US3848373A - Method for the treatment of workpiece surfaces - Google Patents

Method for the treatment of workpiece surfaces Download PDF

Info

Publication number
US3848373A
US3848373A US00226691A US22669172A US3848373A US 3848373 A US3848373 A US 3848373A US 00226691 A US00226691 A US 00226691A US 22669172 A US22669172 A US 22669172A US 3848373 A US3848373 A US 3848373A
Authority
US
United States
Prior art keywords
workpieces
particles
polishing means
container
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00226691A
Inventor
O Pletscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebrueder Pletscher AG
Original Assignee
Gebrueder Pletscher AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Pletscher AG filed Critical Gebrueder Pletscher AG
Priority to US05/509,106 priority Critical patent/US3948003A/en
Application granted granted Critical
Publication of US3848373A publication Critical patent/US3848373A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/02Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving rotary barrels

Definitions

  • ABSTRACT A method of treating the surfaces of workpieces by means of a mass of smooth-surface or abrasive particles' which impinge upon the workpiece surface, comprising the steps of placing the particles into a state of free fall, and in the presence of a friction-reducing medium causing the particles to impact upon the surface of the workpiece.
  • the present invention relates to a new and improved method of treating, especially finishing the surfaces of workpiece by means of a mass of smooth-surface or abrasive particles which impinge upon the workpiece surface.
  • Still a further significant and more specific object of this invention is to provide a new and improved method for increasing the economies in workpiece finishing operations by rapid and intensive treatment of the workpieces until reaching the desired surface quality, and especially devising a procedure conducive for assembly-line production systems with uniform quality of the treated workpieces and hence opening the way for completely automated operations.
  • Yet a further significant object of the present invention relates to a new and improved method of treating the surfaces of workpieces in an extremely reliable and economical manner, affording uniform surface quality of the treated workpieces.
  • this work pressure is derived from the reboundless impact of the particles against'the work surface.
  • the reboundless deflection or conversion of the falling movement of the particles into a sliding movement there prevails the required surface compression during the sliding phase.
  • This shell is provided at its inner surface with entrainment means for the particles and at the same time also forms a trough for receiving the medium, for instance a liquid lubricant or lubricating agent.
  • a further aspect of the development of this invention relates to a preferred use of the previously described inventive method for polishing the surfaces of workpieces with the use of spherical or sphere-like particles or pellets.
  • FIG. 1 illustrates an end face of a cylindrical shell or drum of inventive workpiece treatment equipment, the remaining structure of which has not been depicted in FIG. 1, and which end face would be seen upon removal of the infeed mechanism;
  • FIG. 2 schematically illustrates the end face of a prismatic shell or drum which in cross-section is triangularshaped, the remaining details of the finishing equipment also having not been particularly illustrated in this Figure;
  • FIG. 3 illustrates the shell construction of FIG. 2 in a different rotational position
  • FIG. 4 is an axial sectional view through the infeed mechanism which can be coupled with the end face of the shell or drum of FIG. 1;
  • FIG. 5 is a schematic view illustrating further details of the inventive treatment equipment.
  • FIG. 1 the cylindrical shell or drum, designated in its entirety by reference numeral 1, is hidden behind a flange 2 which, just as the case for the flange mounted at the other end of the shell 1 and which is not visible in the illustration of FIG. 1, serves to connect together theshell with a number of such units and with an end closure mechanism.
  • the shell or drum 1 is rotatably mounted upon'support rolls for revolving movement about its own axis, and specifically advantageously in such a manner that the shell axis is inclined with regard to the horizontal as previously considered.
  • the inner surface of the shell 1 is lined with a coating or covering 3 formed of rubber, plastic, wood or some other suitable material, this covering 3 being provided with a rib or grooving arrangement extending approximately in the lengthwise direction of the shell 1 and formed by the depressions in the form of grooves or troughs 4 and the raised portions in the form of ribs or protruberences 5 for instance.
  • the infeed end of the shell arrangement which, as stated, can be assembled together from a number of such shell sections, has arranged in front thereof an infeed mechanism of the type depicted in greater detail in FIG. 4.
  • This infeed mechanism comprises an angled or flexed infeed pipe or conduit 6 which is stationarily fixed in any suitable way, such angled infeed conduit 6 engaging with play into the neighboring end of the shell 1 enclosed by the shell flange 2.
  • the infeed conduit 6 carries a contact or slip ring 7 which surrounds such infeed conduit 6. Now this contact ring 7, with the aid of screws 9 (only one of which is visible in the drawing) piercingly extending through a flange 8 of the infeed conduit 6, is likewise fixedly retained against rotation.
