US3852009A - Filter making apparatus - Google Patents

Filter making apparatus Download PDF

Info

Publication number
US3852009A
US3852009A US00410857A US41085773A US3852009A US 3852009 A US3852009 A US 3852009A US 00410857 A US00410857 A US 00410857A US 41085773 A US41085773 A US 41085773A US 3852009 A US3852009 A US 3852009A
Authority
US
United States
Prior art keywords
tube
fibers
filters
cylindrical
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00410857A
Inventor
J Roberts
J Ellenberg
C Keith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Corp
Original Assignee
Celanese Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Corp filed Critical Celanese Corp
Priority to US00410857A priority Critical patent/US3852009A/en
Application granted granted Critical
Publication of US3852009A publication Critical patent/US3852009A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0229Filter rod forming processes
    • A24D3/0233Filter rod forming processes by means of a garniture

Definitions

  • ABSTRACT Aerosol filters are formed from shortsynthetic fibers containing a bonding agent by confining a random array of said fibers having an orientation predominantly transverse to the longitudinal axis of said filter in an area having the desired configuration and activating the bonding agent to form a coherent article 3 Claims, 1 Drawing Figure COOLING FLUID PATENIELUEB 3m 3.852.009
  • the present invention relates generally to the formation of aerosol filters, and more particularly to cigarette filters.
  • the cigarette filters of the present invention comprise a substantially cylindrical rod comprised of short synthetic fibers bonded at their points of contact with one another by a suitable bonding agent.
  • the arrangement of the fibers within said rod may be described as random with the exception that the fibers are predominantly lengthwise oriented in a primarily vertical plane.
  • the filters of the present invention are preferably formed by dispersing a plurality of short fibers associated with a latent bonding agent into a rapidly flowing, preferably turbulent, air stream, sweeping said fibers in said air stream into a cylindrical zone to form a rod conforming to the interior dimensions of said zone, confining said fibers in the cylindrical configuration by wrapping a porous belt about the rod as it exists from said zone in order to transport said rod through succeeding processing zon'es, removing air from theconfined fibers, heating the rod to activate the bonding agent therein and form a 'coherentstructure, cooling the coherent structure removing the belt from about the coherentstructure, treating the surface of the coherent structure to remove irregularities therefrom,
  • Aerosol filters particularly cigarette. filters
  • Paper filters are generallycharacterizedby'ahigher filtration as measured by smoke removal efficien'cy'at a given pressure drop, but sufferjthe-disadvantage'of adversely affecting taste andodor of '-.the delivered smoke stream. Moreover, the phenol selectivity of paper filters is generally significantlylowerthan that available with conventionaltow filters. Also paperfilters are susceptible to collapse during smoking, whereby the filter medium may become separated from the containing wrapper, permitting the smoke to channel" about the medium and arrive'at the smokers mouth essentially unfiltered.
  • the principal object of this invention is to provide an aerosol filter especially adapted for the filtration of tobacco srnoke, characterized by. high filtration efficiency, compressibility, and an aesthetically acceptible delivered smoke stream.
  • a gas filter consistingessentially of discrete fiber elements bonded at random points of contact therebetween into a structure wherein the predominant orientation of the fibers is transverse I to the gas stream path.
  • the improvement in filtration afforded by the filters of this invention resides at least in part in the transverse orientation of the fiber elements, increasing the probability of impact with the particulate matter in the aerosol stream.
  • The-desiredeffect on' filtration'efficiency resulting from thisilimited reorientation of 'fiber elements; is necessarily minimal, *which is also the failingof some other suggested ap-- proaches, such asthose of U .S.'Pat. Nos. 2,805,671. and
  • a further and more specific object of the present invention is a provision of a cigarette filter rod having a uniform cross-sectional density, a high order of resistance to lateral compression even without any wrapping material, and sufficient longitudinal coherency or structural integrity to permit handling in subsequent processing of relatively long lengths thereof without splitting or cracking.
  • Another major object of the invention is the provision of an uncomplicated and economical process for manufacturing the aforesaid filters in a continuous, high-speed, commercial scale.
  • a still further object is to provide a manufacturing line utilizing equipment especially adapted to affect the process for making such filters.
  • the filters of the present invention are prepared from short fibers of approximately 0.5 mm to 8 mm, and preferably 1 mm to about 3 mm in length. For the sake of convenience, these fibers will be re ferred to herein as flock.
  • the flock utilized in the preferred embodiment of the present invention is prepared from filamentary materials which preferably comprise organic derivatives of cellulose such as esters or ethers thereof, e.g., cellulose organic acid esters such as cellulose acetate, cellulose propionate, cellulose butyrate, cellulose benzoate, cellulose acetate formate, cellulose acetate propionate, cellulose acetate butyrate, and the like, and ethers such as ethyl cellulose, etc.
  • the esters may be ripened and acetone-soluble, such as conventional cellulose acetate, or may be substantially fully esterified, i.e., contain fewer than 0.29 free hydroxyl groups per anhydroglucose unit, such as cellulose triacetate.
  • continuous filaments are spun from a suitable spinnerette of conventional design, taken up into a raw tow of a type well known in the cigarette filtration art, and packaged, preferably in a bale.
  • the continuous filament tow may then, optionally, but not necessarily, be removed from the bale and passed through a conventional banding jet and a subsequent opening means which serves to deregister the crimps in the filaments.
  • a suitable device for performing this operation is shown, for example, in U.S. Pat. No. 3,156,016.
  • the tow may be passed through a means for applying a suitable plasticizer and/or adhesive bonding agent thereto.
  • a suitable applicator for this purpose is shown, for example, in U.S. Pat. No. 3,387,992.
  • Other applicators such as wick applicators or jet spray means may be utilized for this purpose.
  • the plasticized tow is then passed through a cutting device which severs the tow into the desired lengths.
  • the tow may be cut into short lengths prior to application of the plasticizer, and the plasticizer may then be sprayed onto or otherwise applied to the chopped fibers.
  • the plasticizer may be mixed with the fibers as they are in the turbulent stream jet prior to rod formation.
  • Plasticized short fibers thus prepared are then passed into a holding bin or other suitable container, or may be passed directly into the apparatus of the present invention.
  • flock prepared in the manner described above is passed to a feed loop 12.
  • the feed loop 12 conducts a rapidly moving stream of flock past'the opening of tube 14.
  • the flock is then blown into tube 14 which terminates within housing 16.
  • Flock blown into nonporous tube 14 is compacted into rod form with the individual fibers being predominantly aligned in a transverse direction. This transverse alignment is attributable to formation within the nonporous tube and the presence of preceding fibers which serve as an impact barrier.
