US3854395A - Flexible cable dry peeler - Google Patents

Flexible cable dry peeler Download PDF

Info

Publication number
US3854395A
US3854395A US00331403A US33140373A US3854395A US 3854395 A US3854395 A US 3854395A US 00331403 A US00331403 A US 00331403A US 33140373 A US33140373 A US 33140373A US 3854395 A US3854395 A US 3854395A
Authority
US
United States
Prior art keywords
cage
cables
peeler
products
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00331403A
Inventor
K Hirahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Corp
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Corp filed Critical FMC Corp
Priority to US00331403A priority Critical patent/US3854395A/en
Application granted granted Critical
Publication of US3854395A publication Critical patent/US3854395A/en
Priority to US05/627,985 priority patent/USRE29030E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N7/00Peeling vegetables or fruit
    • A23N7/02Peeling potatoes, apples or similarly shaped vegetables or fruit

Definitions

  • the dry peeler is formed as a rotary cylindrical cage having an abradant surface provided by an envelope of axially extending, circumferentially, spaced, parallel, braided stainless, steel wire cables, stretched between axially spaced rings, with a screw conveyor fitting within the envelope o'f cables. Both the cage of cables and the screw are rotated and the flexible cables abrade off and undercut a high percentage of the skins of the pre-treated products without the addition of water during the peeling process.
  • A1- ternate cable supporting rings are rotatably adjustable to vary the tension on the cables.
  • the purpose of the invention is to minimize the amount of water that is employed in connection with the major portion of the peeling operation, that is, the purpose is to reduce the ratio of the amount 'of organic material entrained in the waste water leaving the cannery or processing plant, the need for frequent washing of square woven mesh screens, such as the screen of Wilhelm, does not fully obtain the objective of the dry peeling process, which is to minimize the ratio of peels or other organic material to the water that must go to waste from the plant.
  • This characteristic of the -Wilhelm screen also increases the down time of the peeler, a substantial disadvantage during a busy canning or processing season.
  • Pat. No. 3,460,162, Aug. 5, 1969 dry peels potatoes by feeding them through a rotating drum having an annular array of rotary brushes. Thistype of peeler soon loads up without constant flushing during operation.
  • the dry peeler case of the present invention has the following advantages over prior dry peelers, such as that of the Wilhelm patent and other patents mentioned above: a
  • Adherent peelings readily removed from the'dry peeler while using relatively small amounts of cleaning water.
  • the above features and advantages of the dry peeler of the present invention will be described in connection with a potato peeler, byway of example.- These advantages are obtained by employing an abradant product receiver or support formed of elongated,- flexible wires that are laterally spaced to provide the abradant surface.
  • the receiver is movedlaterally relative tothe products and means are provided to move the products longitudinally along the laterally moving cables.
  • the wires are braided wire cables formed in a cylindrical envelope and are supported at intervals on axiallyspaced rings, so that the entire envelope of cables fonns a cage that is rotated to tumble. and abrade and undercut the potato skins. 1n the cylindrical cage embodiment, the potatoes are'propelled through the rotating envelope or cage of cables by an internal, large pitch screw conveyor, which rotates at about the same speed as the speed of rotation of the cage of cables.
  • the brading cables are preferably formed of braided stainless steel wire about onesixteenth inch in diameter and the cables are circumferentially spaced about three-fourths inch.
  • the cable deflection has also been found to reduce the amount of flesh removed along with the skins and hence to increase the yield.
  • the apparatus may remove as much as 85-90% of the skins of potatoes, the skins of which have been steam loosened or caustically treated (for example) and requires no infra-red heating or pre-treatment other than the conventional treatment in a steam bath or a caustic bath such as the heated lye bath, commonly employed in the industry.
  • FIGS. 1A and 1B taken together are side elevations of a dry peeling system embodying the present invention.
  • FIG. 2 is a diagram showing the action of an overly tight abrading cable on a vegetable such as a potato.
  • FIG. 2A is a similar diagram showing the action of defiectable cables mounted in accordance with the present invention.
  • FIG. 3 is a plan of a dry peeler embodying the invention.
  • FIG. 4 is a side elevation of the dry peeler.
  • FIG. 5 is an enlarged section of the dry peeler taken on line 5-5 of FIG. 4.
  • FIG. 6 is a section taken on line 6-6 of FIG. 5 through the receiving end of the dry peeler.
  • FIG. 7 is an end view of the dry peeler taken in the direction of arrows 77 on FIG. 4 with portions being broken away.
  • FIG. 8 is a fragmentary section taken on line 8-8 of FIG. 7 of the delivery end of the dry peeler.
  • FIG. 9 is an enlarged fragmentary perspective showing the mounting of the spaced cables.
  • FIG. 10 is an enlarged detail showing the adjustment of certain cable mounting rings.
  • FIG. 11 is a diagram showing the sequence of securing the cables to the rings.
  • FIG. 11A is a greatly enlarged section of a braided cable shown in diagrammatic form.
  • FIG. 12 is a perspective like FIG. 9 showing a modifled form of cable mounting.
  • FIG. 13 is an enlarged detail showing the modified.
  • FIG. 14 is a fragmentary detail showingstill another modified form of cable mounting.
  • peeling system of the present invention has utility for variousvegetables, the embodiment herein illustrated and described in detail is employed for the dry peeling of caustically treated potatoes.
  • FIGS. 1A and 1B taken together, illustrate an over all system for the dry peeling of potatoes embodying the dry peeler of the present invention.
  • the vegetables are brought into the system on an infeed conveyor 10 and drop into the hopper 11 of a caustic bath unit 12. It is to be understood that the manner in which the skins of the potatoes are loosened by pre-treatment is not critical to the present invention and the caustic bath illustrated is only one of any number of conventional type baths that can be employed in connection with the present invention.
  • the caustic bath unit 12 includes a tank 13 mounting a rotating conveyor screw 14 immersed in caustic liquid 16, which may be, for example, a lye solution having 10-1 5 percent by weight of lye heated to a temperature of about 180l90 F. After their skins are softened or loosened by immersion in the caustic bath 16, the potatoes are lifted from the bath by an elevating transfer conveyor 18 and drop into the dry peeler 20 by the present invention. The elevating reach 19 of conveyor l8 drains excess caustic back into the tank 13.
  • caustic liquid 16 may be, for example, a lye solution having 10-1 5 percent by weight of lye heated to a temperature of about 180l90 F.
  • the dry peeler 20 of the present invention in the embodiment illustrated, comprises a rotating abrasive cage 22 which mounts the cables 40 of the present invention in a manner to be described presently.
  • Concentric with and substantially filling the cage 22 is a helical conveyor screw 24 which is rotated at approximately the same speed as the cage 22 in a manner to be described presently.
  • the diameter of the cage of cables 40 is about 26 inches and that of the screw about 24 inches.
  • the cables 40 which are about onesixteenth inch in diameter, provide a combined abrasion and cutting action that removes the caustically loosened skins as a relatively dry sludge which drops freely between the cables onto a take-away conveyor 27 running beneaththe dry peeler.
  • the take-away conveyor 27- deposits the relatively dry sludge onto a cross running take-away conveyor 28 for disposal by burning or other means, as explained in the aforesaid Wilhelm patent.
  • the dry peeler 20 will remove about -90 percent of the skins from the potatoes and will direct the peeled potatoes to a transfer conveyor 29. As seen in FIG. 1B the transfer conveyor 29 deposits the peeled potatoes into a brush clean up device 30 wherein the skin portions not. previously removed (usually located at the eyes of the potato) are finally removed.
  • the brush clean up device 30 includes a helical screw conveyor 31 that advances the substantially peeled potatoes through a housing 32 that contains a rotating annular array of brushes 33, the brushes themselves also being rotatable on their supports.
  • a brush clean up device of this type is well source of spray water by a conduit 37 in a manner well known in the art and'the wet peel portions removed by this device fall onto a wet peel conveyor 34 which delivers this material to a second take away cross conveyor 35.
  • peel portions removed in the device 30 are substantially wetter than those removed in the dry peeler 20.
  • the actual weight of peel portions removed in the clean up device 30 relative to the total weight of the peels removed by the dry peeler is very small, and hence the disposition of the wet peel material falling on the conveyor 34 provides a relatively insignificant problem.
  • the completely peeled potatoes are discharged by a chute 36 onto a peeled product conveyor 38 which carries the peeled potatoes or other vegetables to conventional processing apparatus.
  • FIGS. 3 and 4 illustrate major features of a preferred form of the dry peeler 20. Only major portions of the framework will be described, which framework includes end supports 41, 42 that have legs for support by the floor and are connected by side beams 43.
  • the central helical conveyor screw or auger 24 has a rigid tubular hub 25. The auger is mounted in end bearings zone with the product thus increasing peeling effective ness without any substantial loss of yield.
  • the abrasive cage 22 is of cylindrical construction and in the example being given has an outside diameter ,of about 30-36 inches, with the envelope of cables 40 having a diameter of about 26 inches.
  • the cage is formed of annular end rings between which extend axial ring supporting and reinforcing tubes. For example, as seen in FIGS. 3 and 4, there is an annular end ring 60 at the receiving end of the cage and a corre-. sponding end ring 61 at the delivery end thereof, and
  • end rings are each supported for rotation on two rollers adjustably mounted on the end frames 41, 42.
  • the end ring 60 at the receiving end is supported on cylindrical rollers 63, 64, and the end ring 61 is mounted on rollers 65, 66 at the delivery end of the machine (FIGS. 7 and 8).
  • the end rings 60, 61 are flanged at 60a, 61a (FIGS. 4, 6 and 44, 45 on supports 41, 42 which bearings support rigid stub shafts 46 welded to the hub 25 of the auger.
  • the support 41 at the receiving end of the peeler 20 has a hopper 48 for receiving potatoes or other vegetables from the caustic bath 12,'which hopper has a bottom 48a (FIG.
  • the auger 24 is driven by a hydraulic motor 50(FIG.
  • the hydraulic motor50 is supplied with oil under pressure from a conventional hydraulic pump (not shown) and. that conventional valving'and pressure gauge systems (not shown) are provided in order that the speed of the hydraulic-motor 50can be selectively controlled to vary the speed of the auger 24 and hence the throughput of the apparatus.
  • a typical speed for the auger 24 will be in the order-of 20-25 RPM and the pitch of theauger will be about 1 foot per revolution.
  • the abrasive cage 22 of the dry peeler of the present invention is an elongated cylindrical envelope of wire cables 40, the cables preferably being braided of small strands of stainless steel wires to provide superior strength, abrasive qualities'and cleanliness. These cables are stretched in a generally. axial direction along the entire length of the abrasive cage 22 and are supported at intervals of about l3 inches (in the example given) so that they can support the weight of the product being pushed and tumbled through the'cage.
  • theforesaid four rollers 63-66 support and locate the abrasive cage 22 for rotation. All of the aforesaid cage support rollers 63-66 are supported in paired brackets 67 projecting inwardly from the end frame elements 41, 42 of the machine.
  • the shafts 64a, 65a, 66a' for the three rollers 64, 65, 66, are simple stub shafts that mount the corresponding rollers in the spaced bracket 67, a typical construction of this roller mounting appearing in FIGS. 7 and 8.
  • the roller 63 atthe receiving end of the machine is mounted on a longer shaft 63a which shaft turns loosely within the roller 63 and serves to rotate the abrasive cage 22.