  • the latter forms a tub-like trough or vat 16 (FIG. 4) for the reception of the friction-reducing medium, for instance in the form of a liquid lubricant which, as also is the case for the particles 18, distributes itself throughout the entire length of the shell.
  • the particles which may be in the form of spheres, pellets, stones, granulates, or so forth, are upwardly entrained through a certain angle of rotation by the entrainment means formed by the grooves 4 and the ribs 5 which in the exemplary embodiment together with the shell form a particle elevating or lifting means and specifically as a function of the properties of the inner grooving and rib arrangement of the shell, the magnitude or size of the particles and the centrifugal force acting upon such particles.
  • the workpieces are also entrained by the shell, specifically by the aforedescribed grooving and rib arrangement, however only to a relatively slight degree, since after traveling through a small angular rotation these workpieces will roll or tumble back down.
  • the workpieces 19 are subjected to a continuous revolving or turning movement always at the lower region of the shell, which also constitutes the particle inlet region to the aforesaid lifting means so that they are subjected to the falling stream of particles which descend from the top towards the bottom of the shell, the upper or top shell region essentially defining the discharge location for the particles from the particle lifting or elevating means.
  • the drawing illustrates the presence of such falling particle stream which encompasses a considerable proportion of the inner width of the shell and which treats or finishes the surface of the workpieces from all sides in the already described manner.
  • contact of the workpieces with the particles located at the lower region of the shell I also contributes to the treatment or finishing effect inasmuch as there is present the continuous rolling back of the workpieces 19 upon the actual bed formed by the particles 18.
  • the friction-reducing medium which contacts the particles 18 and the workpieces 19 also plays a considerable role.
  • the workpieces With the axis of the shell inclined with regard to the horizontal the workpieces additionally experience a progressive feed or advancing movement in the direction of the lowermost or lower situated end of the shell 1 until they depart in a finished processed or treated condition from the just-mentioned location of the shell.
  • the feed velocity is, of course, among other things a function of the angle of inclination.
  • any losses in the liquid medium can be made-up by a suitable dosing pump 21, for instance operating intermittently or continuously as a function of time, this dosing pump 21 feeding its make-up liquid into the main stream of recycled medium conveyed back by the feed pump 20 to the inlet side of the equipment.
  • the closing pump 21 is especially then useful when working with a multi-component medium,
  • the particles leaving the outlet side or end 24 of the system also can be recycled in any convenient fashion through for instance the schematically indicated conveyor or conduit system 23 back to the inlet side 25 of the system.
  • Treatment or finishing equipment of the previously described type appear at first blush to differ only slightly from the previously mentioned rotating vessels.
  • the rotating shell is not used at all as a container for the reception and circulation of a large mass of particles, rather is employed to carry out a multiplicity of functions in the form of a lifting or elevator mechanism for producing a free falling stream of particles, as a receiving mechanism or receiver for the rotatable support of the workpieces, and finally as a mechanism for receiving and delivering the medium, none of which functions are inspired by or derived from the concepts 6 of the state-of-the-art rotating vessels or containers. Nothwithstanding a superficial outward similarity the prior art rotating vessels and the treatment equipment of this invention are basically and fundamentally different, particularly as concerns their construction, mode of operation and cooperative interrelationship of the hardware.
  • the medium may contain a'cleaning agent and can be preferably utilized in a liquid state.
  • losses for instance owing to entrainment of quantities of the medium adhering to the workpieces, by vaporization, and so forth, can be intermittently or advantageously continuously made-up by the introduction of the medium to the infeed end of the shell. This can of course occur to such a degree that there is realized an intensified throughflow of medium through the shell, whereby the inherent selfcleaning effect present in such equipment is further intensified.
  • the medium as well as also the particles can be recycled back to the inlet end ofthe shell.
  • its composition can be controlled and maintained constant, for instance with the aid of suitable dosing pumps controlled as a function of time or in another suitable manner, as exemplified by the closing pump 21 of FIG. 5.
  • the relatively small requirement of particles which actively partic-ipate in the working process generally leads to a considerable saving in drive power requirements, in particular however also when carrying out the aforediscussed recycling operation.
  • the medium can contain additives having special functions and for realizing special. effects, for instance dying, dull finishing, just to mention a few.
  • an agent for instance, silicone, for preventing the formation of foam and, if desired, also an emulsifying agent.
