US3852951A - Electronic correction - Google Patents
Electronic correction Download PDFInfo
- Publication number
- US3852951A US3852951A US00378627A US37862773A US3852951A US 3852951 A US3852951 A US 3852951A US 00378627 A US00378627 A US 00378627A US 37862773 A US37862773 A US 37862773A US 3852951 A US3852951 A US 3852951A
- Authority
- US
- United States
- Prior art keywords
- sequence
- time
- switch
- piece
- bistable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- 230000000295 complement effect Effects 0.000 claims description 11
- 230000008054 signal transmission Effects 0.000 claims description 5
- 230000000994 depressogenic effect Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- JATPLOXBFFRHDN-DDWIOCJRSA-N [(2r)-2-acetyloxy-3-carboxypropyl]-trimethylazanium;chloride Chemical compound [Cl-].CC(=O)O[C@H](CC(O)=O)C[N+](C)(C)C JATPLOXBFFRHDN-DDWIOCJRSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G5/00—Setting, i.e. correcting or changing, the time-indication
- G04G5/02—Setting, i.e. correcting or changing, the time-indication by temporarily changing the number of pulses per unit time, e.g. quick-feed method
Definitions
- the advantage of the present invention from the viewpointat least of the user is that both addition and subtraction of seconds to or from the display may be effected by a single control switch which may take the form of a push-button for example.
- a single control switch which may take the form of a push-button for example.
- add seconds the user pushes the button once for each second he desires to add.
- subtract seconds the user pushes the button and holds it depressed whereupon initially a second is added and thereafter further transmission of signals from the time standard to the display are blocked so that the user may subtract as many seconds from the indication of the display as circumstances warrant.
- the invention provides a time-piece in which a time standard supplies signals of a predetermined frequency to a first sequence of bistable devices arranged and adapted to provide output signals ofa desired frequency to a display arrangement in which at least seconds are displayed, wherein means are provided to set the seconds display through the supplying of additional output signals or the withholding of output signals, said means including a complement output terminal on at leastone of the bistable devices in the first sequence, a bistable storage device arranged to be manually switchable to a first stable state and to be automatically restored to a second stable state by signals obtained from the complement Output terminal, a display control toggle having an input arrangement which logically combines said output signals from the first sequence of bistable devices with signals from the bistable storage device, a delaycircuit having a controllable disabling switch and receiving an input from a predetermined bistable device in the first sequence in order to provide an output adapted to block signal transmission from at least one bistable device in the first sequence and a manually operable switch coupled to the bistable storage device and the delay circuit
- FIG. 1 represents a schematic lay-out of the logic of ing of the present invention
- FIG. 2 is a timing diagram relating to the transmission of signals in the circuit of FIG. 1,
- FIG. 3 represents a simplified variant of the version of the invention shown in FIG. 1,
- FIG. 4 is a timing diagram relating to FIG. 3,
- FIG. 5 shows a typical circuit which might be used for the bistable devices in the counter sequences.
- the basic arrangement is similar to that of FIG. 1 of my above mentioned earlier patent application in so far as the addition of seconds is concerned.
- the present invention shows one of the more difficult arrangements in which a stepping motor is used to drive the display and the stepping motor requires successive drive pulses of opposite polarity.
- the stepping motor is arranged in a conventional manner to drive time indicating hands. It will be however obvious that the principle of the correction control as taught by the present patent application is equally applicable to a less complex situation which may be provided by other displays.
- the motor control circuit must provide a change of direction of the current in the winding at each step.
- the operation to be carried out acts on the logic.
- Such delay should be greater than the time necessary for theaddition ofa second by a normal actuation of the switch, but as short as possible and in any event shorter than 1 second. A reasonable delay would seem to be from A to /2 a second.
- delay T may be effected by analogue methods (integration of a current in a capacitor) or digital methods (counters).
- analogue methods integration of a current in a capacitor
- digital methods counters
- stage 11 as shown for purposes of illustration in FIG. 1 is clamped and this suspends the counting action of stages further down the chain and thus suppresses current pulses in the motor.
- This arrangement may however present a disadvantage should one wish to effect a simple subtraction of seconds.