  • the shaft 63a (partially seen in dotted lines) is driven by a hydraulic motor 70, which motor is secured to a bracket 71 (FIGS. 5 and 6) that takes up the torque of the motor by means of a bolt 73' that connects the bracket 71 to a crossbar74 (FIG. 5) forming part of the deliveryend frame structure 41.
  • the motor shaft 63a rotates the cage 22 by means of a sprocket 72 at the inner end of the shaft (FIG.
  • the hydraulic motor which rotates the abrasive cage 22 is also connected in the manner of the hydraulic motor 50 that rotates the auger 24, in that the motor 70 is connected by means of a control valve and pressure gauge system to a conventional source of oil under pressure, such as a hydraulic pump, which connections, by means well known in the art, provide for independently controlling the speed of the cage driving motor 70 relative to that of the auger motor 50.
  • the speed of rotation of the cage 22 will be approximately equal to that of the auger 24, namely, about 20-25 RPM.
  • the auger 24 and the abrasive cage 22 can be speeded up or slowed down to increase v60 or decrease the throughput of the apparatus.
  • the cables 40 which perform the skin removal or peeling function, are of the aircraft type, and in the form described are made of braided No. 304 stainless steel wire, each complete cable being about one sixteenth inch in diameter. These small diameter cables provide a combined abrasion and undercutting action on the loosened skins without damaging the underlying flesh. Each cable contains about 49 small wires braided in a 7 X 7 configuration, that is, seven strands of seven wires per strand. This provides a high tensile strength cable having an abrasive surface, and yet being tightly braided, the cables are easily cleaned.
  • FIG. 11A shows in greatly enlarged, diagrammatic form a section of one of the cables 40'. In the embodiment described, the, cable 40 is braided from seven multi-wire strands 40a,
  • each strand 40 is braided from seven small individual wires 406. Although a cable diameter of onesixteenth inch is preferred a 3/32 inch diameter cable would not be too large to provide the undercutting action on the skins.
  • the cables 40 are supported at intervals of about 13 inches long length of the cage on the annular rings previously mentioned, which rings are secured to theaxial tubes 62.
  • the cables are mounted in an end ring 80 at the receiving end of the apparatus (FIG. 6) and a corresponding end ring 82 at the delivery end of the apparatus (FIG. 9).
  • a number of axially spaced, intermediate ring assemblies, to be described, are also secured to the longitudinal tubes 62.
  • the intermediate rings include a tension ring adjustment assembly 84 adjacent to but spaced about 13 inches from each end ring 80, 82, there being fournonadjustable cable supporting rings 86 distributed along the length of the apparatus between the end rings 80, 82.
  • an adjustable cable mounting ring assembly 84 is mounted between each of the fixed cable mounting rings 86 as well as between the end rings 80, 82 and the nearest fixed cable mounting ring 86, providing a'total of five adjustable rings 84, four intermediate non-adjustable rings 86 and the two non-adjustable end rings 80, 82. Since, in the construction being described, the various cable mounting rings are about 13 inches apart, this construction provides an adjustment of the tension of about 26 inches of the length of the cables 40 extending between the nonadjustable or fixed rings.
  • the abrading cables '40 are supported in a row of annular rings, and the cables are secured to the end rings 80 (FIG. 6) and 82 (FIG. 8) and to a series of fixed rings 86 (FIGS. 9 and 11). Between each adjacent pair of non-adjustable rings, an adjustable ring mounting assembly 84 is mounted, and these adjustable ring assemblies 84 and the cable mounting details will now be described.
  • the cables 40 are secured to the end rings 80 and 82 and to the non-adjustable rings 86 in a convenient manner.
  • this securement is provided by crimping ferrules 90 to the cables at the end rings 80, 82 and at both sides of the intermediate fixed rings 86.
  • the adjustable ring assemblies 84 are formed of an outer ring 92 that is welded to the longitudinal tubes 62 and a relatively turnable or adjustable inner ring 94 which ring is provided with apertures for the cables 40, there being no ferrules 90 at the rings 94.
  • the apertures for the cables 40 are staggered to form two concentric envelopes of the cables. As indicated in FIG.
  • the circumferential spacing s between the cables 40 in the outer envelope is equal to the spacing s between the cables 40 in the inner envelope and the cables on the envelopes are symmetrically staggered, so that the circumferential distance between a cable of the outer envelope and one of the inner envelope is equal to s/2.
  • the radial staggering d of the cables 40 of the inner and outer envelope is, in the example given, equal to about five-eights inches whereas the spacing s of the cables in each envelope is equal to about 1V2 inches, so that s/2 equals inches.
  • a bracket 96 (FIGS. 9 and is bolted to one side of the inner ring 94 by bolts 97, 98.
  • the bolt 98 mounts a retainer washer 99 on the opposite side of the inner ring 94 which centers the inner ring on the outer, fixed ring 92.
  • an adjusting screw 100 is 'threaded into a nut block 101 fixed on the bracket 96.
  • This adjusting bolt 100 bears against the adjacent axial pipe 62 which mounts the outer ring 92 and the bolt is locked in its adjusted position-by lock nuts'102 (FIG. 10).
  • additional guides for axially locating the .inner, adjustable ring on the outer, fixed ring 92 are provided by bolts 98a that mount large washers 99a on each side of the rings.
  • the cables 40 simply slide through their apertures in the adjustable rings 94 but are secured by ferrules 90 to adjacent fixed rings, so that adjustment of the bolts for each of the adjustable ring assemblies 84 determines the tension and hence the operational sag of the cables during the dry peeling operation.
  • the mid-portions of the cables 40 that. is, those portions intermediate each pair of rings 84, 86, etc., are partially restrained by non-metallic cords 104 whichare laced around the mid-section of the outer envelope of the cables 40. These lacings partially support the outer envelope of the cables 40 directly and limit deflection of the cables 40 of the inner. envelope to some extent during high load operation.
  • FIGS. 2 and 2A The effect of selective adjustment of. the tension of cable 40 is illustrated diagrammatically in FIGS. 2 and 2A.
  • the adjustment of cables 40 is such that the cables are under as great a tension as feasible.
  • FIG. 2 shows (in somewhat exaggerated form) adjustment of the cables in a manner which accommodates a greater degree of deflection of the cables during the peeling operation. As seen in FIG.
  • thelength Ll of the contact zone is substantially greater than the length L in the tight cable condition of FIG. 2.
  • the resultant cable flexure reduces the unit force imparted by the cables to the potatoes or other vegetables, and also facilitates accommodation of the cables to the vegetable contour, thereby providing an efficient, non-damaging peeling action.
  • the potatoes are picked up by the helical auger 24 which is rotating at about 20-25 RPM and hence forces the potatoes axially through the abrasive cage 22.
  • the abrasive cage 22 is usually rotated at about the same speed as the auger conveyor 24.
  • the cables 40 are relatively self cleaning and there is no build up of slippery peels thereon, which would reduce the peeling efficiency during prolonged operation. Due to the flexibility of the cables 40, the tensionof which canbe adjusted as previously described, the length of contact Ll (FIG. 2A) of the cables with the potatoes is substantial, which minimizes marring and cutting of the fruit and increases the length of the zone of the abrasive action on the fruit.
  • the peeled potatoes P which will have had about 85-90 percent of the peeling's removed, are deposited into the chute 49 (FIGS. 7 and 8) at the delivery end 42 of the dry peeler for pickup by the transfer conveyor 29. The peels fall readily through the cables 40 onto the dry peel conveyor 27, as described. Final clean up is provided bythe brush clean up device 30,
  • FIGS. 12 and 13 show a modified form of the invention wherein the radial spacing d between the inner and outer envelopes of the cables 40 shown in FIG. 10 is reduced to bring the cables closer to'concentricity. This isaccomplished by threading a strong wire or cable 110 over the outer envelope of cables and cables and under the inner envelope of cables adjacent to the rings, as clearly seen in FIGS. 12 and 13.
  • This modification increases the abrasive or peeling action of the outer envelope of cables, particularly in zones adjacent to the supporting rings wherein a relatively large deflection of the inner envelope cables is required before the potatoes will engage the outer envelope cables.
  • FIG. 14 shows another modified form wherein the cables 40 are all concentric. This is'provided by forming both the adjustable rings Q4 (not shown in FIG. 14) and the non-adjustable rings 86a with a concentric array of holes to accommodate the cables 40.
  • the adjustable rings Q4 not shown in FIG. 14
  • the non-adjustable rings 86a with a concentric array of holes to accommodate the cables 40.
  • A- peeler for generally spheroidal food products such as vegetables, potatoes or the like which have been treated to soften their skins for removal said peeler being of the type that provides a rotary cage having an open abradant surface, means for rotating the cage, means for propelling the products longitudinally through the cage, means for feeding treated products to the cage, and means for removing peels that fall from the cage;
  • said cage comprises a pair of end support rings, at least one intermediate support ring and an abradant envelope formed of longitudinally extending, circumferentially spaced, straight briaded steel wire cables supported on said rings, means for tensioning said cables sufficiently to maintain their generally longitudinal direction under product load while accommodating sufficient deflection of the cables under product load to cause the cables to partially conform to the product contour and hence to provide an abradant, s'upportingcontact of substantial longitudinal extent withthe generally spheroidal products, said cables being spaced by a distance that is several times greater than the cable diameter.
  • the peeler of claim 1 wherein said cables are formed of briaded stainless steel wire and are about three thirty-seconds inches in diameter 3.
  • said means for propelling the products longitudinally through the cycle comprises a helical conveyor that is of substantiallythe same diameter as the envelope of cables, and means for rotating said conveyor independently of the cage.
  • a dry peeler for food products such as vegetables, potatoes or the like which have been treated to soften their skins for dry removal said peeler being of the type that provides a rotary cylindrical cage having an abradant surface, means for rotating said cage, means for propelling the products through said cage, means for feeding treated products to the cage, and means for removing peels that fall from the cage, the improvement wherein said cage comprises a plurality of axially spaced wire mounting rings, and an abradant envelope of axially extending, circumferentially spaced wires supported on and stretched between said rings, said wires being stretched sufficiently to maintainthe generally cylindrical nature of their envelope but being loose enough to be sufficientlydeflected by the products to cause the wires to conform to the product contour and hence provide an abradant, supporting contact of substantial extent with the products, said means for propelling the products through the cage comprising a helical conveyor that is of substantially the same diameter as the envelope of wires, means for-rotating said helical conveyor independently of the means for rotating said cage, and means for adjusting the speed
  • a dry peeler for products such as vegetables, potatoes or the like which have been treated to soften their skins for dry removal said peeler being of the type that provides a rotary cylindrical cage having an abradant surface, means for rotating said cage, means for propelling the products through said cage, means for removing peels that fall from the cage; the improvement wherein said cage comprises a plurality of' axially spaced wire mounting rings, and an abradant envelope of axially extending, circumferentially spaced wires supported on and stretched between said rings, said wires being stretched sufficiently to maintain the generinner ring that mounts the wires.

