US3849850A - System for automated production of spark plugs - Google Patents

System for automated production of spark plugs Download PDF

Info

Publication number
US3849850A
US3849850A US00398927A US39892773A US3849850A US 3849850 A US3849850 A US 3849850A US 00398927 A US00398927 A US 00398927A US 39892773 A US39892773 A US 39892773A US 3849850 A US3849850 A US 3849850A
Authority
US
United States
Prior art keywords
drum
insulator
tray
station
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00398927A
Other languages
English (en)
Inventor
R Goutard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automatisme et Technique
Original Assignee
Automatisme et Technique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automatisme et Technique filed Critical Automatisme et Technique
Application granted granted Critical
Publication of US3849850A publication Critical patent/US3849850A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49828Progressively advancing of work assembly station or assembled portion of work
    • Y10T29/49829Advancing work to successive stations [i.e., assembly line]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53039Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor
    • Y10T29/53043Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor including means to divert defective work part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53313Means to interrelatedly feed plural work parts from plural sources without manual intervention
    • Y10T29/53365Multiple station assembly apparatus

Definitions

  • ABSTRACT A system for automated production of spark plugs, which comprises a first station for the production of insulators, a second station for the assembly of the central component of the spark plug, and a final assembly station; each station operates, at least partially, in continuous kinematic motion, and the transfer means betweenthe stations comprises storage means, The system also comprises means for servo-control and synchronization of the stations, the parts, before their final assembly, being transferred in vehicles belonging to each station or part of a station.
  • SHEET 07 0F 16 1m 0% m5 m5 In 2m mom mom mom mom mom mom Rm qom 0mm PATEATE 2191261974 SHEET 12 0F 16 RC1; MB
  • the present invention relates to a system for the automated production of spark plugs for internal combustion engines.
  • the invention relates to a system for the automated production of spark plugs, characterised in that it comprises a first station for the production of insulators, a second station for the assembly of the central component of the spark plug, and a final assembly station, each station operating at least partially in continuous kinematic motion.
  • the transfer means between the stations comprises storage means; the system also comprises means for servo-control and synchronization of the stations, the parts, before their final assembly,
  • the system for automated production of spark plugs combines the advantages of a series of production stations operating in continuous motion, at a high production rate, with the avoidance of the disadvantages of a too rigid and complicated construction, by virtue of the transfer means between the stations.
  • This transfer means comprises storage and synchronization means, allowing compensation for changes in the relative operating rates of the stations without interrupting operation of the overall system.
  • the insulators are passed in parallel lines through several curing tunnels in order to obtain a sufficient output rate.
  • the sintering machine in separate, special vehicles especially suited to heat treatment can be used in it; these vehicles are not necessarily identical with the vehicles used in the compacting and machining apparatus.
  • the completed insulators are transferred to a central component assembly station, in which the internal conductive components are assembled in each insulator and cemented in place.
  • the conductive holder is mounted on each central component, together with any required mounted gaskets and the like, finishing the complete spark plug manufacturing operation.
  • the transport between the operating station allows for some differential in production rates without requiring system shutdown.
  • the system of .the invention produces spark plugs automatically at a high rate, but is not limited to any one type of spark plug, and can be adapted to different types very simply by changing or moving a
  • the system of the invention starts with a rotary insulator compacting mechanism, which produces a series of dense, compacted insulator blanks. These insulator blanks are transferred to an insulator machining drum that includes a mill. The forward machining speed of the mill is adjusted uniformly or proportionally to the mass of the matter removed, by means of a cam also used to compensate for wear of the mill. The machining drum is enclosed so that dust and other machining byproducts are controlled and contained. These byproducts are recovered for use in the fabrication of new blanks, for which purpose they can be returned to the hopper ofthe initial compacting drum. The mill of the machining drum can be dismantled rapidly to allow for effective maintenance operations conducted outside the machine.
  • the system utilizes a sintering machine which is separate from the compacting and machining apparatus; consequently, heat from the sintering machine does not adversely affect the compacting and machining operations. Because the duration of the sintering operation working unit or a working drum. Since the parts, and particularly the insulators, are transported in vehicles, they are not subjected to wear or shock, which considerably reduces the number of plugs that are rejected. Another advantage of this method resides in the fact that since the insulator is not subjected to wear, there is no formation of abrasive dusts, which can cause rapid wear of the components of the machines and the systern.
  • FIG. 1 is a detailed view of a conventional spark plug, which can be produced by a system constructed in accordance with the invention
  • FIG. 2 is a detailed elevational view of the central component of the spark plug of FIG. 1;
  • FIG. 3 is a schematic diagram of the whole of the system according to the invention.
  • FIG. 4 is an axial half cross-section of the insulator compacting drum