  • Belt 18 is threaded around pulleys 20 and 22, at least one of which provides a rotary motion to belt 18.
  • a vacuum chamber 24 which is employed to create an area of vacuum used to draw the flock into tube 14. Chamber 24 is to be considered optional since the air stream alone may be sufficient to convey the flock into tube 14.
  • the flock and belt pass through heating chambers 28 and 30 wherein the flock is subjected to a heated fluid which activates the bonding agent within the flock to produce bonding between the individual fibers and create a coherent cylindrical structure.
  • the heating chamber is shown as a two-part device.
  • the heated fluid is passed downwardly through the flood and in portion 30 the heated fluid is passed upwardly through the flock.
  • both sides of the flock are uniformly heated to obtain uniform bonding.
  • the preferred fluid in the present invention is heated air.
  • other gases or steam may be employed with equally desirable results.
  • the flock is passed into a cooling chamber to complete bonding.
  • This chamber like the heating chamber, is a two-part device designated in the drawings 32 and 34.
  • cool air is passed in one direction through the flock in the first segment of the cooling' chamber and in the opposite direction in the second segment of the cooling chamber;
  • the flock and porous belt exit from the cooling chambers 32 ancl 34 and the porous belt is then opened from about the coherent cylinder of flock and rotates around pulley 22 to return to the initial phase of the operation.
  • the coherent bond rod 36 extruded from the operation then passes through a skinner device 38.
  • the skinner device 38 is preferably a Teflon coated gland having a heating source around the opening therein.
  • Passing of the rod through skinner 38 serves to remove the longitudinal seam created by belt 18 from the surface of the rod, as well as any other surface irregularities. After removal of surface irregularities by passing of the rod 36 through skinner 38, rod 36 is then passed to a cutter 40 which is timed to sever rod 36 into the desired lengths.
  • flock may be prepared from other fiber-forming polymers.
  • suitable polymers are the polyamides such as nylon, polyesters such as polyethylene terephthalate, polyglycolic acid and copolymers thereof, acrylonitrile polymers and copolymers, polymers and copolymers of olefin and vinyl esters such as ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, and the like.
  • the preferred plasticizer used in conjunction with the the preferred cellulose ester fibers of the present invention is triacetin.
  • suitable plasticizers such as dibutyl phthalate, ethyl glycolate, triethyl citrate, polyalkylene glycolsand esters thereof, or the like may be employed.
  • a suitable plasticizer or adhesive bonding agent may be employed when using other of the above described fiber sources.
  • filtration materials to the flock prior to filter formation, e.g., by addition of such materials to the rapidly moving air stream along with the flock.
  • Particularly suitiable materials include activated carbon, alumina, silica gel, diatomaceous earth, and other high surface area solids.
  • additives such as wood pulp and non-bonded fibers may be employed. Generally, these additives will be used in amount of from about 2 to about 50 percent of the total weight of the filter and more preferably from about 5 to about 20 percent of the total weight. It is to be understood, of course, that the amount employed will depend to a degree upon the particular additive being used.
  • the fibers described herein will have a dpf of from about 0.5 to about 25, and even more preferably from about 1.0 to about 5. With a dpf much above 5, there is a sacrifice in filtration performance. Because of the structure of the present filter, it is possible to uti-' lize lower dpf fibers without a sacrifice in the compressibility, i.e., resistance to lateral deformation, than has heretofore been experienced in utilizing these lower dpf fibers. 7
  • filter prepared in accordance with the procedure described herein need weigh only about' 6080 percent (exclusive of wrapping) as much as conventional acetate tow filters having satisfactory pressure drop (resistance to draw) and S.R.E. (smoke removal efficiency); At the same time, this light weight does not detract from desirable filtration.
  • present filters of 20 mm in length and 8 mm in diameter, having a pressure drop of about 2090 mm of water weigh about 0.08 to about 0.14 gram and have a smoke removal efficiency of about 25 to about 55 percent.
  • conventional cellulose acetate tow filters within this pressure drop and S.R.E range have aweight of fiber and plasticizer of about 0.1 l to about 0.16 gram.
  • Compressibility, i.e., resistance to lateral deformation, of the herein described filter is also superior to that of a conventional cellulose acetate tow filter.
  • Conventional tow filters having the above pressure drop, S.R.E. and dimensions have a compressibility of about 30 to about 55 percent.
  • comparable present filters have a compressibility of only about 5 to about 30 percent.
  • the compressibility of the present filter is about 15 to about 55 percent of the compressibility'of the conventional cellulose acetate tow filters of comparable size and pressure drop and S.R.E.
  • the above superior properties of the present filters is felt to be attributable primarily to the fiber orientation in the filter structure. Testing has shown that approximately 40 to 60 percent of the fibers are aligned within i 10 to the perpendicular of the filter axis. Also, the fibers are substantially uniformly disposed across the filter cross section.
  • the above data on fiber orientation was determined by taking 20 micron slices across a filter and cutting strips of microns in width from the filter slice. All the fibers in the section were first counted. Then all fibers having a length greater than 100 microns, i.e., all substantially perpendicular fibers, were counted. From these figures the percent of substantially perpendicular fibers were calculated. Substantial uniformity across the filter section was determined by taking samples atvarious angles and comparing the variations in results obtained in the test procedure, the variation observed to be only minor.
  • EXAMPLE Filters of 8mm in diameter and 20mm in length were prepared from fibers of 2mm in length and the dpf. noted below using the previously described apparatus and process. The noted properties were determined and are compared with conventionally prepared cellulose acetate filters.
  • An apparatus for forming a stable elongated element from short thermoplastic fibers containing a bonding constituent comprising a nonporous cylindrical tube of substantially constant cross sectional dimension, blowing means for conveying discrete short thermoplastic fibers having no dimension greater than the diameter of said tube containing a bonding constituent into said tube to form an element in which said short fibers are predominently transverse to the longitudinal axis of said element by formations within the nonporous tube, and means for heating said element to activatee said bonding constituent.
  • An apparatus for forming a stable elongated element from short thermoplastic fibers containing a bonding constituent comprising A. blower means for producing a rapidly moving gas stream;
  • F a flexible moving surface positioned to convey a given material from said cylindrical tube through the cylindrical openings of said heating means and said cooling means.
  • heating zone comprises a porous open ended cylinder, and means for injecting a heated fluid through the walls of said cylinder.