Abstract

A dry peeler is provided for food products such as vegetables, potatoes or the like which have had their skins softened and loosened such as by a caustic treatment bath. The dry peeler is formed as a rotary cylindrical cage having an abradant surface provided by an envelope of axially extending, circumferentially spaced, parallel, braided stainless steel wire cables, stretched between axially spaced rings, with a screw conveyor fitting within the envelope of cables. Both the cage of cables and the screw are rotated and the flexible cables abrade off and undercut a high percentage of the skins of the pre-treated products without the addition of water during the peeling process. Alternate cable supporting rings are rotatably adjustable to vary the tension on the cables.

Description

United States Patent [191 Hirahara Dec. 17, 1974 1 1 FLEXIBLE CABLE DRY PEELER [75] Inventor: Katsuji Hirahara, Santa Clara,
[52] US. Cl 99/630, 99/624, 99/626 [51] Int. Cl; A23n 7/02, A23n 7/10 [58] Field of Search 99/623, 624, 626, 627, 99/629, 630, 584; 241/2733; S3/65l.l
[56] References Cited .UNITED STATES PATENTS I 281,512 7/1883 Hudson 99/626 X 2,208,239 7/1940 Andersen 99/626 2,772,471 12/1956 Leng 99/623 X 3,480,057 11/1969 Wilhelm 99/584 X FOREIGN PATENTS OR APPLICATIONS 146.065 11/1902 Germany 99/623 43 DRY PEELER Primary Examiner.lohn W. I-Iuckert Assistant Examiner-Charles Gorenstein Attorney, Agent, or Firm-C. E. Tripp [57] ABSTRACT A dry peeler is provided for food products such as vegetables, potatoes or the like which have had their skins softened and loosened such as by a caustic treatment bath. The dry peeler is formed as a rotary cylindrical cage having an abradant surface provided by an envelope of axially extending, circumferentially, spaced, parallel, braided stainless, steel wire cables, stretched between axially spaced rings, with a screw conveyor fitting within the envelope o'f cables. Both the cage of cables and the screw are rotated and the flexible cables abrade off and undercut a high percentage of the skins of the pre-treated products without the addition of water during the peeling process. A1- ternate cable supporting rings are rotatably adjustable to vary the tension on the cables.
6 Claims, 17 Drawing Figures PATENTLW 71974 SHEU 2 OF 6 mm @q mmjmmm 10 PAIENTEU w 119M 3.854.395
SHEET 6 OF 6 ll LIZZ/i' l FLEXIBLE CABLE DRY PEELER DESCRIPTION OF PRIOR ART This invention is an improvement of the peeling apparatus of the U.S. Pat. to Wilhelm, No. 3,480,057,
filed Nov. 25, 1969. in the Wilhelm patent, caustically treated fruit or vegetables such as potatoes are propelled by an internal screw conveyor through a rotating cylindrical screen having a mesh formed of woven strands, punched sheets or expanded metal. In the event woven strands are employed, the strands are formed from double-crimp, heavy black iron wire having a diameter of 0.148 inches and provide openings inch square. After being peeled without the addition of water in the aforesaid rotating screen, the products are passed through a wash section wherein those portions of the peel not removed dry are finally removed for providing completely peeled products.
One of the problems associated with the Wilhelm construction is that the caustically treated peelings,
' such as potato peels or the like, are still somewhat wet or moist when they pass through the dry peeling section of a peeler and as a result, the woven or mesh screen of Wilhelm with its inch openings, becomes plugged or loaded up by the'peelings, and hence efficiency of the apparatus drops to a degree wherein it cannot operate without frequent washing or cleaning. Since the purpose of the invention is to minimize the amount of water that is employed in connection with the major portion of the peeling operation, that is, the purpose is to reduce the ratio of the amount 'of organic material entrained in the waste water leaving the cannery or processing plant, the need for frequent washing of square woven mesh screens, such as the screen of Wilhelm, does not fully obtain the objective of the dry peeling process, which is to minimize the ratio of peels or other organic material to the water that must go to waste from the plant. This characteristic of the -Wilhelm screen also increases the down time of the peeler, a substantial disadvantage during a busy canning or processing season.
Another objection to the Wilhelm device is that the nature of the abradant screen is such that it not only removes the caustically loosened peels but before plugging it removes enough of the underlying flesh of the fruit, vegetables, potatoes or the like to reduce the yield and since these are high tonnage operationssmall reductions can, in-yield, for. each product over a canning season, represent a substantial total loss of prod- UCt.
' Hirahara U.S. Pat. vNo. 3,602,282, issued Aug. 3, 1971 shows a dry peeler formed of a vibrating coarse, square mesh rope netting.
Other patents, less pertinent. than the aforesaid Wilhelm patent, includeKrimo U.S. PatsNo; 1,312,332, Aug. 5, 1919 which drypeels scalded tomatoes between a pneumatic tube and a ribbed belt (FIG. 12) or a revolving disc screen (FIG. Scovill U.S. Pat. No. 719,617, Feb. 3, 1903, dry peels-heat blistered tomatoes on inclined, oppositely moving ribbed belts.
gered rollers running at 400600 RPM. Sijbring U.S.'
Pat. No. 3,460,162, Aug. 5, 1969 dry peels potatoes by feeding them through a rotating drum having an annular array of rotary brushes. Thistype of peeler soon loads up without constant flushing during operation.
' SUMMARY OF THE INVENTION The dry peeler case of the present invention has the following advantages over prior dry peelers, such as that of the Wilhelm patent and other patents mentioned above: a
a. Requires no water spray at the dry peeler.
b. Prolonged high tonnage operation without excessive peel build up and without clogging and reduction of effectiveness. 1
c. Adherent peelings readily removed from the'dry peeler while using relatively small amounts of cleaning water.
yield. I v e. Short and infrequent down times for cleaning the cage. I f. High tonnage throughput.
The above features and advantages of the dry peeler of the present invention will be described in connection with a potato peeler, byway of example.- These advantages are obtained by employing an abradant product receiver or support formed of elongated,- flexible wires that are laterally spaced to provide the abradant surface. The receiver is movedlaterally relative tothe products and means are provided to move the products longitudinally along the laterally moving cables. Preferably, the wires are braided wire cables formed in a cylindrical envelope and are supported at intervals on axiallyspaced rings, so that the entire envelope of cables fonns a cage that is rotated to tumble. and abrade and undercut the potato skins. 1n the cylindrical cage embodiment, the potatoes are'propelled through the rotating envelope or cage of cables by an internal, large pitch screw conveyor, which rotates at about the same speed as the speed of rotation of the cage of cables.
However, the rates of rotation of the screw-conveyor and the cage may differ in order to modify the rate of through-put of the apparatus. The brading cables are preferably formed of braided stainless steel wire about onesixteenth inch in diameter and the cables are circumferentially spaced about three-fourths inch.; The
. distance between the intermediate rings'that support Kilburn et 1. u.s. Pat. No. 2,847,334, Aug. 12, 1958 loosens andruptures the skin of lye treated vegetables on a woven wire belt running in a pressurized stream chamber (FIG. 3). v I
Strause U.S. Pat. No. 2,207,903, July 16, 1940 dry peels potatoes using a rotary bottom disc moving at the cables is 12 or more inches so that although the cables can be circumferentially spaced as close as threefourths of an inch there is no mesh-of cross cables'or the like to encourage peel build up and clogging. Enough of the ring assemblies through which the cables are stretched are provided to provide a total length of I about 10 feet of dry peeling structure, and the diameter of the envelope or cage of cables is about '26inches. Y
Thus, in the preferred embodiment by rotating the cage of cables at a relatively. slow speed such as20-25 RPM, and by turning the internal propelling screw at about d. Minimization of flesh removal, that is, increased the same speed, arelatively high tonnage, nonclogging dry peeler is obtained which is operated without a water spray over a relatively long period of time before shut down for cleaning. Since the cables are stretched between rings that are'l2 or more inches apart, the tension of the cables can be adjusted so that they are deflected somewhat by the potatoes during the peeling process. This increases the length of contact of the individual cables with the surfaces of the potatoes (or other vegetables), and reduces cutting and marring of the surface of the product. The cable deflection has also been found to reduce the amount of flesh removed along with the skins and hence to increase the yield. The apparatus may remove as much as 85-90% of the skins of potatoes, the skins of which have been steam loosened or caustically treated (for example) and requires no infra-red heating or pre-treatment other than the conventional treatment in a steam bath or a caustic bath such as the heated lye bath, commonly employed in the industry.