  • a method of treating the surfaces of workpieces comprising the steps of:

Abstract

A method of treating the surfaces of workpieces by means of a mass of smooth-surface or abrasive particles which impinge upon the workpiece surface, comprising the steps of placing the particles into a state of free fall, and in the presence of a friction-reducing medium causing the particles to impact upon the surface of the workpiece. The apparatus used in the performance of the inventive method comprises means for elevating the particles to a path of free fall for such particles, means for supporting and rotating the workpieces at the region of free fall of the particles, and means for introducing a friction-reducing medium for contact with the workpieces and particles.

Description

United States Patent [191 Plets cher [451 Nov. 19, 1974 METHOD FOR THE TREATMENT OF WORKPIECE SURFACES [75] Inventor: Oskar Pletscher, Zurich,
Switzerland [73] Assignee: Gebruder Pletscher, Marthalen,
Zurich, Switzerland [22] Filed: Feb. 16, 1972 [21] Appl. No.: 226,691
[30] Foreign Application Priority Data Feb. 22, 1971 Switzerland 2522/71 [52] US. Cl. 51/313, 51/316 [51] Int. Cl B24b l/00 [58] Field of Search 51/164, 164.5, 313, 316, 51/13; 252/358; l59/DIG. 4, DIG. 2O
[56] References Cited UNITED STATES PATENTS 2,416,504 2/1947 Trautman et al. 252/358 X 2,955,305 10/1960 .looss et al. 51/164 X 3,161,997 12/1964 Balz 3,395,869 8/1968 Harris 3,543,452 l2/l970 Guenther... 51/313 3,693,639 9/1972 Corbett..... 51/164 X FOREIGN PATENTS OR APPLICATIONS 857,781 1/1964 Great Britain 51/164 751,458 6/1956 Great Britain 51/164.5 237,633 12/1969 U.S.S.R 51/316 Primary Examiner-Al Lawrence Smith Assistant Examiner-Nicholas P. Godici Attorney, Agent, or FirmThomas M. Marshall [57] ABSTRACT A method of treating the surfaces of workpieces by means of a mass of smooth-surface or abrasive particles' which impinge upon the workpiece surface, comprising the steps of placing the particles into a state of free fall, and in the presence of a friction-reducing medium causing the particles to impact upon the surface of the workpiece.
The apparatus used in the performance of the inventive method comprises means for elevating the particles to a path of free fall for such particles, means for supporting and rotating the workpieces at the region of free fall of the particles, and means for introducing a friction-reducing medium for contact with the workpieces and particles.
7 Claims, 5 Drawing Figures METHOD FOR THE TREATMENT OF WORKPIECE SURFACES BACKGROUND OF THE INVENTION The present invention relates to a new and improved method of treating, especially finishing the surfaces of workpiece by means of a mass of smooth-surface or abrasive particles which impinge upon the workpiece surface. I
Now, with a finishing method of this general character, typically known in the art under the term sandblasting, abrasive particles are propelled at high velocity against the workpiece surface to be finished, for instance with the aid of a jet of compressed air. A modified version of this technique uses small pellets or spheres instead of the abrasive particles, these pellets or spheres likewise impinging at high velocity against the workpiece surface. In the last-considered procedure, instead of there being realized the sanding effect produced during sandblasting, a compression and to a certain extent smoothing of the workpiece surface is attained. In both procedures, one is actually concerned with a single-part production technique, the success of which is extensively dependent upon the dexterity of the party performing the work. Under these circumstances it is impossible to realize an economically interesting finishing operation, especially since the increase of the surface quality or fineness, possible only to a limited degree, requires a disproportional increase in the concomitant expenditure of time. t
It is also already known in the art to use smoothsurface or abrasive particles during the finishing of workpiece surfaces in a manner different than the previously considered procedures. In particular, in this case the workpiece is embeddedin a mass of such particles, the particle mass and the workpiece are then placed into revolving or vibratory motion. To this end, the particle mass and, as a general rule, a number of workpieces are introduced into a rotating vessel closed at both ends and possessing a substantially cylindrical or polygonal cross-section or into a vat-shaped container moved by one or a number of vibrators. Owing to the rotational or vibrational motion, the particles move along the workpiece surface, against which they are pressed by the pressure prevailing within the mass of particles and which is partially attributable to the force of gravity. The workpiece surfaces are correspondingly finished. Also in this case, however, there is a limitation upon the degree of fineness or finishing effect which can be realized within an economically feasible period of time, and just as was the case above, here also the required expenditure of time increases disproportionately with regard to the strived for surface finish quality of fineness. Furthermore, the manipulative steps, namely the filling and emptying of the vessels or containers, is extremely. cumbersome and time-consuming, necessitating interruption in production. 7
Attempts have already been made to bring about a flow of material in vats moved by vibrators. But here also quite a considerable expenditure. of equipment is required, especially since this objective can only be realized by complicated multi-dimensional vibrational motions of the vat housing the particle mass and the workpieces. The specific characteristics of such movements, as for instance path of motion and frequency, are dependent upon the properties of the particle mass and the workpieces. The flow of material which can be realized with this technique is accordingly relatively slow; any attempt to force production causing damage to the workpieces or resulting in poor finish. Moreover, the flow velocity and thus the treatment time for the individual workpieces varies within wide ranges, so that the actually obtained degree of surface finish for a number of workpieces markedly fluctuates. Notwithstanding the flow of material. it is of course to be appreciated that periodic emptying and flushing of the vat cannot be avoided. The treatment of workpieces in vatlike containers which are subjected to shaking or jarring additionally requires a pretreatment, for instance pickling, oftentimes however also a post-treatment of the workpiece surfaces, and thus brings with it as a con comitant problem, the expensive problem of waste disposal.
