directly beneath a left-hand pointer 94 on the upper grinding head 70, and the incoming squeeze roll assembly 110 is energized to draw a new rail section R into position wherein the left-hand end of the new section is positioned directly beneath a right-hand pointer 96 on the upper grinding head. The pointers 94 and 96 are used to establish a desired spaced-apart relation between the facing ends of the rail sections 100 L and 100 R, which ends are subsequently welded together to form the continuous rail string.
The exit squeeze roll assembly 90 is supported on a platform structure 98 (FIGS. 1, 6 and 10) extending outwardly in cantilever fashion from the left-hand side of the carriage 60, as shown in FIG. I. The exit squeeze roll assembly is driven by a low speed, high torque, reversible, electrically powered gear motor 102 and the incoming squeeze roll assembly III) is driven by a similar gear motor 104. Each of the squeeze roll assemblies includes an upright framework 106 having corner posts of angle iron disposed on opposite sides of the path traversed by the rail sections. The corner posts are interconnected by a plurality of horizontal, laterally transverse cross members 112, as best shown in FIGS. 6 and 10 and the corner posts 108 on the same side of the rail sections are joined by horizontal cross members 114. In order to support and move the base of the rail sections 100 L and 100 R, each squeeze roll assembly includes a lower, drive roll 116 carried on a drive axle 118, which is supported in suitable bearing assemblies at opposite ends and driven by a respective gear motor 102 or 104, as best shown in FIG. 8.
Both squeeze rolls 90 and serve a dual purpose in moving the rail sections longitudinally to desired positions and clamping or holding the rail section in precise longitudinal alignment. In order to insure positive driving and holding contact between the base of the rail sections and the drive rolls 116, each squeeze roll assembly includes an upper, pressure roll 120 adapted to contact the head surface of the rail sections to urge the rail sections downwardly so that the base is in firm driving contact with the drive rolls 116. The upper pressure rolls 120 are supported on horizontal axles 122, which axles are supported for free rotation at opposite ends by bearing assemblies 124. The bearing assemblies 124, in turn, are mounted on horizontal, vertically adjustable, support base structures 126. The support base structures 126, are mounted for a vertical translation within the upright frame structures of the squeeze rolls and for this purpose each base structure includes a pair of cylindrical sleeves 128 at opposite ends, which sleeves are slidably disposed on a pair of guide rods 130 supported in parallel, vertical alignment on the inside of the upright frame structures 106 by bearing assemblies 132 at the upper and lower ends, as best shown in FIG. 8. From the foregoing, it will be seen that the pressure rolls and drive rolls are journaled about parallel, vertically spaced, horizontal axes and that the upper, pressure rolls are adjustably positioned to move vertically toward and away from the lower drive rolls 116, thereby to hold or release pressure on the rail sections for driving and/or supporting and holding the rail sections in precisely aligned contact between each pair of upper and lower rolls.
Vertical translation of the upper pressure rolls 120 is accomplished by a pair of pneumatic cylinders 134 and 136 provided on the respective squeeze rolls 90 and 110 and the outer or downward end of the vertical piston rod of each cylinder is pivotally interconnected with the roll supporting base structure 120 which is slidable up and down on the guide rods 130. Fluid flow into and out of the upper and lower ends of the cylinders moves the upper pressure rolls 120 into and out of contacting engagement with the head surface of the rail sections as required. For clamping the rail sections tightly fluid is directed into the upper end of the cylinders 134 and 136 holding the rail sections down against the lower drive rolls 116 so that upon energization of the squeeze roll gear motors 102 and/or 104, the rail sections will be moved in the desired direction.