  • FIG. 4A shows a detail of the compacting drum in the mold closure area
  • FIGS. 48, 4c, 4D ShOW schematically the three stages of the operation of the compacting drum
  • FIG. 5 is a detailed view of the axial cross-section of the insulator machining drum
  • FIGS. 5A and 5B show the insulator being machined on the drum of FIG. 5;
  • FIG. 6 is a plan view of the whole of the central com ponent assembly station
  • FIGS6A through 6H show the various stages of the assembly of the central component of a spark plug at the station of FIG. 6;
  • FIG. 7 is a schematic plan view of the final assembly station
  • FIGS. 7A through 7N show the various stages of the work in the final assembly station of FIG. 7;
  • FIG. 8 is an axial section of the insulatorintroducing drum
  • FIGS. 8A and 8B are horizontal cross-sections taken approximately along lines VIIIaVIIIa and VIIIb-- VIIb in FIG. 8;
  • FIG. 9 is an axial section of a detail of a marking drum
  • FIG. 10 is a right hand, half section of an enamelling drum utilized in the system of the invention.
  • FIG. 11 is an axial sectionv of an electrodeintroducing drum
  • FIG. 11A is a detail sectional view taken approximately along line XIA in FIG. 11;
  • FIG. 11B is a horizontal section taken approximately aling line XIBXIB in FIG. 11;
  • FIG. 11C is a detailed view of the end piece of the electrode feed rails
  • FIG. 11D is a plan view of the drum of FIG. 11;
  • FIG. 12 is an axial half-section of a cementintroducing drum
  • FIG. 12A is a simplified horizontal section taken approximately along the plane XIIA in FIG. 12;
  • FIG. 13 is a partial axial section of a connecting rodintroducing drum
  • FIG. 13A is a detailed horizontal section taken approximately along the plane XIIIA in FIG. 13;
  • FIG. 14 is a detailed axial sectional view of a'drum for positioning the lower gasket
  • FIG. 14A is a plan view of a gasket-arrival slide piece
  • the system comprises an insulator-production station 1, constituted, in general, by an insulator compressing and machining machine 11 and a sintering machine 12. These two machines operate in continuous kinematic motion and are interconnected through a series of transfer drums.
  • FIG. 148 shows the successive stages in the introduc- I tion of the gasket
  • FIG. 15 is an axial cross-section of an assembly compacting drum
  • FIG. 16 is a detailed axial section of a crimping drum
  • FIG. 17 is a detailed view of the axial section of a connecting-nut screwing drum
  • FIG. 17A shows the axial cross-section of the area in which the nut screwing drum is associated with the transfer drum that feeds it;
  • FIG. 178 shows a plan view of the same area as that in FIG. 17A;
  • FIG. 18 is a detailed axial cross-section of a sealing control drum.
  • the system of the invention provides fully automated manufacture of spark plugs for internal combustion engines.
  • the system may be utilized in manufacturing a conventional spark plug (FIG. 1) which comprises a central subassembly a. consisting (FIG. 2) of an insulator b, rotationally symmetrical, and having an axial opening into which an electrical connection rod 0 extends.
  • the rod 0 is connected to an electrode d.
  • the cement e forms this electrical connection and alsoimmobilizes the rod 0 and seals the central subassembly or component a.
  • the central component a is mounted in a metal holder f that is adapted to be screwed into the cylinder head of an engine.
  • a seal between the holder f and the central component a is obtained at the upper part of the spark plug by means of an upper gasket h, pressed against the central component a by the crimp I.
  • This seal is reinforced by a lower gasket k.
  • the holder f is screwed, so as to effect a seal, into the cylinder head of an engine, by means of a cylinder head gasket 1'.
  • a nut g is threaded onto the free end of the rod 0.
  • FIG. 3 is a schematic diagram of the whole of a system or machine for the production of spark plugs similar to the plug described above in relation to FIGS. 1 and 2.
  • the compressing and machining machine 11 comprises a compressing drum 111 which forms a stable insulator blank from a predetermined quantity of inorganic powder.
  • the machining drum 112 machines this blank in order to give it a form approximating that of the final insulator b.
  • the machine 11 (FIG. 3) comprises a number of transfer drums 113, which transfer the blanks between the drums Ill and 112, as well as returning the vehicles receiving these blanks.
  • the insulator-production station 1 comprises, in addition, a sintering machine 12 which is supplied by a loading and transfer device 121, which brings the insulators into a sintering or curing tunnel I22 .and then into a cooling area 123.
  • a sintering machine 12 which is supplied by a loading and transfer device 121, which brings the insulators into a sintering or curing tunnel I22 .and then into a cooling area 123.
  • Four curing tunnels 122 are shown in FIG. 3; a larger or smaller number may be provided, depending on the production rate of the system and other related factors.
  • the loading device 121 is an endless conveyor comprising a vehicle-loading component 1211 at the outlet point of the compressing and machining machine 11, a component 1212 for distributing the vehicles carrying the insulators to the curing or sintering lines passing through the respective curing tunnels 122.
  • a combining component 1212 Similar to the loading component 1212 but operating in the opposite manner. This combining component 1212' combines the four lines of vehicles into a single line.
  • an unloading componnet 1211' enables the sintered insulators b to be separated from the transfer vehicles which are brought back to the loading component 1210.
  • the insulators I) thus manufactured in station I pass into a central component-assembly station 2.
  • This station 2 comprises a central component-assembly machine 21 and curing station 22.
  • the central component-assembly machine 21 comprises a certain number of working drums.
  • the machine 21, shown in further detail in FIG. 6, comprises an insulator-introducing unit with a number of drums 210 and a distributor 219, in which the insulators b are placed in position in vehicles for transfer to the machine 21, a marking drum 211, where identification indicia and other marks are printed on the insulator, and a flaming drum 212 which dries the marking ink and pre-heats the insulator before its passage into an enamelling drum 213 which coats the insulator with enamel.