- resetting the last five stages will bring about a change of state of the last stage 16 should it be in its odd stateO which will have as an effect the addition of a 2nd secnd at the end of T
- This second addition is not foreseeable and for this reason causes greater difficulty since it is necessary to observe and count the added seconds" in order to calculate the subtraction time which might thus be n l or n 2 in order to subtract n-seconds.
- Such a difficulty will practically never appear when only one of the stages is clamped on condition that such stage be at a relatively high frequency.
- stage 9 in this particular arrangement would receive signals at a frequency of 128 Hz from the preceding part of the divider and stages 17 and 18 are set and reset alternately each second in order to control complementary transistor pairs 8;; S S S which in turn deliver pulses of alternatingdirection to the motor winding M.
- Push-button P may be followed by an integrator stage I which is intended to suppress the electrical effect of the mechanical irregularities (bounces) of the pushbutton.
- One actuation of push-button P will change the output state 6 of bistable storage device 19 from one to zero. This change .will have no effect on stage 16 since the type of circuit employed reacts only to positive-going pulses and it is only upon the arrival of a complement output from stage 12 that stage 19 thereafter produces a one-output to change the state of toggle 16 and subsequently add I second to the display. This part of the circuit will be seen to be practically identicalwith that shown in my earlier patent application.
- the output signal from the push-button P following the integration stage I is also passed across an inverter N and it will be seen that normally the output from N will be a positive signal which serves to saturate transistor T and thereby disable the secondary sequence of dividers 20, 21, 22 and 23.
- the output from inverter N will block transistor T, and stages 20, 21, 22 and 23 will no longer be inhibited. These stages will thus commence to count signals received from stage 10.
- the leading edge of the the signalYfrom the complement output of stage 12 will have changed the state of bistable storage device 19 thereby, as previously explained, bringing about addition of I second to the display.
- stages 20, 21, 22 and 23 will be reset to zero and the main divider (stages 9 to 18 as shown) will not be affected. Should however the push-button be actuated longer than T transistor T will saturate at the end of the delay period T and will remain saturated until the push-button P is released. When such release is effected it will cause a positive output from N thereby resetting stage 24 to zero and blocking stages 20, 21, 22 and 23. As long as T remains saturated stage 11 will be clamped. When stage 24 is reset, transistor T is switched off and stage 11 resumes its normal function.
- stage 11 In integrated circuit technology such as complementary MOS it is possible to implant logical gates and in such instances the inhibition of stage 11 may be replaced by an AND-gate between stage 10 and stage 11 which will be enabled or disabled according to the state of stage 24, transistor T in this case being eliminated.
- resistor R and transistor T may be used to clamp the last five stages of the divider circuit through actuation of, for example, the crown of the time-piece.
- FIG. 2 The timing of the various switching changes for this version of the correction circuit is as illustrated in FIG. 2 in which the symbols Q represent outputs from the bistable stages. Accordingly. 6 represents complement outputs, P represents the actuation of the push-button P and I represents motor impulses. The dotted representations are those which would occur in the normal state of operation, i.e., in the event that the pushbutton was not actuated.
- FIG. 3 shows a simplified version of the invention which has actually been reduced to practice. Reference numbers relating to similar elements are the same in both FIGS. 1 and 3. For a further simplification of the drawing transistors are not shown as such, but it will be understood for example that the switches S and S would comprise transistors according to the chosen integration technique. Elements not essential to the understanding of the logic have been omitted and the motor circuits are simply shown as a block M.
- FIG. 1 and FIG. 3 The principal difference between FIG. 1 and FIG. 3 lies in the fact that only two dividers 20 and 21 are shown in the secondary sequence 21. These are provided with a self-latching circuit S the effect of which is to eliminate the need for the memory stage 24 of FIG. 1.
- switch S is closed at the end of the delay period T and will remain closed until the push-button P is released.
- P When P is released it will cause a positive output from N hereby clamping stages 19 and 20 and thus opening switch S This permits stage 13 to resume its normal function.
- FIG. 4 I Timing of the circuit as shown in FIG. 3 is illustrated in FIG. 4 in which the suppressed motor pulses are shown by means of dotted outlines.