As will be developed hereinafter the squeeze roll gear motors are provided with a braking mechanism used to prevent rotation of the lower drive roll 116 for the purpose of restraining the rail sections against longitudinal translation during a grinding operation as the grinding heads 70 and 80 mounted on the movable carriage 60 traverse back and forth. It should also be appreciated that while the upper pressure rolls are biased downwardly into pressure engagement against the head surface of the rail sections, the rail sections are restrained against vertical and laterally horizontal movement, however, longitudinal translation is permitted when desired by releasing the braking mechanism of one or both gear motors 102 and 104. When the carriage 60 is moved longitudinally on the supporting main frame structure 22 during a cycle of grinding head operation, the braking mechanism of exit squeeze roll assembly 90 is released and the left-hand rail section 100 L is restrained against longtudinal translation by clamping means on the other components in the system acting on the rail string such as the welder or another external clamping device. The upper pressure rolls 120 of the squeeze roll assemblies are freely rotatable and may rotate in response to longitudinal translation of the carriage 60 or upon driving rotation of the lower drive rolls 116.
In addition to the support and the vertical and horizontal alignment and guidance of the rail sections 100 L and 100 R provided by the exit and incoming squeeze rolls 90 and 110, support is also provided by a pair of rolls 138 (best shown in FIGS. 4, 6 and 10) mounted on shafts which are joumaled for rotation by pillow blocks 140 carried on horizontal base platforms 142 provided on the carriage 60. As best shown in FIGS. 4, 5, 6 and 10, the bases 142 are supported from laterally transverse cross members 76 which extend between corner posts 62 of the traveling carriage 60. As viewed in FIG. 4, it will be seen that the base or bottom surfaces of the rail section 100 L and 100 R roll over and are supported on the freely rotatable guide rolls 138 as the rail sections move longitudinally relative to the carriage. Lateral guidance of the rail sections with respect to the carriage is provided by pairs of web engaging guide rolls 144, best shown in FIGS. 4 and 5. The web guide rolls 144 are mounted on vertical axles which are journaled in fixed and movable support bracket assemblies 146 and 148, respectively, best shown in FIGS. 3, 4, 5 and 6.
In accordance with the present invention, the upper grinding head includes an upper grinding wheel which comprises a plurality of cylindrical discs or wheels formed of abrasive material and mounted on a common shaft 152. The shaft 152 is supported by pillow block bearings 158 at opposite ends mounted on a pair of support angles 156 (FIG. 4) attached to a rectangular motor base 154 formed of angle iron. The grinding wheel shaft 152 is driven at relatively high speed by an electric motor 160 via a beltdrive 162.
The motor base 154 is supported for vertical, relative movement on a rectangular, upper grinding head frame 164 formed of channel iron. A plurality of vertical guide rods 166 are secured at their upper and lower opposite ends in pillow blocks 168 attached to the inside web of the grinding head frame 164 and the motor base 154 is provided with a plurality of bearing sleeves 170 on the sides thereof slidably disposed on the guide rods 166, thus permitting relative vertical adjustment between the motor base 154 and the grinding head frame. The frame 164 in turn is mounted for vertical movement or translation on the carriage 60, and for this purpose, vertical guide rods l72 are provided on the opposite side frames 58 of the carriage. The guide rods are supported at opposite ends by pillow blocks 174 secured to the cross members 64, of the carriage side frames, as best shown in FIGS. 3 and 4. Opposite side members of the upper grinding head frame 164 are provided with cylindrical sleeves 176 which are slidably disposed on the vertical guide rods 172 to permit relative vertical sliding movement of the frame 164 on the carriage 60.