  • This assembly machine 21 also comprises an electrode-introducing unit, including a drum 214 and an electrode distributor 219, followed by proportioning and compacting drums 215, 215' for the cement, and a unit 216 for introducing the rods 0 comprising a drum 216 and a distributor 219". Following this, the assembled part is checked in an assembly control drum 217. If the result of the check is satisfactory, the vehicle and the assembled central component a pass to the vehicle changing drum 218, in which the central component a which has just been obtained, leaves the vehicle of the machine 21 and is brought into a heat-treatment vehicle V (FIG. 6H).
  • an electrode-introducing unit including a drum 214 and an electrode distributor 219, followed by proportioning and compacting drums 215, 215' for the cement, and a unit 216 for introducing the rods 0 comprising a drum 216 and a distributor 219".
  • the machine 21 (FIG. 6) comprises a number of distributors such as the insulator distributor 219, the electrode distributor 219 and the connecting rod distributor 219". These distributors, of known construction, are connected to the corresponding drums 210, 214, 216.
  • the check that is made in the drum 217 consists in checking the level of the head of the rod c. Thus, if any of the constituent components are defective or are not of the required size, the level required is not reached and the vehicle is diverted from its normal trajectory and ejected from the system.
  • the change of vehicle effected at the drum 218 is necessary because the central component a is to be cured.
  • the vehicles are intended simply to support the insulator b during the assembly of the component a.
  • the assembly vehicles are subjected only to mechanical stresses. However, during heat treatment, the vehicles V must be able to withstand temperatures of above 1,000 C but do not have to withstand any further great mechanical stresses. 7
  • the assembly vehicles of the machine 21 are recovered by the vehicle changing drum 218 and brought back to the introducing drum 210.
  • the heat-treatment vehicles V enter the assembly station 2 by passing through a synchronization device such as a helicoidal-screw which brings them to the operating speed of the station 3 (FIG. 3).
  • the empty vehicles V are brought back to the machine 21, if necessary, passing through a storage device such as the turning tables 225.
  • the vehicles On entering the machine 21, the vehicles are again synchronized in accordance with the speed of the machine 21.
  • FIG. 6A shows the insulator b being marked
  • FIG. 6B shows the insulator b being flamed or pre heated
  • FIG. 6C shows the insulator b being enamelled
  • FIG. 6D shows the electrode d being introduced
  • FIG. 6E shows the cement e being introduced and compacted
  • FIG. 6F shows the rod 0 being introduced.
  • FIG. 6G shows the assembled but uncured central component a being checked
  • FIG. 6H shows the vehicles being changed, that is, the assembled central component a being transferred from the vehicle of the machine 21 to the heat-treatment vehicle V.
  • the assembled central component a with its vehicle V is conveyed to the curing station 22 (FIG. 3).
  • This curing station 22 consists of a transfer device 221 which conveys the untion 3, having passed through the storage devices 224. e
  • the pressing drum 223 cools the parts leaving'the curing station 22 by means of forced convection and a given mechanical pressure. As an example, the pressing operation is carried out for a period of seconds, which corresponds to the setting time of the cement e under the heating conditions of the example.
  • the parts On leaving the drum 223 the parts are conveyed to the final as sembly station 3.
  • Dynamic storage devices 224 are provided between the assembly station 2 and the station 3 in order to compensate for any lack of synchronization between the station 2 and the station 3. These devices 224, for example, may comprise turning tables arranged in series.
  • the reserves which they can carry are variable. In the particular case where the reserve is nil, the parts pass directly through the storage devices 224.
  • the stations 2 and 3 are synchronized, it is advantageous to have the devices 224 half filled. If the station 2 stops operating, the station 3 can continue to operate until the reserves are exhausted. If the station 3 stops operating, station 2 can continue operating until the storage devices 224 have been filled. This allows limited shutdowns of either station 2 or station 3 without interruption of overall system operation.
  • the divider component 221 divides the single line of vehicles V coming from the assembly machine 21 into a certain number of parallel lines, for example, three, which pass through the respective tunnels 222 of the passage oven 22. On leaving these tunnels, a combining component 221, similar to the divider, but operating in the opposite manner, recombines the several lines again into a single line.-
  • each central component a is separated from its heat-treatment vehicle V and the vehicle is returned at the vehicle-changing drum 218 of the assembly machine 21.
  • the final assembly station 3 assembles the central component a into the holder f, interposing the gaskets h, i, k, and screwing the nut g (FIGS. 7A-N).
  • the assembly station 3 (FIG. 7) comprises a unit for introducing the holder f including a drum 301 and a drum 302 for positioning the lower gasket k. Following this, a drum 303 is provided for inserting the central component a into the holder f provided with a lower gasket k. This partial assembly is controlled in a control drum 304 and the part then passes into the unit which positions the upper gasket h, comprising the drum 305.
  • a drum 306 in the compacting unit places the whole into position and a cold crimping drum 307. in the crimping unit turns over the upper lip of the holder f, in order to hold the upper gasket h.
  • a heating drum 308 heats the holder and a drum 309 hot crimps the assembly.
  • the connecting nut g is screwed onto the part that has been made in the screwing drum 310 of the unit for distributing the nuts g.
  • the spark plug is then finished.
  • a drum 311 adjusts the electrode and a drum 312 checks the seal of the spark