- FIG. 5 shows how part of the logic of FIG. 3 might be actually realized and it will be appreciated from the nature of the bistable stages why it is that setting of the switch S will result in clamping bistable stage 13.
- Time-piece in which a time standard supplies signals of a predetermined frequency to a first sequence of bistable devices arranged and adapted to provide output signals of a desired frequency to a display arrangement in which at least seconds are displayed, wherein means are provided to set the seconds display through the supplying of additional output signals or the withholding of output signals, said means including a complement output terminal on at least one of the bistable devices in the first sequence, a bistable storage device arranged to be manually switchable to a first stable state and to be automatically restored to'a second stable state by signals obtained from the complement output terminal, a display control toggle having an input arrangement which logically combines said output signals from the first sequence of bistable devices with signals from the bistable storage device, a delay circuit having a controllable disabling switch and receiving an input from a predetermined bistable device in the first sequence in order to provide an output adapted to block signal transmission from at least one bistable device in the first sequence; and a manually operable switch coupled to the bistable storage device and the delay circuit disabling switch, whereby
- Time-piece as set forth in claim 1 wherein a further manually operated switch is provided arranged and adapted to clamp a predetermined number of bistable devices in the first sequence immediately preceding the display control toggle thereby to facilitate exact setting of the phase of output signals to the display arrangement.
- Time-piece as set forth in claim 1 wherein the display arrangement comprises a stepping motor arranged to drive time indicating hands.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromechanical Clocks (AREA)
- Electric Clocks (AREA)
- Control Of Stepping Motors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3257772A GB1399024A (en) | 1972-07-12 | 1972-07-12 | Electronic correction circuit in a timepiece |
Publications (1)
Publication Number | Publication Date |
---|---|
US3852951A true US3852951A (en) | 1974-12-10 |
Family
ID=10340814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00378627A Expired - Lifetime US3852951A (en) | 1972-07-12 | 1973-07-12 | Electronic correction |
Country Status (5)
Country | Link |
---|---|
US (1) | US3852951A (enrdf_load_html_response) |
JP (1) | JPS5441353B2 (enrdf_load_html_response) |
CH (2) | CH594931B (enrdf_load_html_response) |
DE (1) | DE2336328C2 (enrdf_load_html_response) |
GB (1) | GB1399024A (enrdf_load_html_response) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906256A (en) * | 1974-03-09 | 1975-09-16 | Tokyo Shibaura Electric Co | Drive pulse generator for use in electronic analog display clock apparatus |
US3988597A (en) * | 1975-01-31 | 1976-10-26 | Tokyo Shibaura Electric Co., Ltd. | Time correction circuits for electronic timepieces |
US4020626A (en) * | 1974-05-14 | 1977-05-03 | Kabushiki Kaisha Daini Seikosha | Electronic timepiece |
US4043111A (en) * | 1974-10-18 | 1977-08-23 | Hitachi, Ltd. | Indicated time-correcting device of digital display timepiece |
US4059955A (en) * | 1975-11-12 | 1977-11-29 | Intersil, Inc. | One button digital watch and method of setting the display |
US4068462A (en) * | 1976-05-17 | 1978-01-17 | Fairchild Camera And Instrument Corporation | Frequency adjustment circuit |
US4083176A (en) * | 1975-04-03 | 1978-04-11 | Kabushiki Kaisha Daini Seikosha | Time correcting system for electronic timepiece |