Landscapes

  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

Aerosol filters, particularly cigarette filters, are formed from short synthetic fibers containing a bonding agent by confining a random array of said fibers having an orientation predominantly transverse to the longitudinal axis of said filter in an area having the desired configuration and activating the bonding agent to form a coherent article.

Description

I States Roberts et a1.
FILTER MAKING APPARATUS Inventors: John D. Roberts; John D. Ellenberg;
Charles H. Keith, all of Charlotte,
Assignee: Celanese Corporation, New York,
Filed: Oct. 29, 1973 Appl. No.: 410,857
Related US. Application Data Continuation of Ser. No. 224,224, Feb. 7, 1972, abandoned, which is a division of Ser. No. 775,390, Nov. 13, 1968, Pat. No. 3,656,484.
US. Cl. 425/83, 19/65 T, 19/66 T,
425/223, 131/268, 131/269 Int. Cl. B29c 15/00, B32b 5/08 Field of Search 425/110, 115, 71, 4, 223,
425/371, 392, 383, 363; 131/261, 266, 269, 268; 28/1 CF; 19/65 T, 66 T; 156/296, 307
HEATED VACUUM FLUID Dec. 3, 1974 [56] References Cited UNlTED STATES PATENTS 2,609,312 9/1952 Farrell 425/83 X 3,050,430 8/1962 Gallagher 131/268 UX 3,148,101 9/1964 Allman, Jr. et a1. 425/66 X 3,313,665 4/1967 Berger 131/268 X 3,552,400 1/1971 Berger et al. 131/261 A Primary EXaminerRobert L. Spicer, Jr. Attorney, Agent, or FirmPamela D. Kasa [57] ABSTRACT Aerosol filters, particularly cigarette filters, are formed from shortsynthetic fibers containing a bonding agent by confining a random array of said fibers having an orientation predominantly transverse to the longitudinal axis of said filter in an area having the desired configuration and activating the bonding agent to form a coherent article 3 Claims, 1 Drawing Figure COOLING FLUID PATENIELUEB 3m 3.852.009
COOLING FLUID COOLING FLUID HEATED FLUID HEATED FLUID VACUUM FILTER MAKING APPARATUS This application is a continuation of application Ser. No. 224,224 filed Feb. 7, 1972, now abandoned, which in turn is a division of application Ser. No. 775,390, filed Nov. 13, 1968, now US. Pat. No. 3,656,484.
SUMMARY OFTHE INVENTION The present invention relates generally to the formation of aerosol filters, and more particularly to cigarette filters. Briefly, the cigarette filters of the present invention comprise a substantially cylindrical rod comprised of short synthetic fibers bonded at their points of contact with one another by a suitable bonding agent. The arrangement of the fibers within said rod may be described as random with the exception that the fibers are predominantly lengthwise oriented in a primarily vertical plane. r
The filters of the present invention are preferably formed by dispersing a plurality of short fibers associated with a latent bonding agent into a rapidly flowing, preferably turbulent, air stream, sweeping said fibers in said air stream into a cylindrical zone to form a rod conforming to the interior dimensions of said zone, confining said fibers in the cylindrical configuration by wrapping a porous belt about the rod as it exists from said zone in order to transport said rod through succeeding processing zon'es, removing air from theconfined fibers, heating the rod to activate the bonding agent therein and form a 'coherentstructure, cooling the coherent structure removing the belt from about the coherentstructure, treating the surface of the coherent structure to remove irregularities therefrom,
and cutting the coherent structure to the desiredlength. 7 v v DRAWING A side view of thepreferredapparatus utilized-inthe present invention is shown in the attached drawing.
DETAILED DESCRIPTION OF TI-II-E DRAWING Aerosol filters, particularly cigarette. filters, have conventionally been produced fromcorrugated sheets of paper or from synthetic continuous fila'ment' tows'in which the filaments-are generally aligned with the'longitudinal axis of the filter. While otherte'chniques, such as baffles, etc. havebeen'attempted, only thepaper-filters and filters of continuous synthetic filaments, particularly cellulose acetate, have met with anywide commercial acceptance.
Paper filters are generallycharacterizedby'ahigher filtration as measured by smoke removal efficien'cy'at a given pressure drop, but sufferjthe-disadvantage'of adversely affecting taste andodor of '-.the delivered smoke stream. Moreover, the phenol selectivity of paper filters is generally significantlylowerthan that available with conventionaltow filters. Also paperfilters are susceptible to collapse during smoking, whereby the filter medium may become separated from the containing wrapper, permitting the smoke to channel" about the medium and arrive'at the smokers mouth essentially unfiltered.
On the other handytow filters, particularlybonded cellulose acetate tow filters, are more successful in selectively removing phenols,and: generally exhibit acceptable compressibility, i.e., resistance tolateraldeformation,. but would desirably exhibit enhanced smoke removal efficiencies without loss in organoleptic quality of the delivered smoke stream.
Accordingly, the principal object of this invention is to provide an aerosol filter especially adapted for the filtration of tobacco srnoke, characterized by. high filtration efficiency, compressibility, and an aesthetically acceptible delivered smoke stream.
In accordance with the primary teachings of this invention, there is provided a gas filter consistingessentially of discrete fiber elements bonded at random points of contact therebetween into a structure wherein the predominant orientation of the fibers is transverse I to the gas stream path.
without limitation arising therefrom, that the improvement in filtration afforded by the filters of this invention resides at least in part in the transverse orientation of the fiber elements, increasing the probability of impact with the particulate matter in the aerosol stream.