Control and vertical sliding movement of the upper grinding head frame 164 on the carriage 60 is accomplished by a pair of upper grinding head cylinders 178, and the piston rods thereof are pivotally interconnected to the grinding head frame by means of clevis and bracket attachments as best shown in FIGS. 6, l0 and 3. The upper, closed ends of the cylinders are'pivotally connected to transverse cross members 76 of the carriage 60 so that when pressurized fluid is introduced into either end of the cylinders the frame 164 can be moved upwardly or downwardly on the carriage into or out of grinding engagement with the head surface of the rail sections 100 L and 100 R.
In order to adjust the vertical position of the upper grinding wheel 150 relative to the upper head surface of the rail sections 100 L and 100 R, the upper grinding head 70 includes a pair of upper pressure rolls 180 disposed on opposite sides of the grinding wheel axis of rotation as best shown in FIGS. 6 and 10. Each pressure roll is mounted on an axle 182 parallel of the grinding wheel axle 152 and the axles 182 are supported at opposite ends from the grinding head frame 164 by means of support bearing assemblies 184, as best shown in FIGS. 6 and 10. From the foregoing it will be seen that the pressure rolls 180 are in a fixed vertical position relative to the main frame 164 of the upper grinding head 70 while the grinding wheel 150 itself is vertically adjustable with respect to the main frame in order to compensate for wear on the grinding wheel which occurs in consequence of the length of time that grinding engagement with the rail head surfaces of the rail section occurs. For the purpose of moving and adjusting for wear on the grinding wheel 150, the upper grinding head 70 is provided with a control assembly for moving the motor frame 154 relative to and with respect to the main grinding head frame 164. The upper grinding head includes a rectangular adjusting frame 186 which is pivotally secured along one side by means of several pivot pin support assemblies 188 attached to a side member of the main grinding head frame 164 as best shown in FIG. 7. Longitudinal side members 190 of the adjusting frame 186 are pivotally interconnected with parallel side members of the motor base 154 through pivot pin connector assemblies 192 for raising and lowering the motor base 154 with respect to the main grinding head frame 164. Control of the pivotal relation between the pivotable adjusting frame 186 and the vertically movable motor base frame 154 is provided by means ofa screw jack 194 (FIGS. 6 and 10). The screw jack is threaded connected to one side member of the adjusting frame 186 and is mounted in vertical position for rotation in either direction to raise or lower the angle of adjusting frame relative to the main grinding head frame. The jack screw is supported in a guide sleeve 196 fastened to a transverse side member of the main grinding head frame 164 and rotation of the jack screw in either direction by a controlled amount is accomplished by means of a slow speed, electric driven, gear motor 198. The adjusting gear motor is mounted on the same transverse side member of the main grinding head frame 164 as the sleeve 196 and is coupled to rotate the jack screw 194 when the motor is energized. From the foregoing, it will be seen that when the adjusting gear motor 198 is driven to rotate in either direction, the grinding wheel 150 is moved up and down relative to the main grinding head frame 164 and the pressure rolls 180 in order to compensate for wear occurring on the grinding wheel 150. When the pressure rolls are moved downwardly into contact against the head surface of a rail section by the cylinders 178, grinding will be effected by the fast moving outer periphery of the grinding wheel 150 and the depth of grind is controlled by the adjusting gear motor 198. As wear occurs on the grinding wheel, the depth of grind will diminish correspondingly andto compensate for this wear, the adjusting gear motor 198 is energized for a selected period or number of revolutions to lower the grinding wheel 150 to provide the same desired depth of grind or grinding pressure as originally set up.