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)
  • Press Drives And Press Lines (AREA)
US00398927A 1972-09-22 1973-09-20 System for automated production of spark plugs Expired - Lifetime US3849850A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7233739A FR2201016A5 (cs) 1972-09-22 1972-09-22

Publications (1)

Publication Number Publication Date
US3849850A true US3849850A (en) 1974-11-26

Family

ID=9104686

Family Applications (1)

Application Number Title Priority Date Filing Date
US00398927A Expired - Lifetime US3849850A (en) 1972-09-22 1973-09-20 System for automated production of spark plugs

Country Status (5)

Country Link
US (1) US3849850A (cs)
JP (1) JPS49100425A (cs)
DE (1) DE2340068A1 (cs)
FR (1) FR2201016A5 (cs)
GB (1) GB1438369A (cs)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049389A (en) * 1976-03-11 1977-09-20 Ijun Iosifovich Grinberg Method and apparatus for assembling aerosol valve
US4070740A (en) * 1974-09-03 1978-01-31 Automatisme & Technique Continuous production hot-setting installation
US4486932A (en) * 1982-08-06 1984-12-11 Apx Group, Inc. Process for making a replacement muffler
US4516659A (en) * 1982-08-06 1985-05-14 Apx Group, Inc. Replacement muffler and process for making same
US4569241A (en) * 1983-04-20 1986-02-11 Ratier-Figeac Ball-type screw/nut systems and a process for producing them
US5706569A (en) * 1994-12-07 1998-01-13 Sumitomo Wiring Systems, Ltd. Apparatus for assembling plug joint
RU2198904C2 (ru) * 1997-05-15 2003-02-20 Циба Спешиалти Кемикалс Холдинг Инк. Способ производства концентрата краски
CN102738709A (zh) * 2011-04-14 2012-10-17 日本特殊陶业株式会社 火花塞的制造方法
CN105071226A (zh) * 2015-09-03 2015-11-18 温州智信机电科技有限公司 带监控和物料检测的火花塞套护套机
CN105151435A (zh) * 2015-09-03 2015-12-16 温州智信机电科技有限公司 带监控和物料检测且工作可靠的火花塞套护套机
CN105151437A (zh) * 2015-09-03 2015-12-16 温州智信机电科技有限公司 一种工作可靠的火花塞套护套机
CN105173150A (zh) * 2015-09-03 2015-12-23 温州智信机电科技有限公司 带物料检测的火花塞套护套机
US10933559B2 (en) * 2015-07-17 2021-03-02 Denso Corporation Method of producing spark plug insulator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2628667A1 (de) * 1976-06-25 1977-12-29 Bosch Gmbh Robert Verfahren und vorrichtung zum befestigen der mittelelektrode in einem keramischen zuendkerzen-isolator
JP4947472B2 (ja) * 2008-04-01 2012-06-06 日本特殊陶業株式会社 スパークプラグの製造方法
CN110153681B (zh) * 2019-06-12 2024-06-21 浙江联宜电机有限公司 自动卡卡簧装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716267A (en) * 1951-06-01 1955-08-30 Champion Spark Plug Co Machine for assembling spark plug electrodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716267A (en) * 1951-06-01 1955-08-30 Champion Spark Plug Co Machine for assembling spark plug electrodes