The desirability of fiber orientation normal to the axis of the cigarette filter plug has not gone unnoticed in the art, but each of the prior suggestions have proven v unworkable in practice. Thus, U.S. Pat.,No. 2,855,937
describes a structure used by disposing fibers vertically on apaper wrapper and then forming a'cylindrical rod therefrom wherein the fibers intermesh with each other and are directed towarda common center. While this construction provides'transverse orientation of the fiber elements, it will be seen by inspection that the concept requires across section having a variable density. Accordingly, the concentrated mass of intermeshed fibersat thecommon center tend to force the smoke to the periphery of the plug where a relatively low density of the medium is available to act on'the smoke stream. Acceptable compressibility, ,as well as the-construction methods, necessitate a stiff wrapper, and production techniques are extremely critical.
Allman et al., in U.s. Pat. No. 3,068,873 also describes a filter structure containing transversely orientedfiber segments, the individual segments thereof containing 'no internalfree fiber endswhich'may interact to form a coherent continuous filterrod, adaptedto handling in a commercial cigarette-making operation.
US. Pat. No. 3,225,390 emphasizesthe=desirability of increasing the transverse orientationofi loose :fibrous 'material in filter plugs -.to enhance-the lateral strength thereof, and discloses formation of plugs from a web having about 25 percent to 50 percent of the fibers therein oriented ina direction: 30 of theperpendicular to the axisof the plugibeing formed. The-desiredeffect on' filtration'efficiency resulting from thisilimited reorientation of 'fiber elements; is necessarily minimal, *which is also the failingof some other suggested ap-- proaches, such asthose of U .S.'Pat. Nos. 2,805,671. and
"It will be .seen from :the foregoing discussion'that whilethe desirability of transversely.orientedfiber elements in a cigarette-plug. may have been appreciated,
= no acceptable product having a high'order of transverse orientation has heretofore been developed, and
no process is available whereby such products may be uniformly and continuously manufactured on a commercial scale.
Accordingly, a further and more specific object of the present invention is a provision of a cigarette filter rod having a uniform cross-sectional density, a high order of resistance to lateral compression even without any wrapping material, and sufficient longitudinal coherency or structural integrity to permit handling in subsequent processing of relatively long lengths thereof without splitting or cracking. Another major object of the invention is the provision of an uncomplicated and economical process for manufacturing the aforesaid filters in a continuous, high-speed, commercial scale. A still further object is to provide a manufacturing line utilizing equipment especially adapted to affect the process for making such filters.
Still other objects of the present invention, if not specifically set forth herein, will become apparent to one skilled in the art upon a reading of the following detailed description of the invention taken in conjunction with the drawing.
Essentially, the filters of the present invention are prepared from short fibers of approximately 0.5 mm to 8 mm, and preferably 1 mm to about 3 mm in length. For the sake of convenience, these fibers will be re ferred to herein as flock.
The flock utilized in the preferred embodiment of the present invention is prepared from filamentary materials which preferably comprise organic derivatives of cellulose such as esters or ethers thereof, e.g., cellulose organic acid esters such as cellulose acetate, cellulose propionate, cellulose butyrate, cellulose benzoate, cellulose acetate formate, cellulose acetate propionate, cellulose acetate butyrate, and the like, and ethers such as ethyl cellulose, etc. The esters may be ripened and acetone-soluble, such as conventional cellulose acetate, or may be substantially fully esterified, i.e., contain fewer than 0.29 free hydroxyl groups per anhydroglucose unit, such as cellulose triacetate.
In preparing this flock, continuous filaments are spun from a suitable spinnerette of conventional design, taken up into a raw tow of a type well known in the cigarette filtration art, and packaged, preferably in a bale. The continuous filament tow may then, optionally, but not necessarily, be removed from the bale and passed through a conventional banding jet and a subsequent opening means which serves to deregister the crimps in the filaments. This portion of the process is more fully described and a suitable device for performing this operation is shown, for example, in U.S. Pat. No. 3,156,016. After deregistration of the crimped tow, the tow may be passed through a means for applying a suitable plasticizer and/or adhesive bonding agent thereto. A suitable applicator for this purpose is shown, for example, in U.S. Pat. No. 3,387,992. Other applicators such as wick applicators or jet spray means may be utilized for this purpose. The plasticized tow is then passed through a cutting device which severs the tow into the desired lengths. As an alternative, the tow may be cut into short lengths prior to application of the plasticizer, and the plasticizer may then be sprayed onto or otherwise applied to the chopped fibers. For example, the plasticizer may be mixed with the fibers as they are in the turbulent stream jet prior to rod formation.
Plasticized short fibers thus prepared are then passed into a holding bin or other suitable container, or may be passed directly into the apparatus of the present invention.
In the preferred embodiment of the present invention, flock prepared in the manner described above is passed to a feed loop 12. The feed loop 12 conducts a rapidly moving stream of flock past'the opening of tube 14. The flock is then blown into tube 14 which terminates within housing 16. Flock blown into nonporous tube 14 is compacted into rod form with the individual fibers being predominantly aligned in a transverse direction. This transverse alignment is attributable to formation within the nonporous tube and the presence of preceding fibers which serve as an impact barrier.