In accordance with the present invention, the lower grinding head 80 includes an abrasive grinding wheel 200 comprising a plurality of grinding wheel discs mounted on a common shaft 202. Rather than a perpendicular alignment with respect to the rail sections as the upper shaft 152 is set up, the lower shaft is aligned at an acute angle with respect to the longitudinal axis of the rail sections as best shown in FIG. 5 and while both the upper and lower grinding wheel shafts are horizontal, they are not parallel. The lower grinding wheel 200 is adapted to move upwardly into contact against the under surfaces of the base of the rail sections and it has been found that by adjusting the axis of rotation of the grinding wheel away from a perpendicular to a lateral direction to an acute angle relative to the longitudinal axis of the rail section better grinding occurs. With the upper shaft 152 laterally perpendicular and horizontal, and the lower shaft 202 horizontal but at an acute angle in a lateral direction with respect to the longitudinal axis of the rail sections slight variations comprising twists or winds in the rail sections are better compensated for as the spot grinding occurs. The clamping effect on the rail sections between the upper and lower grinding wheels moving longitudinally toward the ends of the rail sections produces welding electrode contact surfaces that are exactly parallel. Except for the difference in angular arrangement of the grinding wheel axle with respect to the longitudinal axis of the rail sections, the lower grinding head 80 is substantially similar to the upper grinding head and includes a pair of pressure rolls 204 disposed on opposite sides of the guiding wheel 200 for guiding contact with the rail base. The guiding wheel axle 202 is supported on a pair of pillow block bearings 206 mounted on a pair of angles 208 which are attached to a rectangular lower motor base frame 210 formed of angle iron. The lower motor base frame 210 is mounted for vertical sliding movement with respect to a larger lower grinding head main frame 212 formed of channels and of rectangular shape as shown. The lower motor base frame 210 is supported for vertical sliding movement with respect to the lower grinding head main frame 212 by a plurality of vertical guide rodls 214 secured to the inside surface of the main frame by bearing blocks 216 at opposite ends of the guide rods. Sleeves 218 are mounted for sliding disposition on the guide rods 214, and the sleeves are attached to side members of the motor base frame 210 so that the motor base frame is slidable in continuously parallel and vertical translation with respect to the lower grinding head mainframe. The grinding head main frame in turn is mounted for vertical translation with respect to the carriage 60 on vertical guide rods 220 supported at opposite ends by bearing blocks 222 attached to the carrier side frame cross members 64, as best shown in FIG. 4.
Opposite side members of the lower grinding head frame are provided with sleeves 224 slidably disposed on the guide rods 220, as best shown in FIGS. 3, 4 and 5, and the lower grinding head main frame is controlled for movement up and down on the traverse carriage 60 by means of a pair of lower grinding head control cylinders 226 having the upper ends of their piston rod pivotally connected to the grinding head main frame through connector bracket 228, as best shown in FIGS. 6 and 10. The lower ends of the lower head control cylinders are pivotally connected to transverse cross members 76 of the carriage 60 as shown in FIG. 4, so that the introduction of fluid under pressure into the lower ends of the cylinders elevates the lower grinding head 80 on the carriage 60 and a reverse flow of the fluid into the cylinder provides for a lowering of the grinding wheel 200 away from contact with the base of the rail sections. The lower grinding wheel is driven by an electric motor 230 secured to the underside of a motor base 210 and the motor is drivingly interconnected with the lower grinding head shaft 202 via a belt drive 232.
When pressurized fluid is introduced into the lower end of the lower grinding head control cylinders 226, the grinding head main frame 212. is moved upwardly on the carriage 60 until the lower grinding head pressure rolls 204 contact the underside of the rail sections L and 100 R. Adjustment of the depth of grind is controlled by means of a motor driven jack screw 234 supported for rotation in a vertical bearing assembly 236 mounted on the inside of a transverse cross member of the grinding head main frame. The lower end of the jack screw is pivotally connected to a transverse side member of a lower adjusting frame 238 and the upper end of the jack screw is driven to rotate in either direction at a low speed by means of a lower grinding