BRIEF DESCRIPTION OFv THE DRAWINGS FIGS. 1A and 1B taken together are side elevations of a dry peeling system embodying the present invention.
FIG. 2 is a diagram showing the action of an overly tight abrading cable on a vegetable such as a potato.
FIG. 2A is a similar diagram showing the action of defiectable cables mounted in accordance with the present invention.
FIG. 3 is a plan of a dry peeler embodying the invention.
FIG. 4 is a side elevation of the dry peeler.
FIG. 5 is an enlarged section of the dry peeler taken on line 5-5 of FIG. 4.
FIG. 6 is a section taken on line 6-6 of FIG. 5 through the receiving end of the dry peeler.
FIG. 7 is an end view of the dry peeler taken in the direction of arrows 77 on FIG. 4 with portions being broken away.
FIG. 8 is a fragmentary section taken on line 8-8 of FIG. 7 of the delivery end of the dry peeler.
FIG. 9 is an enlarged fragmentary perspective showing the mounting of the spaced cables.
FIG. 10 is an enlarged detail showing the adjustment of certain cable mounting rings.
FIG. 11 is a diagram showing the sequence of securing the cables to the rings.
FIG. 11A is a greatly enlarged section of a braided cable shown in diagrammatic form.
FIG. 12 is a perspective like FIG. 9 showing a modifled form of cable mounting.
FIG. 13 is an enlarged detail showing the modified.
form of FIG. 12. I
FIG. 14 is a fragmentary detail showingstill another modified form of cable mounting.
OVER ALL DESCRIPTION OF A FEELING- SYSTEM Although the peeling system of the present invention has utility for variousvegetables, the embodiment herein illustrated and described in detail is employed for the dry peeling of caustically treated potatoes.
FIGS. 1A and 1B, taken together, illustrate an over all system for the dry peeling of potatoes embodying the dry peeler of the present invention. The vegetables are brought into the system on an infeed conveyor 10 and drop into the hopper 11 of a caustic bath unit 12. It is to be understood that the manner in which the skins of the potatoes are loosened by pre-treatment is not critical to the present invention and the caustic bath illustrated is only one of any number of conventional type baths that can be employed in connection with the present invention.
The caustic bath unit 12 includes a tank 13 mounting a rotating conveyor screw 14 immersed in caustic liquid 16, which may be, for example, a lye solution having 10-1 5 percent by weight of lye heated to a temperature of about 180l90 F. After their skins are softened or loosened by immersion in the caustic bath 16, the potatoes are lifted from the bath by an elevating transfer conveyor 18 and drop into the dry peeler 20 by the present invention. The elevating reach 19 of conveyor l8 drains excess caustic back into the tank 13.
The dry peeler 20 of the present invention, in the embodiment illustrated, comprises a rotating abrasive cage 22 which mounts the cables 40 of the present invention in a manner to be described presently. Concentric with and substantially filling the cage 22 is a helical conveyor screw 24 which is rotated at approximately the same speed as the cage 22 in a manner to be described presently. The diameter of the cage of cables 40 is about 26 inches and that of the screw about 24 inches. The tumbling of the potatoes and removal of the potato skins is provided by the interaction of the cables 40 of the rotating cable cage 22 and the potatoes as the helical conveyor 24 forces the potatoes through the rotating cage. The cables 40, which are about onesixteenth inch in diameter, provide a combined abrasion and cutting action that removes the caustically loosened skins as a relatively dry sludge which drops freely between the cables onto a take-away conveyor 27 running beneaththe dry peeler. The take-away conveyor 27- deposits the relatively dry sludge onto a cross running take-away conveyor 28 for disposal by burning or other means, as explained in the aforesaid Wilhelm patent. It is to be noted that no water sprays are provided in connection with the dry peeler 20, it being an important feature of an invention of this type that a minimum of water be incorporated with the skins or peels removed by the dry peeler and falling on the conveyor 27, so that disposal of these peels without use of the sewage system of the processing plant isfacilitated. The dry peeler 20 will remove about -90 percent of the skins from the potatoes and will direct the peeled potatoes to a transfer conveyor 29. As seen in FIG. 1B the transfer conveyor 29 deposits the peeled potatoes into a brush clean up device 30 wherein the skin portions not. previously removed (usually located at the eyes of the potato) are finally removed. As in the case of the skin loosening apparatus 12, thedetails of the clean up device 30 are not critical to the present invention and the one illustrated is presented only by way of an example. For example, the brush clean up device includes a helical screw conveyor 31 that advances the substantially peeled potatoes through a housing 32 that contains a rotating annular array of brushes 33, the brushes themselves also being rotatable on their supports. A brush clean up device ,of this type is well source of spray water by a conduit 37 in a manner well known in the art and'the wet peel portions removed by this device fall onto a wet peel conveyor 34 which delivers this material to a second take away cross conveyor 35. It is to be understood that although the peel portions removed in the device 30 (usually at the eyes of potatoes) are substantially wetter than those removed in the dry peeler 20. The actual weight of peel portions removed in the clean up device 30 relative to the total weight of the peels removed by the dry peeler is very small, and hence the disposition of the wet peel material falling on the conveyor 34 provides a relatively insignificant problem. The completely peeled potatoes are discharged by a chute 36 onto a peeled product conveyor 38 which carries the peeled potatoes or other vegetables to conventional processing apparatus.
GENERAL DESCRIPTION OF THE DRY PEELER FIGS. 3 and 4 illustrate major features of a preferred form of the dry peeler 20. Only major portions of the framework will be described, which framework includes end supports 41, 42 that have legs for support by the floor and are connected by side beams 43. The central helical conveyor screw or auger 24 has a rigid tubular hub 25. The auger is mounted in end bearings zone with the product thus increasing peeling effective ness without any substantial loss of yield.
The abrasive cage 22 is of cylindrical construction and in the example being given has an outside diameter ,of about 30-36 inches, with the envelope of cables 40 having a diameter of about 26 inches. The cage is formed of annular end rings between which extend axial ring supporting and reinforcing tubes. For example, as seen in FIGS. 3 and 4, there is an annular end ring 60 at the receiving end of the cage and a corre-. sponding end ring 61 at the delivery end thereof, and
six axial tubes 62 extend between their end rings. The
end rings are each supported for rotation on two rollers adjustably mounted on the end frames 41, 42. For example, referring to FIGS. 5 and 6, the end ring 60 at the receiving end is supported on cylindrical rollers 63, 64, and the end ring 61 is mounted on rollers 65, 66 at the delivery end of the machine (FIGS. 7 and 8). Since the end rings 60, 61 are flanged at 60a, 61a (FIGS. 4, 6 and 44, 45 on supports 41, 42 which bearings support rigid stub shafts 46 welded to the hub 25 of the auger. The support 41 at the receiving end of the peeler 20 has a hopper 48 for receiving potatoes or other vegetables from the caustic bath 12,'which hopper has a bottom 48a (FIG. 6) that is curved to match the contour of the helical auger 24. Thus, caustically treated potatoes P fall into the hopper 48, are picked up by the auger 24 and are propelled intoand through the rotating abrasive cage 22, previously described. The peeled potatoes P are discharged into a chute 49 (FIG. 8);
The auger 24 is driven by a hydraulic motor 50(FIG.