SUMMARY OF THE INVENTION Accordingly, from what has been discussed above, it will be recognized'that the prior art is still in need of an improved method for treating the surface of workpieces in a manner not associated with the previously discussed limitations and drawbacks of the prior art procedures. It is therefore a primary aim of the present invention to fulfill this objective.
Still a further significant and more specific object of this invention is to provide a new and improved method for increasing the economies in workpiece finishing operations by rapid and intensive treatment of the workpieces until reaching the desired surface quality, and especially devising a procedure conducive for assembly-line production systems with uniform quality of the treated workpieces and hence opening the way for completely automated operations.
Yet a further significant object of the present invention relates to a new and improved method of treating the surfaces of workpieces in an extremely reliable and economical manner, affording uniform surface quality of the treated workpieces.
It is a still further significant objective of the method aspects of this development to provide a surface finishing technique by means of which it is possible to reduce the requisite expenditure in equipment and to avoid any cumbersome and time-consuming operations for carrying out the finishing operations.
Now in order to implement these and still furtherobjects of the invention, which will become more readily apparent as the description proceeds, the method aspects of this development contemplate that the smooth-surface and/or abrasive particles are placed into free fall and while introducing a friction-reducing medium are caused to impact against the workpiece surface.
Whereas in the case of sandblasting and pellet blasting, the particles arrive at the workpiece surface under cause the particles are in a state of free fall. Under these conditions, the fall motion of the particles is diverted into a sliding movement along the workpiece surface. While here, just as was the ease for sandblasting or pellet blasting, there is also present a compression of the workpiece surfaces, still the effect of the particles is not solely limited thereto, rather, as already stated, there is also present a sliding treating or finishing movement. While the sliding finishing movement can be compared to the procedures which prevail in a rotating vessel or jarred container, still such sliding movement however differs therefrom inasmuch as the particles individually act upon the workpiece surface i.e. free, for instance, from the pressure of the particle mass, also during the so-to-speak sliding working phase.
Notwithstanding the reduced impact velocity during the first working phase and the reduced contact pressure during the second (sliding) working phase there is characteristically realized a considerable increase in surface quality and to a still greater extent a considerable reduction in the momentarily required treatment time. Moreover, not only is there extensively completely prevented workpiece rejects, but furthermore the uniformity of the surface finish during mass production remains within very narrow tolerance ranges, something which could not be heretofore realized. Pretreatment operations are not necessary, in fact workpieces having a slight adhering oil film, for instance compression molded parts with adhering mold separation oil, can be subjected to the described process without requiring pre-cleaning. By virtue of the combined action of the particles, which can be considered in terms of the impact phase and the sliding phase, it is possible to work with a reduced mass of such particles. One possible explanation for this is that the individual particles remain effective much longer during the subsequent sliding phase than if they were merely permitted toimpaet, whereby the work pressure required in the aforementioned sliding phase need not be produced with the aid of a sluggish mass of mutually frictionally contacting but otherwise inactive particles, rather,
owing to the fall motion and the introduced frictionreducing medium, this work pressure is derived from the reboundless impact of the particles against'the work surface. In fact, during the reboundless deflection or conversion of the falling movement of the particles into a sliding movement, there prevails the required surface compression during the sliding phase.