US4092820A (en) * | 1975-03-25 | 1978-06-06 | Citizen Watch Company Limited | Electronic timepiece |
US4092822A (en) * | 1974-12-11 | 1978-06-06 | Ebauches Sa | Control device for an electronic wrist-watch |
US4133169A (en) * | 1974-08-30 | 1979-01-09 | Ebauches S.A. | Electronic circuit for a quartz crystal watch |
US4141208A (en) * | 1976-01-19 | 1979-02-27 | Hughes Aircraft Company | Digitally tuned timepiece |
US4150536A (en) * | 1976-01-28 | 1979-04-24 | Citizen Watch Company Limited | Electronic timepiece |
US4176515A (en) * | 1976-10-09 | 1979-12-04 | Quarz-Zeit Ag | Electronic clock, particularly a quartz clock |
US4185453A (en) * | 1976-10-25 | 1980-01-29 | Societe Suisse Pour L'industrie Horlogere Management Services S.A. | Time setting and correcting circuit for electronic timepieces |
US4209970A (en) * | 1975-03-25 | 1980-07-01 | Citizen Watch Co., Ltd. | Electronic timepiece |
US4232384A (en) * | 1976-02-23 | 1980-11-04 | Societe Suisse Pour L'industrie Horlogere Management Services S.A. | Timesetting arrangement for electrical timepieces |
US4254494A (en) * | 1975-01-31 | 1981-03-03 | Sharp Kabushiki Kaisha | Accuracy correction in an electronic timepiece |
US4255802A (en) * | 1977-11-29 | 1981-03-10 | Citizen Watch Company Limited | Electronic timepiece |
US4261048A (en) * | 1975-12-25 | 1981-04-07 | Citizen Watch Company Limited | Analog quartz timepiece |
US20040100873A1 (en) * | 2002-11-26 | 2004-05-27 | Samsung Electronics Co., Ltd. | Apparatus and method for adjusting time in a terminal with built-in analog watch |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3622681A1 (de) * | 1986-07-05 | 1988-01-21 | Diehl Gmbh & Co | Elektronische uhr mit einer digitalanzeige |
US5015564A (en) * | 1988-12-23 | 1991-05-14 | Eastman Kodak Company | Stabilizatin of precipitated dispersions of hydrophobic couplers, surfactants and polymers |
US5087554A (en) * | 1990-06-27 | 1992-02-11 | Eastman Kodak Company | Stabilization of precipitated dispersions of hydrophobic couplers |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3672155A (en) * | 1970-05-06 | 1972-06-27 | Hamilton Watch Co | Solid state watch |
US3765163A (en) * | 1972-03-17 | 1973-10-16 | Uranus Electronics | Electronic timepiece |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4857678A (enrdf_load_html_response) * | 1971-11-18 | 1973-08-13 |
-
1972
- 1972-07-12 GB GB3257772A patent/GB1399024A/en not_active Expired
-
1973
- 1973-07-10 CH CH1001573A patent/CH594931B/xx not_active IP Right Cessation
- 1973-07-10 CH CH1001573D patent/CH1001573A4/xx unknown
- 1973-07-12 JP JP7887273A patent/JPS5441353B2/ja not_active Expired
- 1973-07-12 DE DE2336328A patent/DE2336328C2/de not_active Expired
- 1973-07-12 US US00378627A patent/US3852951A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3672155A (en) * | 1970-05-06 | 1972-06-27 | Hamilton Watch Co | Solid state watch |
US3765163A (en) * | 1972-03-17 | 1973-10-16 | Uranus Electronics | Electronic timepiece |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906256A (en) * | 1974-03-09 | 1975-09-16 | Tokyo Shibaura Electric Co | Drive pulse generator for use in electronic analog display clock apparatus |
US4020626A (en) * | 1974-05-14 | 1977-05-03 | Kabushiki Kaisha Daini Seikosha | Electronic timepiece |
US4133169A (en) * | 1974-08-30 | 1979-01-09 | Ebauches S.A. | Electronic circuit for a quartz crystal watch |
US4043111A (en) * | 1974-10-18 | 1977-08-23 | Hitachi, Ltd. | Indicated time-correcting device of digital display timepiece |
US4092822A (en) * | 1974-12-11 | 1978-06-06 | Ebauches Sa | Control device for an electronic wrist-watch |
US4254494A (en) * | 1975-01-31 | 1981-03-03 | Sharp Kabushiki Kaisha | Accuracy correction in an electronic timepiece |