6) by means of 'a' sprocket 51 on the motor shaft that drivesa chain 52 trained around a larger sprocket 53 on the stub shaft 46 for the auger. It is to be understood that the hydraulic motor50 is supplied with oil under pressure from a conventional hydraulic pump (not shown) and. that conventional valving'and pressure gauge systems (not shown) are provided in order that the speed of the hydraulic-motor 50can be selectively controlled to vary the speed of the auger 24 and hence the throughput of the apparatus. A typical speed for the auger 24 will be in the order-of 20-25 RPM and the pitch of theauger will be about 1 foot per revolution.
THE ABRASIVE CAGE The abrasive cage 22 of the dry peeler of the present invention is an elongated cylindrical envelope of wire cables 40, the cables preferably being braided of small strands of stainless steel wires to provide superior strength, abrasive qualities'and cleanliness. These cables are stretched in a generally. axial direction along the entire length of the abrasive cage 22 and are supported at intervals of about l3 inches (in the example given) so that they can support the weight of the product being pushed and tumbled through the'cage. Yet, as will be seen, the'cables 40 are not stretched too tightly, but rather their tension can be adjusted to provide limited deflection of the cables during the skin removal action thereof 'on'the product, for minimizing damage to the productand for increasing the contact 8), theforesaid four rollers 63-66 support and locate the abrasive cage 22 for rotation. All of the aforesaid cage support rollers 63-66 are supported in paired brackets 67 projecting inwardly from the end frame elements 41, 42 of the machine. The shafts 64a, 65a, 66a' for the three rollers 64, 65, 66, are simple stub shafts that mount the corresponding rollers in the spaced bracket 67, a typical construction of this roller mounting appearing in FIGS. 7 and 8.
The roller 63 atthe receiving end of the machine is mounted on a longer shaft 63a which shaft turns loosely within the roller 63 and serves to rotate the abrasive cage 22. As seen in FIG. 6, the shaft 63a (partially seen in dotted lines) is driven by a hydraulic motor 70, which motor is secured to a bracket 71 (FIGS. 5 and 6) that takes up the torque of the motor by means of a bolt 73' that connects the bracket 71 to a crossbar74 (FIG. 5) forming part of the deliveryend frame structure 41. The motor shaft 63a rotates the cage 22 by means of a sprocket 72 at the inner end of the shaft (FIG. 5), which sprocket drives a'chain'74 (FIG; 5) trained around a large annular'channel'76 supported on one of the annular rings mounted by the aforesaid circular array of axial spacer tubes '62. An idler sprocket 77 is pressed against the chain74 by a spring 78 to provide a friction drive of the channel 76. The hydraulic motor which rotates the abrasive cage 22 is also connected in the manner of the hydraulic motor 50 that rotates the auger 24, in that the motor 70 is connected by means of a control valve and pressure gauge system to a conventional source of oil under pressure, such as a hydraulic pump, which connections, by means well known in the art, provide for independently controlling the speed of the cage driving motor 70 relative to that of the auger motor 50. Generally speaking, the speed of rotation of the cage 22 will be approximately equal to that of the auger 24, namely, about 20-25 RPM. Of course, the auger 24 and the abrasive cage 22 can be speeded up or slowed down to increase v60 or decrease the throughput of the apparatus. Also de- CABLE ,MOUNTINGI The cables 40, which perform the skin removal or peeling function, are of the aircraft type, and in the form described are made of braided No. 304 stainless steel wire, each complete cable being about one sixteenth inch in diameter. These small diameter cables provide a combined abrasion and undercutting action on the loosened skins without damaging the underlying flesh. Each cable contains about 49 small wires braided in a 7 X 7 configuration, that is, seven strands of seven wires per strand. This provides a high tensile strength cable having an abrasive surface, and yet being tightly braided, the cables are easily cleaned. FIG. 11A, shows in greatly enlarged, diagrammatic form a section of one of the cables 40'. In the embodiment described, the, cable 40 is braided from seven multi-wire strands 40a,
and each strand 40 is braided from seven small individual wires 406. Although a cable diameter of onesixteenth inch is preferred a 3/32 inch diameter cable would not be too large to provide the undercutting action on the skins. The cables 40 are supported at intervals of about 13 inches long length of the cage on the annular rings previously mentioned, which rings are secured to theaxial tubes 62. The cables are mounted in an end ring 80 at the receiving end of the apparatus (FIG. 6) and a corresponding end ring 82 at the delivery end of the apparatus (FIG. 9). A number of axially spaced, intermediate ring assemblies, to be described, are also secured to the longitudinal tubes 62.
The intermediate rings include a tension ring adjustment assembly 84 adjacent to but spaced about 13 inches from each end ring 80, 82, there being fournonadjustable cable supporting rings 86 distributed along the length of the apparatus between the end rings 80, 82. As seen in FIGS. 3 and 4, an adjustable cable mounting ring assembly 84 is mounted between each of the fixed cable mounting rings 86 as well as between the end rings 80, 82 and the nearest fixed cable mounting ring 86, providing a'total of five adjustable rings 84, four intermediate non-adjustable rings 86 and the two non-adjustable end rings 80, 82. Since, in the construction being described, the various cable mounting rings are about 13 inches apart, this construction provides an adjustment of the tension of about 26 inches of the length of the cables 40 extending between the nonadjustable or fixed rings.
CABLE MOUNTING DETAILS As previously described, the abrading cables '40 are supported in a row of annular rings, and the cables are secured to the end rings 80 (FIG. 6) and 82 (FIG. 8) and to a series of fixed rings 86 (FIGS. 9 and 11). Between each adjacent pair of non-adjustable rings, an adjustable ring mounting assembly 84 is mounted, and these adjustable ring assemblies 84 and the cable mounting details will now be described.
The cables 40 are secured to the end rings 80 and 82 and to the non-adjustable rings 86 in a convenient manner. For example, in the embodiment being described, this securement is provided by crimping ferrules 90 to the cables at the end rings 80, 82 and at both sides of the intermediate fixed rings 86. The adjustable ring assemblies 84 are formed of an outer ring 92 that is welded to the longitudinal tubes 62 and a relatively turnable or adjustable inner ring 94 which ring is provided with apertures for the cables 40, there being no ferrules 90 at the rings 94. In the first embodiment of the invention, the apertures for the cables 40 are staggered to form two concentric envelopes of the cables. As indicated in FIG. 10, the circumferential spacing s between the cables 40 in the outer envelope is equal to the spacing s between the cables 40 in the inner envelope and the cables on the envelopes are symmetrically staggered, so that the circumferential distance between a cable of the outer envelope and one of the inner envelope is equal to s/2. The radial staggering d of the cables 40 of the inner and outer envelope is, in the example given, equal to about five-eights inches whereas the spacing s of the cables in each envelope is equal to about 1V2 inches, so that s/2 equals inches.
In order to adjust each inner ring 94 relative to its fixed outer ring 92, a bracket 96 (FIGS. 9 and is bolted to one side of the inner ring 94 by bolts 97, 98.
As indicated in dotted lines in FIG. 10, the bolt 98 mounts a retainer washer 99 on the opposite side of the inner ring 94 which centers the inner ring on the outer, fixed ring 92. In order to adjustably rotate the inner ring 94 relative to the outer ring 92 fordetermining the tension on the cables 40, an adjusting screw 100 is 'threaded into a nut block 101 fixed on the bracket 96.
This adjusting bolt 100 bears against the adjacent axial pipe 62 which mounts the outer ring 92 and the bolt is locked in its adjusted position-by lock nuts'102 (FIG. 10). As seen in FIGS. 5 and 13, additional guides for axially locating the .inner, adjustable ring on the outer, fixed ring 92 are provided by bolts 98a that mount large washers 99a on each side of the rings.
The cables 40 simply slide through their apertures in the adjustable rings 94 but are secured by ferrules 90 to adjacent fixed rings, so that adjustment of the bolts for each of the adjustable ring assemblies 84 determines the tension and hence the operational sag of the cables during the dry peeling operation.