As the flock, now in the shape of a cylindrical rod exits from tube 14, a continuous porous belt 18, preferably a woven nylon or Teflon coated fiberglass belt, is wrapped around the exiting mass of flock to confine the flock into the cylinrical rod configuration produced by tube 14. Belt 18 is threaded around pulleys 20 and 22, at least one of which provides a rotary motion to belt 18. As the belt and encased flock exits from housing 16, it passes through a vacuum chamber 24 which is employed to create an area of vacuum used to draw the flock into tube 14. Chamber 24 is to be considered optional since the air stream alone may be sufficient to convey the flock into tube 14.
Thereafter, the belt and rod pass through a section of tubing 25 which acts as a pressure drop area to prevent fluid injected in subsequent operations from being withdrawn by vacuum chamber 24.
After tube 26, the flock and belt pass through heating chambers 28 and 30 wherein the flock is subjected to a heated fluid which activates the bonding agent within the flock to produce bonding between the individual fibers and create a coherent cylindrical structure.
In the drawing and the preferred embodiment of the present invention, the heating chamber is shown as a two-part device. In the portion designated as 28, the heated fluid is passed downwardly through the flood and in portion 30 the heated fluid is passed upwardly through the flock. In this manner, both sides of the flock are uniformly heated to obtain uniform bonding. Of course, it will be understood, that it is only preferred that the two segments inject fluid into the cylindrical material from substantially opposite directions, and need not be positioned such that the heating fluid flows downwardly in one segment and upwardly through the other. The preferred fluid in the present invention is heated air. However, other gases or steam may be employed with equally desirable results.
After heat activation of the bonding agent, the flock is passed into a cooling chamber to complete bonding. This chamber, like the heating chamber, is a two-part device designated in the drawings 32 and 34. In this portion of the apparatus, cool air is passed in one direction through the flock in the first segment of the cooling' chamber and in the opposite direction in the second segment of the cooling chamber; Thereafter, the flock and porous belt exit from the cooling chambers 32 ancl 34 and the porous belt is then opened from about the coherent cylinder of flock and rotates around pulley 22 to return to the initial phase of the operation. The coherent bond rod 36 extruded from the operation then passes through a skinner device 38. The skinner device 38 is preferably a Teflon coated gland having a heating source around the opening therein. Passing of the rod through skinner 38 serves to remove the longitudinal seam created by belt 18 from the surface of the rod, as well as any other surface irregularities. After removal of surface irregularities by passing of the rod 36 through skinner 38, rod 36 is then passed to a cutter 40 which is timed to sever rod 36 into the desired lengths.
It is to be understood that the preceding description is of the preferred embodiment of the present invention and that many modifications are possible. For example, a dielectric heater may be used instead of a heated fluid. Also, the cooling chamber may be eliminated and the rods stored for a period of time to insure satisfactory bonding.
While the preferred embodiment has been described in conjunction with cellulose acetate flock having thereon as a bonding agent, e.g., triacetin, it will be understood by one skilled in the art that flock may be prepared from other fiber-forming polymers. Examples of suitable polymers are the polyamides such as nylon, polyesters such as polyethylene terephthalate, polyglycolic acid and copolymers thereof, acrylonitrile polymers and copolymers, polymers and copolymers of olefin and vinyl esters such as ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, and the like.
The preferred plasticizer used in conjunction with the the preferred cellulose ester fibers of the present invention is triacetin. However, othersuitable plasticizers such as dibutyl phthalate, ethyl glycolate, triethyl citrate, polyalkylene glycolsand esters thereof, or the like may be employed. It will also be understood by the skilled artisan that a suitable plasticizer or adhesive bonding agent may be employed when using other of the above described fiber sources.
It is also within the scope of the present invention is add other filtration materials to the flock prior to filter formation, e.g., by addition of such materials to the rapidly moving air stream along with the flock. Particularly suitiable materials include activated carbon, alumina, silica gel, diatomaceous earth, and other high surface area solids. in addition, additives such as wood pulp and non-bonded fibers may be employed. Generally, these additives will be used in amount of from about 2 to about 50 percent of the total weight of the filter and more preferably from about 5 to about 20 percent of the total weight. It is to be understood, of course, that the amount employed will depend to a degree upon the particular additive being used.
Preferably, the fibers described herein will have a dpf of from about 0.5 to about 25, and even more preferably from about 1.0 to about 5. With a dpf much above 5, there is a sacrifice in filtration performance. Because of the structure of the present filter, it is possible to uti-' lize lower dpf fibers without a sacrifice in the compressibility, i.e., resistance to lateral deformation, than has heretofore been experienced in utilizing these lower dpf fibers. 7