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070740A (en) * 1974-09-03 1978-01-31 Automatisme & Technique Continuous production hot-setting installation
US4049389A (en) * 1976-03-11 1977-09-20 Ijun Iosifovich Grinberg Method and apparatus for assembling aerosol valve
US4486932A (en) * 1982-08-06 1984-12-11 Apx Group, Inc. Process for making a replacement muffler
US4516659A (en) * 1982-08-06 1985-05-14 Apx Group, Inc. Replacement muffler and process for making same
US4569241A (en) * 1983-04-20 1986-02-11 Ratier-Figeac Ball-type screw/nut systems and a process for producing them
US5706569A (en) * 1994-12-07 1998-01-13 Sumitomo Wiring Systems, Ltd. Apparatus for assembling plug joint
RU2198904C2 (ru) * 1997-05-15 2003-02-20 Циба Спешиалти Кемикалс Холдинг Инк. Способ производства концентрата краски
CN102738709B (zh) * 2011-04-14 2015-01-14 日本特殊陶业株式会社 火花塞的制造方法
CN102738709A (zh) * 2011-04-14 2012-10-17 日本特殊陶业株式会社 火花塞的制造方法
US10933559B2 (en) * 2015-07-17 2021-03-02 Denso Corporation Method of producing spark plug insulator
CN105071226A (zh) * 2015-09-03 2015-11-18 温州智信机电科技有限公司 带监控和物料检测的火花塞套护套机
CN105151435A (zh) * 2015-09-03 2015-12-16 温州智信机电科技有限公司 带监控和物料检测且工作可靠的火花塞套护套机
CN105151437A (zh) * 2015-09-03 2015-12-16 温州智信机电科技有限公司 一种工作可靠的火花塞套护套机
CN105173150A (zh) * 2015-09-03 2015-12-23 温州智信机电科技有限公司 带物料检测的火花塞套护套机
CN105071226B (zh) * 2015-09-03 2016-05-04 温州智信机电科技有限公司 带监控和物料检测的火花塞套护套机
CN105173150B (zh) * 2015-09-03 2017-05-17 沈祥明 带物料检测的火花塞套护套机

Also Published As

Publication number Publication date
FR2201016A5 (cs) 1974-04-19
GB1438369A (en) 1976-06-03
JPS49100425A (cs) 1974-09-24
DE2340068A1 (de) 1974-04-18

Similar Documents

Publication Publication Date Title
US3849850A (en) System for automated production of spark plugs
US3328842A (en) Powder compacting press
US3020589A (en) Device for molding articles by compacting powder material
US2226408A (en) Apparatus for manufacturing compound molded bodies
US3561054A (en) Powder compacting press
US3772848A (en) Method and machine for packaging rod shaped articles
US2697317A (en) Capsule forming die roll
SE448160B (sv) Bottenvikande forpackningsmaskin
US20160244193A1 (en) Method and apparatus for packaging injection mouldings
US2356585A (en) Injection mold
US1925050A (en) Molding machine and method of
US3371136A (en) Detergent tablet forming machine
US3414940A (en) Tool capsule for powder compacting press
US2351713A (en) Molding
US3557405A (en) Automated multicavity isostatic press
US2699574A (en) Moldng machine for molding plastic articles
US3795473A (en) Apparatus for the automatic production of brake shoes and linings
US3851030A (en) Method for the production of composite containers
CN107958874A (zh) 多层绝缘子、用于制备多层绝缘子的压机装置及制备方法
US3344213A (en) Powder compacting method
US5494148A (en) Method of feeding tobacco items, particularly cigarettes, to a continuous packing machine
US2775084A (en) Apparatus for filling powder in capsules
US2072087A (en) Spark plug assembling machine
US1545266A (en) Process of and apparatus for making cork articles
US4514158A (en) Plant for cold isostatic pressing