Claims (12)

1. Apparatus for grinding surfaces adjacent the ends of rail sections to be welded together comprising clamping means for holding said sections in end-to-end longitudinal alignment; abrasive grinding means comprising a plurality of abrasive wheels mounted side by side on a common axle and driven to rotate around an axis of rotation extending laterally transverse of said rail sections at an acute included angle relative to the longitudinal axis thereof; carriage means for moving said grinding means longitudinally of said rail section toward and away from an end thereof and pressure means for moving said grinding means normal to said axis of rotation thereof toward and away from surfaces on said rail sections into and out of grinding engagement therewith as said grinding means moves toward said end.
2. The grinding apparatus of claim 1 including means mounting said grinding means and said clamping means on said carriage means for longitudinal movement therewith, said clamping means including a pair of clamping rolls on opposite sides of one of said rail sections biased toward one another to restrain said section against lateral movement during longitudinal travel of said carriage.
3. The grinding apparatus of claim 2 including second clamping means independent of said first mentioned clamping means and carriage means for holding the other of said rail sections in fixed position against transverse, lateral and longitudinal movement as said means moves longitudinally, said second clamping means including a pair of clamping rolls on opposite sides of said other rail section biased toward one another to restrain movement of said section.
4. The grinding apparatus of claim 3 including motor means for power driving at least one roll of said second clamping means.
5. The grinding apparatus of claim 2 including motor means for power driving at least one clamping roll of said first mentioned clamping means.
6. The grinding apparatus of claim 3 including brake means for locking at least one clamping roll of said second clamping means against rotation and releasable to permit rotation thereof.
7. The grinding apparatus of claim 1 including second abrasive grinding means on said carriage means for grinding surfaces on said rail sections on an opposite side with respect to surfaces ground by said first mentioned grinding means, said second grinding means including abrasive means movable around an axis of rotation normal to the longitudinal axis of said rail sections.
8. The grinding apparatus of claim 7 wherein at least one of said grinding means includes an assembly comprising a pair of rail sections engaging pressure rolls disposed in spaced relation longitudinally of said rail sections on opposite sides of the axis of rotation of said grinding means, and means adjustably supporting said grinding means for movement relative to said guide rolls in a direction normal to said rail sections for adjustably controlling the depth of grind upon movement of said grinding means into grinding engagement of said pressure means.
9. The grinding apparatus of claim 1 wherein said grinding means includes an assembly comprising a pair of pressure rolls spaced longitudinally with respect to said rail sections on opposite sides of said axis of rotation of an abrasive grinding member; said pressure means comprising a support base mounted on said carriage means for movement normal to said rail sections toward and away therefrom and supporting said pressure rolls, and grinder support means carrying said grinding member for movement normal to said rail sections toward and away therefrom relative to said base for adjustably controlling the depth of grinding action on said rail sections relative to said pressure rolls.
10. The grinding apparatus of claim 9 wherein said pressure rolls are mounted on said support base and said grinder support means is slidably disposed on said base, and adjustment means for positioning said grinder support means in selected positions relative to said base.
11. The grinding apparatus of claim 10 wherein said adjustment means includes a frame pivotally mounted on said base and pivotally connected to said grinder support means and control means foR adjustably controlling the pivot angle between said frame and said base.
12. The grinding apparatus of claim 11 wherein said control means comprises motor driven screw means.
US434201A 1972-03-29 1974-01-17 Rail grinding machine Expired - Lifetime US3858361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US434201A US3858361A (en) 1972-03-29 1974-01-17 Rail grinding machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00239293A US3818650A (en) 1972-03-29 1972-03-29 Rail grinding method
US434201A US3858361A (en) 1972-03-29 1974-01-17 Rail grinding machine