While the present filters have sufficient structural rigidity to function without a supporting wrapping, it is within the scope of the present invention to use additional wrappings about the filters, if desired.-
An additional advantage of the present filter is its relatively light weight. For example, filter prepared in accordance with the procedure described herein need weigh only about' 6080 percent (exclusive of wrapping) as much as conventional acetate tow filters having satisfactory pressure drop (resistance to draw) and S.R.E. (smoke removal efficiency); At the same time, this light weight does not detract from desirable filtration. To illustrate, present filters of 20 mm in length and 8 mm in diameter, having a pressure drop of about 2090 mm of water weigh about 0.08 to about 0.14 gram and have a smoke removal efficiency of about 25 to about 55 percent. In comparison, conventional cellulose acetate tow filters within this pressure drop and S.R.E range have aweight of fiber and plasticizer of about 0.1 l to about 0.16 gram.
Compressibility, i.e., resistance to lateral deformation, of the herein described filter is also superior to that of a conventional cellulose acetate tow filter. Conventional tow filters having the above pressure drop, S.R.E. and dimensions have a compressibility of about 30 to about 55 percent. On the other hand, comparable present filters have a compressibility of only about 5 to about 30 percent. In other words, the compressibility of the present filter is about 15 to about 55 percent of the compressibility'of the conventional cellulose acetate tow filters of comparable size and pressure drop and S.R.E.
The above values have compressibility which was obtained using a TMI precision dead-weight micrometer manual Model 551 manufactured by TestingMachines, lnc., Mineola, New York. Compressibility was determined by measuring the initial diameter of the rod with a micrometer, dropping a 300 gram weight on the rod from aheight of 0.425 inches and reading the compressed diameter of the rod after the weight had come to rest. Percent compressibility was then calculated from these figures.
It is to understood that the above values were preferred filters having properties within the commercially acceptable ranges. Of course, one may also prepare filters of even lighter weight of further improved compressibility by following the teachings of the present invention.
The above superior properties of the present filters is felt to be attributable primarily to the fiber orientation in the filter structure. Testing has shown that approximately 40 to 60 percent of the fibers are aligned within i 10 to the perpendicular of the filter axis. Also, the fibers are substantially uniformly disposed across the filter cross section.
The above data on fiber orientation was determined by taking 20 micron slices across a filter and cutting strips of microns in width from the filter slice. All the fibers in the section were first counted. Then all fibers having a length greater than 100 microns, i.e., all substantially perpendicular fibers, were counted. From these figures the percent of substantially perpendicular fibers were calculated. Substantial uniformity across the filter section was determined by taking samples atvarious angles and comparing the variations in results obtained in the test procedure, the variation observed to be only minor.
The following example is presented for the sake of illustration only, and should not be construed as being in limitation of the present invention.
EXAMPLE Filters of 8mm in diameter and 20mm in length were prepared from fibers of 2mm in length and the dpf. noted below using the previously described apparatus and process. The noted properties were determined and are compared with conventionally prepared cellulose acetate filters.
TABLE Pressure Com- Weight S.R.E Drop pressidpf grams mm H O bility Present filter 1.6 0.090 48.7 50 28.6 Present Filter 3.3 0.113 45.8 50 20.4 Conventional CA Col- Tow Filter 1.6 50 lapsed Conventional CA Tow Filter 3.3 0.141 44.0 50 48 While the preceding description has emphasized the utility of the present invention in conjunction with aerosol filters, other uses such as tampons, wicks, felttipped" pens, packing material, etc., will be obvious to the skilled artisan.
It will be apparent to one skilled in the art that many modifications and variations of the hereinbefore described invention are possible.
What we claim is:
1. An apparatus for forming a stable elongated element from short thermoplastic fibers containing a bonding constituent comprising a nonporous cylindrical tube of substantially constant cross sectional dimension, blowing means for conveying discrete short thermoplastic fibers having no dimension greater than the diameter of said tube containing a bonding constituent into said tube to form an element in which said short fibers are predominently transverse to the longitudinal axis of said element by formations within the nonporous tube, and means for heating said element to activatee said bonding constituent.
2. An apparatus for forming a stable elongated element from short thermoplastic fibers containing a bonding constituent comprising A. blower means for producing a rapidly moving gas stream;
B. feed loop in combination with said blower means;
C. nonporous cylindrical tube, in combination with said blower means and feed loop combination wherein said tube and feed loop intersect one with the other to provide a communicating juncture;
D. a heating means having a cylindrical opening therethrough;
E. a cooling means having a cylindrical opening therethrough;
F. a flexible moving surface positioned to convey a given material from said cylindrical tube through the cylindrical openings of said heating means and said cooling means.
3. The apparatus of claim 2 wherein said heating zone comprises a porous open ended cylinder, and means for injecting a heated fluid through the walls of said cylinder.