As already indicated above, not only is this invention directed to the above-discussed method aspects but also deals with apparatus for the performance of the aforedescribed method. Such apparatus is generally manifested by the features that there is provided means for elevating or lifting the particles to a path of fall, means for supporting and rotating the workpieces within the fall range of the particles, and means for introducing the friction-reducing medium. It is possible for the discharge of a particle elevating or lifting mechanism to be arranged above and the inlet of such elevating mechanism below a receiving device designed to support and rotate the workpieces. One advantageous constructional manifestation of the invention employs a substantially tubular-shaped shell or drum which rotates about an at least approximately horizontal axis. This shell is provided at its inner surface with entrainment means for the particles and at the same time also forms a trough for receiving the medium, for instance a liquid lubricant or lubricating agent. The particles which are continuously raised by the shell, after they have 'moved through a certain angular rotation, drop downwardly onto the workpiece or workpieces located at the lower region of the shell and owing to shell rotation the workpiece or workpieces are continuously turned or rotated, so that there is realized an imbuing of the workpiece surface by the lubricant also located at this region of the shell. By inclining the axis of the shell or drum with regard to the horizontal, the workpieces which are rolling upon the inner surface of the shell at its lower region have imparted thereto a feed or advancing movement so that they travel through such shell and depart at the lowermost situated end thereof. In fact, it is possible to imagine that the movement of such workpieces contained in the shell extends in the axial lengthwise direction thereof and possibly in a spiral-like twisting fashion down the length of such shell.
The feed velocity and thus the treatment time is a function of the inclination of the shell or drum. Consequently, there is realized a line-production system or assembly-line production which can be carried out practically without interruption. In any case, cleaning of the equipment at the end of a work day or at the end of a work week can be performed most simply. Since the particles distribute over the entire length of the shell or drum, obviously at the lower end of the shell a number of such particles depart, but the prevailing quantity is relatively slight so that their return or recirculation back into the upper end of the shell only requires very little expenditure.
A further aspect of the development of this invention relates to a preferred use of the previously described inventive method for polishing the surfaces of workpieces with the use of spherical or sphere-like particles or pellets.
BRIEF DESCRIPTION OF THE DRAWING The invention will be better understood and objects other than those set forth above, will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawing wherein:
FIG. 1 illustrates an end face of a cylindrical shell or drum of inventive workpiece treatment equipment, the remaining structure of which has not been depicted in FIG. 1, and which end face would be seen upon removal of the infeed mechanism;
FIG. 2 schematically illustrates the end face of a prismatic shell or drum which in cross-section is triangularshaped, the remaining details of the finishing equipment also having not been particularly illustrated in this Figure;
FIG. 3 illustrates the shell construction of FIG. 2 in a different rotational position;
FIG. 4 is an axial sectional view through the infeed mechanism which can be coupled with the end face of the shell or drum of FIG. 1; and
FIG. 5 is a schematic view illustrating further details of the inventive treatment equipment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Considering now the drawings, it is to be understood that only enough of the construction of the workpiece treatment equipment designed according to the teachings of this invention considered important for understanding the underlying concepts has been disclosed in the drawings in order to simplify the illustration. Hence, by referring now more specifically to FIG. 1 the cylindrical shell or drum, designated in its entirety by reference numeral 1, is hidden behind a flange 2 which, just as the case for the flange mounted at the other end of the shell 1 and which is not visible in the illustration of FIG. 1, serves to connect together theshell with a number of such units and with an end closure mechanism. In a manner well known to the art the shell or drum 1 is rotatably mounted upon'support rolls for revolving movement about its own axis, and specifically advantageously in such a manner that the shell axis is inclined with regard to the horizontal as previously considered. The inner surface of the shell 1 is lined with a coating or covering 3 formed of rubber, plastic, wood or some other suitable material, this covering 3 being provided with a rib or grooving arrangement extending approximately in the lengthwise direction of the shell 1 and formed by the depressions in the form of grooves or troughs 4 and the raised portions in the form of ribs or protruberences 5 for instance.