In order to restrict the amount of cable sag and facilitate and to support a relatively heavy load of potatoes or vegetables during the process, the mid-portions of the cables 40, that. is, those portions intermediate each pair of rings 84, 86, etc., are partially restrained by non-metallic cords 104 whichare laced around the mid-section of the outer envelope of the cables 40. These lacings partially support the outer envelope of the cables 40 directly and limit deflection of the cables 40 of the inner. envelope to some extent during high load operation.
The effect of selective adjustment of. the tension of cable 40 is illustrated diagrammatically in FIGS. 2 and 2A. In FIG. 2, the adjustment of cables 40 is such that the cables are under as great a tension as feasible. With this condition (FIG. 2) of the cables, the length L of the zone of contact of the cable with a vegetable, such as the potato P, is relatively short. This condition, not only accentuates the danger of a cable cutting into the fruit during the peeling operation, but also shortens the length L of the zone of contact of the cables with the fruit, and hence reduces abrasion efficiency. FIG. 2A shows (in somewhat exaggerated form) adjustment of the cables in a manner which accommodates a greater degree of deflection of the cables during the peeling operation. As seen in FIG. 2A, thelength Ll of the contact zone is substantially greater than the length L in the tight cable condition of FIG. 2. The resultant cable flexure reduces the unit force imparted by the cables to the potatoes or other vegetables, and also facilitates accommodation of the cables to the vegetable contour, thereby providing an efficient, non-damaging peeling action.
OPERATION tion, all the cables contribute equally to the peeling action and their circumferential spacing s/2 is equal to about inch. The general mode of operation of the caustic bath by the transfer conveyor 18 which has an elevating reach 19 that drains excess caustic from the potatoes before they are dropped into the hopper 48- of the dry peeler 20.
On falling into the dry peeler hopper 48, the potatoes are picked up by the helical auger 24 which is rotating at about 20-25 RPM and hence forces the potatoes axially through the abrasive cage 22. The abrasive cage 22 is usually rotated at about the same speed as the auger conveyor 24. As 'a result of axially forcing the potatoes through the rotating abrasive cage 22 by means of the screw 24, coupled with the action of gravity on the potatoes, there is substantial relative motion between the braided wire cables 40, and the potatoes are tumbled in all directions and at random. The result is that the. peels are removed as a moist sludge and fall freely through the relatively widely spaced cables40 onto the dry peel conveyor 27. The cables 40 are relatively self cleaning and there is no build up of slippery peels thereon, which would reduce the peeling efficiency during prolonged operation. Due to the flexibility of the cables 40, the tensionof which canbe adjusted as previously described, the length of contact Ll (FIG. 2A) of the cables with the potatoes is substantial, which minimizes marring and cutting of the fruit and increases the length of the zone of the abrasive action on the fruit. The peeled potatoes P, which will have had about 85-90 percent of the peeling's removed, are deposited into the chute 49 (FIGS. 7 and 8) at the delivery end 42 of the dry peeler for pickup by the transfer conveyor 29. The peels fall readily through the cables 40 onto the dry peel conveyor 27, as described. Final clean up is provided bythe brush clean up device 30,
as was also previously described. The apparatus described will dry peel about 20,000 pounds of 'pretreated potatoes per hour.
MODIFIED FORMS FIGS. 12 and 13 show a modified form of the invention wherein the radial spacing d between the inner and outer envelopes of the cables 40 shown in FIG. 10 is reduced to bring the cables closer to'concentricity. This isaccomplished by threading a strong wire or cable 110 over the outer envelope of cables and cables and under the inner envelope of cables adjacent to the rings, as clearly seen in FIGS. 12 and 13. This modification increases the abrasive or peeling action of the outer envelope of cables, particularly in zones adjacent to the supporting rings wherein a relatively large deflection of the inner envelope cables is required before the potatoes will engage the outer envelope cables.
FIG. 14 shows another modified form wherein the cables 40 are all concentric. This is'provided by forming both the adjustable rings Q4 (not shown in FIG. 14) and the non-adjustable rings 86a with a concentric array of holes to accommodate the cables 40. In this modificaembodiments of FIGS. 12-14 is substantially the same as described for the first embodiment and detailed descriptions are not necessary.
Although the best mode contemplated for carrying out the present invention has been herein shown and described, it will be apparent that modification and variation may be made without departing rom what is regarded to be the subject matter'of the invention.
I claim:
l. A- peeler for generally spheroidal food products such as vegetables, potatoes or the like which have been treated to soften their skins for removal, said peeler being of the type that provides a rotary cage having an open abradant surface, means for rotating the cage, means for propelling the products longitudinally through the cage, means for feeding treated products to the cage, and means for removing peels that fall from the cage; the improvement wherein said cage comprises a pair of end support rings, at least one intermediate support ring and an abradant envelope formed of longitudinally extending, circumferentially spaced, straight briaded steel wire cables supported on said rings, means for tensioning said cables sufficiently to maintain their generally longitudinal direction under product load while accommodating sufficient deflection of the cables under product load to cause the cables to partially conform to the product contour and hence to provide an abradant, s'upportingcontact of substantial longitudinal extent withthe generally spheroidal products, said cables being spaced by a distance that is several times greater than the cable diameter.
2. The peeler of claim 1, wherein said cables are formed of briaded stainless steel wire and are about three thirty-seconds inches in diameter 3. The peeler of claim 1, wherein said means for propelling the products longitudinally through the cycle comprises a helical conveyor that is of substantiallythe same diameter as the envelope of cables, and means for rotating said conveyor independently of the cage.
4. A dry peeler for food products such as vegetables, potatoes or the like which have been treated to soften their skins for dry removal, said peeler being of the type that provides a rotary cylindrical cage having an abradant surface, means for rotating said cage, means for propelling the products through said cage, means for feeding treated products to the cage, and means for removing peels that fall from the cage, the improvement wherein said cage comprises a plurality of axially spaced wire mounting rings, and an abradant envelope of axially extending, circumferentially spaced wires supported on and stretched between said rings, said wires being stretched sufficiently to maintainthe generally cylindrical nature of their envelope but being loose enough to be sufficientlydeflected by the products to cause the wires to conform to the product contour and hence provide an abradant, supporting contact of substantial extent with the products, said means for propelling the products through the cage comprising a helical conveyor that is of substantially the same diameter as the envelope of wires, means for-rotating said helical conveyor independently of the means for rotating said cage, and means for adjusting the speed of the conveyor relative to that of the cage.
5. A dry peeler for products such as vegetables, potatoes or the like which have been treated to soften their skins for dry removal, said peeler being of the type that provides a rotary cylindrical cage having an abradant surface, means for rotating said cage, means for propelling the products through said cage, means for removing peels that fall from the cage; the improvement wherein said cage comprises a plurality of' axially spaced wire mounting rings, and an abradant envelope of axially extending, circumferentially spaced wires supported on and stretched between said rings, said wires being stretched sufficiently to maintain the generinner ring that mounts the wires.
UNITED STATES PATENT oTm'cE CERTEFICATE 0F CORRECTION PATENT NO. 1 54,395 DATED December 17, 1974 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 53 change "brading" to abrading Column 7, line 23 change (Fig. 9) to (Fig. 8)
Column 10, line 10 change "rom" to from line 25 change "briaded" to braided line 36- change "briaded" to braided Signed and Scaled this A ttes t.
RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner oj'Patenrs and Trademarks