Claims (3)

1. An apparatus for forming a stable elongated element from short thermoplastic fibers containing a bonding constituent comprising a nonporous cylindrical tube of substantially constant cross sectional dimension, blowing means for conveying discrete short thermoplastic fibers having no dimension greater than the diameter of said tube containing a bonding constituent into said tube to form an element in which said short fibers are predominently transverse to the longitudinal axis of said element by formations within the nonporous tube, and means for heating said element to activatee said bonding constituent.
2. An apparatus for forming a stable elongated element from short thermoplastic fibers containing a bonding constituent comprising A. blower means for producing a rapidly moving gas stream; B. feed loop in combination with said blower means; C. nonporous cylindrical tube, in combination with said blower means and feed loop combination wherein said tube and feed loop intersect onE with the other to provide a communicating juncture; D. a heating means having a cylindrical opening therethrough; E. a cooling means having a cylindrical opening therethrough; F. a flexible moving surface positioned to convey a given material from said cylindrical tube through the cylindrical openings of said heating means and said cooling means.
3. The apparatus of claim 2 wherein said heating zone comprises a porous open ended cylinder, and means for injecting a heated fluid through the walls of said cylinder.
US00410857A 1972-02-07 1973-10-29 Filter making apparatus Expired - Lifetime US3852009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00410857A US3852009A (en) 1972-02-07 1973-10-29 Filter making apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22422472A 1972-02-07 1972-02-07
US00410857A US3852009A (en) 1972-02-07 1973-10-29 Filter making apparatus

Publications (1)

Publication Number Publication Date
US3852009A true US3852009A (en) 1974-12-03

Family

ID=26918524

Family Applications (1)

Application Number Title Priority Date Filing Date
US00410857A Expired - Lifetime US3852009A (en) 1972-02-07 1973-10-29 Filter making apparatus

Country Status (1)

Country Link
US (1) US3852009A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196867A2 (en) * 1985-03-29 1986-10-08 Celanese Corporation Localized liquid additive application system for continuous cylindrical product
US4726862A (en) * 1986-04-23 1988-02-23 Chisso Corporation Process for producing tubular shaped fibrous articles
US4752348A (en) * 1985-03-29 1988-06-21 Celanese Corporation Localized liquid additive applicator system for continuous cylindrical product
US5100944A (en) * 1990-08-14 1992-03-31 National Starch And Chemical Investment Holding Corporation Use of ethylene glycol diacetate in waterborne adhesives
EP1532881A2 (en) * 2003-11-21 2005-05-25 Hauni Maschinenbau AG Method and apparatus for producing a wrapper-free filter rod of the tobacco industry
WO2007087182A3 (en) * 2006-01-24 2007-12-21 Toray Fluorofibers America Inc Blend of polyetrafluoroethylene, glass and polyphenylene sulfide fibers and filter felt made from same
WO2012120324A1 (en) * 2011-03-10 2012-09-13 Ocv Intellectual Capital, Llc Apparatus and method for producing a fibrous product
US20130231232A1 (en) * 2012-03-05 2013-09-05 Montrade S.R.I. Method and machine for producing paperless filter rods for smoking articles
WO2013164624A1 (en) * 2012-05-03 2013-11-07 British American Tobacco (Investments) Limited Improvements in smoking article filters
US20190090532A1 (en) * 2016-01-21 2019-03-28 G.D S.P.A. Machine for making cigarette filters and method for making cigarette filters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609312A (en) * 1947-06-28 1952-09-02 Johns Manville Method and apparatus for making flexible tubular coverings
US3050430A (en) * 1959-11-12 1962-08-21 Eastman Kodak Co Jet and method of filter manufacture
US3148101A (en) * 1958-06-26 1964-09-08 Celanese Corp Process for making non-woven batt
US3313665A (en) * 1963-06-04 1967-04-11 American Filtrona Corp Method for making fibrous bodies
US3552400A (en) * 1967-06-08 1971-01-05 American Filtrona Corp Filter plug of staple fiber filter elements and the like