The infeed end of the shell arrangement which, as stated, can be assembled together from a number of such shell sections, has arranged in front thereof an infeed mechanism of the type depicted in greater detail in FIG. 4. This infeed mechanism comprises an angled or flexed infeed pipe or conduit 6 which is stationarily fixed in any suitable way, such angled infeed conduit 6 engaging with play into the neighboring end of the shell 1 enclosed by the shell flange 2. The infeed conduit 6 carries a contact or slip ring 7 which surrounds such infeed conduit 6. Now this contact ring 7, with the aid of screws 9 (only one of which is visible in the drawing) piercingly extending through a flange 8 of the infeed conduit 6, is likewise fixedly retained against rotation. Further, by means of compression springs 10 circumferentially distributively mounted between the contact ring 7 and the flange 8 this contact ring is sealingly pressed against a sealing flange 12 secured to the flange 2 of the shell 1 and which sealing flange 12 is equipped with sliding seals 11. In this connection attention is invited to FIG. 4.-Such infeed mechanism forms at the region of the neighboring end face of the shell 1 an annularor ring-shaped, inwardly projecting rib 15 which readily permits the entry of the workpieces 19. At the discharge end of the shell 1 there is likewise arranged an entrainably rotated ring-shaped rib formed for instance of an arrangement similar to that of FIG. 4. Owing to the ribs 15 provided at both end of the shell 1 the latter forms a tub-like trough or vat 16 (FIG. 4) for the reception of the friction-reducing medium, for instance in the form of a liquid lubricant which, as also is the case for the particles 18, distributes itself throughout the entire length of the shell.
Owing to the rotation of the shell, assumed in the present case to be in the clockwise direction, the particles which may be in the form of spheres, pellets, stones, granulates, or so forth, are upwardly entrained through a certain angle of rotation by the entrainment means formed by the grooves 4 and the ribs 5 which in the exemplary embodiment together with the shell form a particle elevating or lifting means and specifically as a function of the properties of the inner grooving and rib arrangement of the shell, the magnitude or size of the particles and the centrifugal force acting upon such particles. The workpieces are also entrained by the shell, specifically by the aforedescribed grooving and rib arrangement, however only to a relatively slight degree, since after traveling through a small angular rotation these workpieces will roll or tumble back down. In this way the workpieces 19 are subjected to a continuous revolving or turning movement always at the lower region of the shell, which also constitutes the particle inlet region to the aforesaid lifting means so that they are subjected to the falling stream of particles which descend from the top towards the bottom of the shell, the upper or top shell region essentially defining the discharge location for the particles from the particle lifting or elevating means. The drawing illustrates the presence of such falling particle stream which encompasses a considerable proportion of the inner width of the shell and which treats or finishes the surface of the workpieces from all sides in the already described manner. Of course, contact of the workpieces with the particles located at the lower region of the shell I also contributes to the treatment or finishing effect inasmuch as there is present the continuous rolling back of the workpieces 19 upon the actual bed formed by the particles 18. In this connection the friction-reducing medium which contacts the particles 18 and the workpieces 19 also plays a considerable role. With the axis of the shell inclined with regard to the horizontal the workpieces additionally experience a progressive feed or advancing movement in the direction of the lowermost or lower situated end of the shell 1 until they depart in a finished processed or treated condition from the just-mentioned location of the shell. The feed velocity is, of course, among other things a function of the angle of inclination.
Now with respect to the construction of the shell it is to be understood that numerous possibilities exist. It is only important for the entrainment of the particles 18 to undertake measures which ensure for a certain angle of rotation so that there is formed a falling stream of particles. Of course, it should be apparent that care should be taken to ensure that the workpieces 19 are always subjected to this stream of particles 18 at all sides, in other words rotated or turned. When taking into account these conditions the shell simultaneously forms a lifting or elevator mechanism for the particles as well as a receiving mechanism for rotating and holding the. particles below the particle outlet or discharge end of the lifting mechanism, and finally also a lubricating mechanism which ensures for the introduction of the friction-reducing medium. A shell having an inner polygonal cross-sectional configuration is basically readily in a position to fulfill these functions, and such construction of shell has been depicted in FIGS. 2 and 3.
Now in the rotational position of the shell disclosed in FIG. 2, and which as illustrated possesses in crosssection a prismatic shell structure of triangular shape, the majority of the particles and the workpiece, for the illustrated rotational position of such shell, are located at the lowermost situated apex or corner of the shell body. On the other hand, as illustrated in FIG. 3, the particles which were entrained by the apex or corner of the shell body which has moved upwardly, and now is located at the upper or topmost region of the shell, rain or stream down upon the workpiece. During rotation of the shell depicted in FIG. 2 in the clockwise direction,
I the lowermost situated apex or shell body corner, designated by reference character 13 in such FIG. 2, while entraining the particles entrapped therein and while also upwardly entraining to a certain degree the workpieces 19, as best seen by referring to FIG. 3, travels upwardly. Consequently, a portion of the particles 18 and the workpiece 19, while in mutual contact with one another, soon again slide downwards and then subsequently are exposed to the stream of the remaining particles, in the manner best recognized by referring to FIG. 2. Also with this constructional form of equipment the mode of operation described in conjunction with FIG. 1 is completely realized.