Claims (6)

1. A peeler for generally spheroidal food products such as vegetables, potatoes or the like which have been treated to soften their skins for removal, said peeler being of the type that provides a rotary cage having an open abradant surface, means for rotating the cage, means for propelling the products longitudinally through the cage, means for feeding treated products to the cage, and means for removing peels that fall from the cage; the improvement wherein said cage comprises a pair of end support rings, at least one intermediate support ring and an abradant envelope formed of longitudinally extending, circumferentially spaced, straight briaded steel wire cables supported on said rings, means for tensioning said cables sufficiently to maintain their generally longitudinal direction under product load while accommodating sufficient deflection of the cables under product load to cause the cables to partially conform to the product contour and hence to provide an abradant, supporting contact of substantial longitudinal extent with the generally spheroidal products, said cables being spaced by a distance that is several times greater than the cable diameter.
2. The peeler of claim 1, wherein said cables are formed of briaded stainless steel wire and are about three thirty-seconds inches in diameter.
3. The peeler of claim 1, wherein said means for propelling the products longitudinally through the cycle comprises a helical conveyor that is of substantially the same diameter as the envelope of cables, and means for rotating said conveyor independently of the cage.
4. A dry peeler for food products such as vegetables, potatoes or the like which have been treated to soften their skins for dry removal, said peeler being of the type that provides a rotary cylindrical cage having an abradant surface, means for rotating said cage, means for propelling the products through said cage, means for feeding treated products to the cage, and means for removing peels that fall from the cage, the improvement wherein said cage comprises a plurality of axially spaced wire mounting rings, and an abradant envelope of axially extending, circumferentially spaced wires supported on and stretched between said rings, said wires being stretched sufficiently to maintain the generally cylindrical nature of their envelope but being loose enough to be sufficiently deflected by the products to cause the wires to conform to the product contour and hence provide an abradant, supporting contact of substantial extent with the products, said means for propelling the products through the cage comprising a helical conveyor that is of substantially the same diameter as the envelope of wires, means for rotating said helical conveyor independently of the means for rotating said cage, and means for adjusting the speed of the conveyor relative to that of the cage.
5. A dry peeler for products such as vegetables, potatoes or the like which have been treated to soften their skins for dry removal, said peeler being of the type that provides a rotary cylindrical cage having an abradant surface, means for rotating said cage, means for propelling the products through said cage, means fOr removing peels that fall from the cage; the improvement wherein said cage comprises a plurality of axially spaced wire mounting rings, and an abradant envelope of axially extending, circumferentially spaced wires supported on and stretched between said rings, said wires being stretched sufficiently to maintain the generally cylindrical nature of their envelope but being loose enough to be sufficiently deflected by the products to cause the wires to conform to the product contour and hence provide an abradant, supporting contact of substantial extent with the products, said wire mounting rings comprising end rings and an intermediate ring, and means for adjustably turning one ring relative to an adjacent ring to adjust the tension of said wires.
6. The dry peeler of claim 5, wherein said one ring comprises a fixed outer ring and a relatively adjustable inner ring that mounts the wires.
US00331403A 1973-02-12 1973-02-12 Flexible cable dry peeler Expired - Lifetime US3854395A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00331403A US3854395A (en) 1973-02-12 1973-02-12 Flexible cable dry peeler
US05/627,985 USRE29030E (en) 1973-02-12 1975-11-03 Flexible cable dry peeler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00331403A US3854395A (en) 1973-02-12 1973-02-12 Flexible cable dry peeler

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/627,985 Reissue USRE29030E (en) 1973-02-12 1975-11-03 Flexible cable dry peeler

Publications (1)

Publication Number Publication Date
US3854395A true US3854395A (en) 1974-12-17

Family

ID=23293802

Family Applications (1)

Application Number Title Priority Date Filing Date
US00331403A Expired - Lifetime US3854395A (en) 1973-02-12 1973-02-12 Flexible cable dry peeler

Country Status (1)