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609312A (en) * 1947-06-28 1952-09-02 Johns Manville Method and apparatus for making flexible tubular coverings
US3148101A (en) * 1958-06-26 1964-09-08 Celanese Corp Process for making non-woven batt
US3050430A (en) * 1959-11-12 1962-08-21 Eastman Kodak Co Jet and method of filter manufacture
US3313665A (en) * 1963-06-04 1967-04-11 American Filtrona Corp Method for making fibrous bodies
US3552400A (en) * 1967-06-08 1971-01-05 American Filtrona Corp Filter plug of staple fiber filter elements and the like

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196867A2 (en) * 1985-03-29 1986-10-08 Celanese Corporation Localized liquid additive application system for continuous cylindrical product
US4655230A (en) * 1985-03-29 1987-04-07 Celanese Corporation Localized liquid additive applicator system for continuous cylindrical product
US4752348A (en) * 1985-03-29 1988-06-21 Celanese Corporation Localized liquid additive applicator system for continuous cylindrical product
EP0196867A3 (en) * 1985-03-29 1988-10-05 Celanese Corporation Localized liquid additive application system for continuous cylindrical product
US4726862A (en) * 1986-04-23 1988-02-23 Chisso Corporation Process for producing tubular shaped fibrous articles
US5100944A (en) * 1990-08-14 1992-03-31 National Starch And Chemical Investment Holding Corporation Use of ethylene glycol diacetate in waterborne adhesives
EP1532881A3 (en) * 2003-11-21 2005-06-01 Hauni Maschinenbau AG Method and apparatus for producing a wrapper-free filter rod of the tobacco industry
US20050113232A1 (en) * 2003-11-21 2005-05-26 Hauni Maschinenbau Ag Method of and apparatus for making a non-wrapped filter rod in the field of the tobacco processing industry
EP1532881A2 (en) * 2003-11-21 2005-05-25 Hauni Maschinenbau AG Method and apparatus for producing a wrapper-free filter rod of the tobacco industry
WO2007087182A3 (en) * 2006-01-24 2007-12-21 Toray Fluorofibers America Inc Blend of polyetrafluoroethylene, glass and polyphenylene sulfide fibers and filter felt made from same
WO2012120324A1 (en) * 2011-03-10 2012-09-13 Ocv Intellectual Capital, Llc Apparatus and method for producing a fibrous product
US9353470B2 (en) 2011-03-10 2016-05-31 Ocv Intellectual Capital, Llc Apparatus and method for producing a fibrous product
US20130231232A1 (en) * 2012-03-05 2013-09-05 Montrade S.R.I. Method and machine for producing paperless filter rods for smoking articles
US9392819B2 (en) * 2012-03-05 2016-07-19 Montrade S.R.L. Method and machine for producing paperless filter rods for smoking articles
WO2013164624A1 (en) * 2012-05-03 2013-11-07 British American Tobacco (Investments) Limited Improvements in smoking article filters
US20190090532A1 (en) * 2016-01-21 2019-03-28 G.D S.P.A. Machine for making cigarette filters and method for making cigarette filters
US11672274B2 (en) * 2016-01-21 2023-06-13 G.D S.P.A. Machine for making cigarette filters and method for making cigarette filters

Similar Documents

Publication Publication Date Title
US3819435A (en) Process for making cigarette filters from short synthetic fibers
US3658626A (en) Means for manufacturing staple fiber filter elements
US3313306A (en) Stable elongated elements and smoking means incorporating the same
US4807809A (en) Rod making apparatus for smoking article manufacture
US2794239A (en) Tow for use in the production of tobacco smoke filters
US3847064A (en) Tobacco smoke filter
US2794480A (en) Apparatus for the manufacture of filters composed of cellulose acetate
US2881770A (en) Fibrous tobacco smoke filters
EP0568107B1 (en) Method and apparatus for forming a rod for use in the manufacture of smoking articles
US3648711A (en) Tobacco smoke filter
US3390039A (en) Method and apparatus for making additive filters
US3377220A (en) Process for making stable elongated elements
US3144025A (en) Tobacco smoke filters
US3804695A (en) Apparatus for making tobacco smoke filters
UA67876C2 (en) High performance cigarette filter
US2828752A (en) Fibrous tobacco smoke filters
US4007745A (en) Filter
CH363602A (en) Filamentous mass capable of filtering gases, method of manufacturing this filamentous mass and apparatus for carrying out this process
US3079930A (en) Process and apparatus for manufacturing filters
US3852009A (en) Filter making apparatus
US3313665A (en) Method for making fibrous bodies
US3224453A (en) Filter cigarettes
US4593706A (en) Producing filler material, particularly for cigarette filters
GB2223393A (en) Tobacco smoke filter containing particulate additive
US4366826A (en) Smoke filtration