Finally, FIG. schematically illustrates the workpiece treatment or finishing equipment of this invention embodying the shell construction 1 provided at its closed ends with mechanism of the type substantially depicted in FIG. 4 including the flexed or bent pipe arrangements, conveniently indicated by reference character 6 in FIG. 5 at the inlet side 25 and the outlet side 24 of such shell construction. The particles which depart from the outlet side or end 24 of the treatment equipment are recycled by means of the conveying or feed pump 20, the suction side of which communicates via the conduit 22 with such outlet side of the equipment. Further, any losses in the liquid medium can be made-up by a suitable dosing pump 21, for instance operating intermittently or continuously as a function of time, this dosing pump 21 feeding its make-up liquid into the main stream of recycled medium conveyed back by the feed pump 20 to the inlet side of the equipment. The closing pump 21 is especially then useful when working with a multi-component medium,
such pump serving to make-up the required supply of at least one of the medium components. Finally, the particles leaving the outlet side or end 24 of the system also can be recycled in any convenient fashion through for instance the schematically indicated conveyor or conduit system 23 back to the inlet side 25 of the system.
Treatment or finishing equipment of the previously described type appear at first blush to differ only slightly from the previously mentioned rotating vessels.
Yet a closer inspection and comparison will in fact reveal quite significant differences. The heretofore known rotating vessels are always at least one-half filled with particles since their principle of operation is based upon the fact that such a large particle mass, subjected to its inherent pressure, is continuously turned or circulated with the workpieces embedded in such mass of particles. Hence, the vessels or containers must be closed at both ends, thus precluding any assemblyline production, and as should be recalled is significantly possible when practicing the teachings of this invention. This is so because with the inventive development the rotating shell is not used at all as a container for the reception and circulation of a large mass of particles, rather is employed to carry out a multiplicity of functions in the form of a lifting or elevator mechanism for producing a free falling stream of particles, as a receiving mechanism or receiver for the rotatable support of the workpieces, and finally as a mechanism for receiving and delivering the medium, none of which functions are inspired by or derived from the concepts 6 of the state-of-the-art rotating vessels or containers. Nothwithstanding a superficial outward similarity the prior art rotating vessels and the treatment equipment of this invention are basically and fundamentally different, particularly as concerns their construction, mode of operation and cooperative interrelationship of the hardware.
The medium may contain a'cleaning agent and can be preferably utilized in a liquid state. As already mentioned above, losses, for instance owing to entrainment of quantities of the medium adhering to the workpieces, by vaporization, and so forth, can be intermittently or advantageously continuously made-up by the introduction of the medium to the infeed end of the shell. This can of course occur to such a degree that there is realized an intensified throughflow of medium through the shell, whereby the inherent selfcleaning effect present in such equipment is further intensified.
This leads to dispensing with the previously mentioned 7 more expensive and frequent cleaning operations. As also previously discussed in connection with FIG. 5 the medium as well as also the particles can be recycled back to the inlet end ofthe shell. During continuous recycling or return of the medium, its composition can be controlled and maintained constant, for instance with the aid of suitable dosing pumps controlled as a function of time or in another suitable manner, as exemplified by the closing pump 21 of FIG. 5. The relatively small requirement of particles which actively partic-ipate in the working process generally leads to a considerable saving in drive power requirements, in particular however also when carrying out the aforediscussed recycling operation. The medium can contain additives having special functions and for realizing special. effects, for instance dying, dull finishing, just to mention a few. When working with a liquid medium there is advantageously admixed an agent, for instance, silicone, for preventing the formation of foam and, if desired, also an emulsifying agent.
While there is shown and described present preferred embodiments of the invention, it is to be distinctly understood that the invention is not limited thereto but may be otherwise variously embodied and practiced within the scope of the following claims.