Publications (1)

Publication Number Publication Date
US3858361A true US3858361A (en) 1975-01-07

Family

ID=26932440

Family Applications (1)

Application Number Title Priority Date Filing Date
US434201A Expired - Lifetime US3858361A (en) 1972-03-29 1974-01-17 Rail grinding machine

Country Status (1)

Country Link
US (1) US3858361A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924358A (en) * 1973-10-17 1975-12-09 British Steel Corp Machine for processing billet or bar stock
US6669533B2 (en) * 2000-08-01 2003-12-30 Societe Turripinoise De Mecanique Sa Rail profile grinding machine
US20090298402A1 (en) * 2008-05-30 2009-12-03 Sebastian Guillen Cobos Surface grinding machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1923020A (en) * 1932-10-04 1933-08-15 Cyril A Fox Method of grinding track rails
US2859567A (en) * 1956-06-20 1958-11-11 Flextol Engineering Company Lt Fettling machines
US2906064A (en) * 1955-05-05 1959-09-29 Railtrack Equipment Corp S A Rail head grinding mechanism
US2907151A (en) * 1954-01-18 1959-10-06 Osborn Mfg Co Conditioning metal sheets, strip, rod and the like
US3129535A (en) * 1962-04-25 1964-04-21 Chemetron Corp Method and apparatus for grinding rails
US3566546A (en) * 1966-11-21 1971-03-02 Chemetron Corp Apparatus for grinding welded rail
US3701219A (en) * 1972-01-14 1972-10-31 Timesavers Inc Apparatus for effecting superior sanding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1923020A (en) * 1932-10-04 1933-08-15 Cyril A Fox Method of grinding track rails
US2907151A (en) * 1954-01-18 1959-10-06 Osborn Mfg Co Conditioning metal sheets, strip, rod and the like
US2906064A (en) * 1955-05-05 1959-09-29 Railtrack Equipment Corp S A Rail head grinding mechanism
US2859567A (en) * 1956-06-20 1958-11-11 Flextol Engineering Company Lt Fettling machines
US3129535A (en) * 1962-04-25 1964-04-21 Chemetron Corp Method and apparatus for grinding rails
US3566546A (en) * 1966-11-21 1971-03-02 Chemetron Corp Apparatus for grinding welded rail
US3701219A (en) * 1972-01-14 1972-10-31 Timesavers Inc Apparatus for effecting superior sanding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924358A (en) * 1973-10-17 1975-12-09 British Steel Corp Machine for processing billet or bar stock
US6669533B2 (en) * 2000-08-01 2003-12-30 Societe Turripinoise De Mecanique Sa Rail profile grinding machine
US20090298402A1 (en) * 2008-05-30 2009-12-03 Sebastian Guillen Cobos Surface grinding machine

Similar Documents

Publication Publication Date Title
US4050196A (en) Rail grinding machine
US3888052A (en) Relating to methods for grinding rails
US2807123A (en) Grinding machines and the like
SU634648A3 (en) Machine for resistance butt melding of rails
US3818650A (en) Rail grinding method
US4993193A (en) Railroad vehicle for reprofiling at least one rail of a railroad track
US3858361A (en) Rail grinding machine
CN113427163B (en) Steel plate splicing welding method and welding system thereof
JPH05106203A (en) Re-templating device for rail of railway track
HU212999B (en) Belt grinding aggregate and rail grinding machine for grinding the unevennesses of the railhead surface of one or both rails of a track
US3498004A (en) Grinding machines
CN108296613B (en) Workpiece positioning auxiliary device for sheet splicing submerged arc welding machine
FI79581B (en) KOERBAR SPAORSTAMPNINGS-PLANINGS- OCH RIKTMASKIN.
US4062151A (en) Billet grinding machine
JPS624481B2 (en)
JPH0369703A (en) Self-propelled track compacting machine with compacting equipment adjustable in transversal and vertical directions
US3154665A (en) Welding machine and method
US2926460A (en) Railbase and railweb grinding machine
CN112894513B (en) Intelligent robot for rail traffic steel rail machining
CN112157329B (en) H-shaped beam longitudinal seam automatic welding machine and welding head
CN108572218B (en) Frame side beam magnetic powder inspection machine
US3608246A (en) Automatic grinding machine for grinding longitudinal external welds on cylinders
US2114454A (en) Grinding machine
JPH06269935A (en) Equipment for automatic cladding by welding of roll
US2198265A (en) Apparatus for electric welding

Legal Events

Date Code Title Description
AS Assignment

Owner name: HARRIS TRUST AND SAVING BANK, 111 WEST MONROE STRE

Free format text: SECURITY INTEREST;ASSIGNOR:CHEMETRON-RAILWAY PRODUCTS, INC., A DE. CORP.;REEL/FRAME:004736/0334

Effective date: 19870518

AS Assignment

Owner name: CHEMETRON RAILWAY PRODUCTS, INC., 177 HINTZ RD., W

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:RAILWAY ACQUISITION CORPORATION;REEL/FRAME:004827/0258

Effective date: 19880217

Owner name: CHEMETRON RAILWAY PRODUCTS, INC., A CORP. OF DE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAILWAY ACQUISITION CORPORATION;REEL/FRAME:004827/0258

Effective date: 19880217