US3988597A (en) * | 1975-01-31 | 1976-10-26 | Tokyo Shibaura Electric Co., Ltd. | Time correction circuits for electronic timepieces |
US4092820A (en) * | 1975-03-25 | 1978-06-06 | Citizen Watch Company Limited | Electronic timepiece |
US4209970A (en) * | 1975-03-25 | 1980-07-01 | Citizen Watch Co., Ltd. | Electronic timepiece |
US4083176A (en) * | 1975-04-03 | 1978-04-11 | Kabushiki Kaisha Daini Seikosha | Time correcting system for electronic timepiece |
US4059955A (en) * | 1975-11-12 | 1977-11-29 | Intersil, Inc. | One button digital watch and method of setting the display |
US4261048A (en) * | 1975-12-25 | 1981-04-07 | Citizen Watch Company Limited | Analog quartz timepiece |
US4141208A (en) * | 1976-01-19 | 1979-02-27 | Hughes Aircraft Company | Digitally tuned timepiece |
US4150536A (en) * | 1976-01-28 | 1979-04-24 | Citizen Watch Company Limited | Electronic timepiece |
US4232384A (en) * | 1976-02-23 | 1980-11-04 | Societe Suisse Pour L'industrie Horlogere Management Services S.A. | Timesetting arrangement for electrical timepieces |
US4068462A (en) * | 1976-05-17 | 1978-01-17 | Fairchild Camera And Instrument Corporation | Frequency adjustment circuit |
US4176515A (en) * | 1976-10-09 | 1979-12-04 | Quarz-Zeit Ag | Electronic clock, particularly a quartz clock |
US4185453A (en) * | 1976-10-25 | 1980-01-29 | Societe Suisse Pour L'industrie Horlogere Management Services S.A. | Time setting and correcting circuit for electronic timepieces |
US4255802A (en) * | 1977-11-29 | 1981-03-10 | Citizen Watch Company Limited | Electronic timepiece |
US20040100873A1 (en) * | 2002-11-26 | 2004-05-27 | Samsung Electronics Co., Ltd. | Apparatus and method for adjusting time in a terminal with built-in analog watch |
EP1424612A3 (en) * | 2002-11-26 | 2007-11-07 | Samsung Electronics Co., Ltd. | Apparatus and method for adjusting time in a terminal with built-in analog watch |
Also Published As
Publication number | Publication date |
---|---|
DE2336328A1 (de) | 1974-01-31 |
GB1399024A (en) | 1975-06-25 |
JPS4953874A (enrdf_load_html_response) | 1974-05-25 |
CH1001573A4 (enrdf_load_html_response) | 1977-04-29 |
DE2336328C2 (de) | 1982-06-24 |
JPS5441353B2 (enrdf_load_html_response) | 1979-12-07 |
CH594931B (de) | 1978-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3852951A (en) | Electronic correction | |
US4030283A (en) | Electrically driven time piece with means for effecting a precise setting of time | |
US4270193A (en) | Electronic timepiece | |
US3989960A (en) | Chattering preventive circuit | |
GB1391995A (en) | Electric timepieces | |
US3762152A (en) | Reset system for digital electronic timepiece | |
US4185453A (en) | Time setting and correcting circuit for electronic timepieces | |
US4023345A (en) | Electronic timepiece | |
US4232384A (en) | Timesetting arrangement for electrical timepieces | |
US3953963A (en) | Electronic digital display timepiece correction device | |
US4094135A (en) | Switch control unit for electronic timepiece | |
JPS6023317B2 (ja) | 電子時計 | |
US3786625A (en) | Arrangement for correcting of seconds indication of a timepiece | |
GB1575580A (en) | Electronic watch or clock | |
US4024678A (en) | Control and correction circuit for an electronic watch | |
US4182108A (en) | Electronic timepiece correction circuit | |
US4073131A (en) | Time-setting and displaying mode control circuit for an electronic timepiece | |
GB1508073A (en) | Switching system | |
US4043111A (en) | Indicated time-correcting device of digital display timepiece | |
US4090350A (en) | Electronic timepiece | |
US4128991A (en) | Electronic digital watch | |
US5182733A (en) | Readily settable balanced digital time displays | |
US4112669A (en) | Digital electronic timepiece | |
US4228648A (en) | Hour hand corrector for dual display timepiece | |
US4250571A (en) | Portable electronic device |