Country Link
US (1) US3854395A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023477A (en) * 1975-09-29 1977-05-17 Fmc Corporation Flexible cable dry peeler with rubber-like cords
US4062985A (en) * 1975-11-26 1977-12-13 Atlas Pacific Engineering Company Continuous peeling method
FR2411575A1 (en) * 1977-12-19 1979-07-13 Magnuson Eng Inc APPARATUS FOR PEELING FRUITS AND VEGETABLES
US4230034A (en) * 1979-02-12 1980-10-28 Atlas Pacific Engineering Company Apparatus for continuous produce surface treatment
FR2494091A1 (en) * 1980-11-14 1982-05-21 Komen Kuin Bv Appts. for dry peeling fruit and vegetables - with perforated rotating cage with separately rotated feed screw
US4519305A (en) * 1984-02-03 1985-05-28 Hawkeye Food Machinery, Inc. Vegetable peeler
US5033372A (en) * 1990-11-27 1991-07-23 Imdec, S.A. Apparatus for peeling fruits and vegetables
US5106641A (en) * 1991-04-23 1992-04-21 Bichel Ronald A Apparatus and method for waterless rotary cleaning and peeling food products and the like
US5351610A (en) * 1992-07-24 1994-10-04 Limas Ab Peeling machine for vegetable products
US5682812A (en) * 1995-05-19 1997-11-04 Fmc Corporation Fruit steam peeler
US5786014A (en) * 1997-04-11 1998-07-28 Fmc Corporation Capacity caustic peeler system
US6082252A (en) * 1999-06-29 2000-07-04 Fmc Corporation Pre-heat apparatus for peeling system
WO2001089328A1 (en) 2000-05-23 2001-11-29 Fmc Corporation System and method for processing citrus fruit
US6776087B1 (en) * 2003-06-25 2004-08-17 The Amstad Family Revocable Trust Food processing machine
US20050082144A1 (en) * 2003-10-14 2005-04-21 Maupin Daniel D. High speed food product peeling or cleaning machine and method
US20060201346A1 (en) * 2003-08-04 2006-09-14 Milser Borchini Recovery plant of fibers and substances to the tomato-peel
US20080279994A1 (en) * 2003-02-21 2008-11-13 Catherine Sarah Cantley Method for reducing acrylamide formation in thermally processed foods
US9078468B2 (en) 2013-01-15 2015-07-14 Dole Fresh Vegtables, Inc. Leaf removal apparatus
US20180160839A1 (en) * 2015-04-23 2018-06-14 Breville Pty Limited Potato peeler
WO2018142424A1 (en) * 2017-02-01 2018-08-09 Nanopix Integrated Software Solutions Private Limited Machine and method for peeling skin from un-peeled objects
CN112220070A (en) * 2020-10-31 2021-01-15 张小凤 Surrounding type astragalus membranaceus peeling device
US11606911B2 (en) * 2018-03-27 2023-03-21 Eteros Technologies Usa, Inc. Plant material trimming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US281512A (en) * 1883-07-17 hudson
US2208239A (en) * 1938-10-17 1940-07-16 Nils G Andersen Machine for hulling nuts
US2772471A (en) * 1954-09-24 1956-12-04 Leng Arnold Sydney Abrading tools
US3480057A (en) * 1967-04-18 1969-11-25 Pillsbury Co Method and apparatus for peeling fruits and vegetables under low moisture conditions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US281512A (en) * 1883-07-17 hudson
US2208239A (en) * 1938-10-17 1940-07-16 Nils G Andersen Machine for hulling nuts
US2772471A (en) * 1954-09-24 1956-12-04 Leng Arnold Sydney Abrading tools
US3480057A (en) * 1967-04-18 1969-11-25 Pillsbury Co Method and apparatus for peeling fruits and vegetables under low moisture conditions

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023477A (en) * 1975-09-29 1977-05-17 Fmc Corporation Flexible cable dry peeler with rubber-like cords
US4062985A (en) * 1975-11-26 1977-12-13 Atlas Pacific Engineering Company Continuous peeling method
FR2411575A1 (en) * 1977-12-19 1979-07-13 Magnuson Eng Inc APPARATUS FOR PEELING FRUITS AND VEGETABLES
US4230034A (en) * 1979-02-12 1980-10-28 Atlas Pacific Engineering Company Apparatus for continuous produce surface treatment
FR2494091A1 (en) * 1980-11-14 1982-05-21 Komen Kuin Bv Appts. for dry peeling fruit and vegetables - with perforated rotating cage with separately rotated feed screw
US4519305A (en) * 1984-02-03 1985-05-28 Hawkeye Food Machinery, Inc. Vegetable peeler
US5033372A (en) * 1990-11-27 1991-07-23 Imdec, S.A. Apparatus for peeling fruits and vegetables
US5106641A (en) * 1991-04-23 1992-04-21 Bichel Ronald A Apparatus and method for waterless rotary cleaning and peeling food products and the like
US5351610A (en) * 1992-07-24 1994-10-04 Limas Ab Peeling machine for vegetable products
US5682812A (en) * 1995-05-19 1997-11-04 Fmc Corporation Fruit steam peeler
US5786014A (en) * 1997-04-11 1998-07-28 Fmc Corporation Capacity caustic peeler system
US6082252A (en) * 1999-06-29 2000-07-04 Fmc Corporation Pre-heat apparatus for peeling system
US6427584B1 (en) 2000-05-23 2002-08-06 Fmc Technologies, Inc. System and method for processing citrus fruit with enhanced oil recovery and juice quality
US6426107B1 (en) 2000-05-23 2002-07-30 Fmc Technologies, Inc. System and method for processing citrus fruit with enhanced oil recovery and juice quality
WO2001089328A1 (en) 2000-05-23 2001-11-29 Fmc Corporation System and method for processing citrus fruit
US20080279994A1 (en) * 2003-02-21 2008-11-13 Catherine Sarah Cantley Method for reducing acrylamide formation in thermally processed foods
US8110240B2 (en) * 2003-02-21 2012-02-07 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
US6776087B1 (en) * 2003-06-25 2004-08-17 The Amstad Family Revocable Trust Food processing machine
US20060201346A1 (en) * 2003-08-04 2006-09-14 Milser Borchini Recovery plant of fibers and substances to the tomato-peel
US20050082144A1 (en) * 2003-10-14 2005-04-21 Maupin Daniel D. High speed food product peeling or cleaning machine and method
US9307785B2 (en) 2013-01-15 2016-04-12 Dole Fresh Vegetables, Inc. Method of using leaf removal apparatus
US9078468B2 (en) 2013-01-15 2015-07-14 Dole Fresh Vegtables, Inc. Leaf removal apparatus
US9668513B2 (en) 2013-01-15 2017-06-06 Dole Fresh Vegetables, Inc. Leaf removal apparatus and methods of use
US20180160839A1 (en) * 2015-04-23 2018-06-14 Breville Pty Limited Potato peeler
WO2018142424A1 (en) * 2017-02-01 2018-08-09 Nanopix Integrated Software Solutions Private Limited Machine and method for peeling skin from un-peeled objects
US11490646B2 (en) 2017-02-01 2022-11-08 Nanopix Integrated Software Solutions Private Limited Machine and method for peeling skin from un-peeled objects
US11606911B2 (en) * 2018-03-27 2023-03-21 Eteros Technologies Usa, Inc. Plant material trimming device
CN112220070A (en) * 2020-10-31 2021-01-15 张小凤 Surrounding type astragalus membranaceus peeling device
CN112220070B (en) * 2020-10-31 2021-08-27 安徽世茂中药股份有限公司 Surrounding type astragalus membranaceus peeling device

Similar Documents

Publication Publication Date Title
US3854395A (en) Flexible cable dry peeler
US4132162A (en) Apparatus for peeling fruits and vegetables
US3134413A (en) Apparatus for peeling fruits or vegetables
US3460162A (en) Method for peeling potatoes or similar tubers,bulbs,roots,or fruits and an apparatus for carrying out this method
US3811000A (en) Peeling machine and method
US5245919A (en) Apparatus for peeling fruits or vegetables
US5106641A (en) Apparatus and method for waterless rotary cleaning and peeling food products and the like
US20050082144A1 (en) High speed food product peeling or cleaning machine and method
US3851572A (en) Dry peeling apparatus
US4095517A (en) Juice and pulp extractor
US4230034A (en) Apparatus for continuous produce surface treatment
US4023477A (en) Flexible cable dry peeler with rubber-like cords
US2424803A (en) Horizontal rotary abrading drum for peeling fruit and vegetables
US4827836A (en) Fruit and vegetable peeler
US20030146137A1 (en) Apparatus and method of soft sorting fruits and vegetables
US4842883A (en) Continuous produce surface treater and method
USRE29030E (en) Flexible cable dry peeler
WO2000013516A1 (en) Shrimp peeling apparatus
US3192974A (en) Peeling apparatus
US3658072A (en) Apparatus for treating foodstuff
US3602282A (en) Peeling treated fruit to minimize sewage waste
RU2266028C1 (en) Machine for debarking of fruit, preferably, pumpkin
US4770887A (en) Tomato stem and peel device and process
US2910070A (en) Pea sheller
US3851753A (en) Roller cleaning mechanism