Accordingly, I claim:
1. A method of treating the surfaces of workpieces comprising the steps of:
A. Introducing a quantity of particles into a treatment chamber, which quantity has a volume which is substantially less than the volume of said cham ber;
B. Introducing a quantity of a friction reducing medium to said chamber, said quantity being sufficient only to coat said particles and workpieces;
C. Introducing workpieces to be treated to said chamber; D. Rotating said chamber lifting said particles to an area in said chamber which is substantially higher and is removed from the surfaces of the workpieces, placing said particles in the state of a free falling stream of particles, and freely rotating said workpieces; and E. Causing said free falling stream of particles to impinge on the major portion of the surfaces of the workpieces whereby the surfaces being so treated are open to the action of the sliding motion of the particles, assisted by the friction reducing medium, to thereby treat the surfaces of said workpieces. 2. The method as defined in claim 1, including the step of using substantially spherical-shaped particles.
3. The method as defined in claim 1, further including the step of feeding the particles during the finishing operation through a revolving shell which at its opposed ends unobstructively permits the throughpassage of the workpieces.
4. A method for the continuous surface treatment of metallic workpieces while using a substantially elongated throughpass container rotatable about an axis which is slightly inclined in the throughpassage direction, the workpieces being continuously delivered at a more elevated region of the container and continuously removed therefrom at a lower situated region thereof, the method comprising the steps of employing for the treatment of the workpieces a polishing means, introducing a quantity of polishing means into the confines of the container such that only a small fraction of the volume of the container is filled with such polishing means, introducing a quantity of workpieces into the confines of said container such that the combined volume of polishing means and workpieces is such that the workpieces then float upon the polishing means; introducing a quantity of a friction-reducing medium into the container, said quantity being sufficient to coat said polishing means and said workpieces butwhich quantity is an insufficient amount to embed either the polishing means or the workpieces; placing the container into rotation, during rotation of the container bringing the polishing means into cooperative contact with the periphery of the container in a manner sufficient to raise the polishing means to an area in said chamber that is substantially higher and is removed from the surfaces of the workpieces, said raised polishing means freely falling back onto the surfaces of the workpieces and at the same time reducing the rebound tendency of the polishing means from the surfaces of the workpieces during impact therewith by means of said frictionreducing medium, thus converting the free-falling motion of the polishing means upon impact with the surfaces of the workpieces into a sliding motion along the surfaces of the workpieces so as to subject the workpiece surfaces to a compression and sliding motion effect, to thereby treat the surfaces of the workpieces by the polishing means.
5. The method as defined in claim 4, further including the step of employing in conjunction with the polishing means a friction-reducing medium which contains a foam retarding agent.
6. The method as defined in claim 5, wherein the foam retarding agent is silicone.
7. The method as defined in claim 4, including the step of processing the workpieces through a container which is nearly completely open at its lower situated region which defines the exit location for the work pieces

Claims (7)

1. A method of treating the surfaces of workpieces comprising the steps of: A. Introducing a quantIty of particles into a treatment chamber, which quantity has a volume which is substantially less than the volume of said chamber; B. Introducing a quantity of a friction reducing medium to said chamber, said quantity being sufficient only to coat said particles and workpieces; C. Introducing workpieces to be treated to said chamber; D. Rotating said chamber lifting said particles to an area in said chamber which is substantially higher and is removed from the surfaces of the workpieces, placing said particles in the state of a free falling stream of particles, and freely rotating said workpieces; and E. Causing said free falling stream of particles to impinge on the major portion of the surfaces of the workpieces whereby the surfaces being so treated are open to the action of the sliding motion of the particles, assisted by the friction reducing medium, to thereby treat the surfaces of said workpieces.
2. The method as defined in claim 1, including the step of using substantially spherical-shaped particles.
3. The method as defined in claim 1, further including the step of feeding the particles during the finishing operation through a revolving shell which at its opposed ends unobstructively permits the throughpassage of the workpieces.
4. A method for the continuous surface treatment of metallic workpieces while using a substantially elongated throughpass container rotatable about an axis which is slightly inclined in the throughpassage direction, the workpieces being continuously delivered at a more elevated region of the container and continuously removed therefrom at a lower situated region thereof, the method comprising the steps of employing for the treatment of the workpieces a polishing means, introducing a quantity of polishing means into the confines of the container such that only a small fraction of the volume of the container is filled with such polishing means, introducing a quantity of workpieces into the confines of said container such that the combined volume of polishing means and workpieces is such that the workpieces then float upon the polishing means; introducing a quantity of a friction-reducing medium into the container, said quantity being sufficient to coat said polishing means and said workpieces but which quantity is an insufficient amount to embed either the polishing means or the workpieces; placing the container into rotation, during rotation of the container bringing the polishing means into cooperative contact with the periphery of the container in a manner sufficient to raise the polishing means to an area in said chamber that is substantially higher and is removed from the surfaces of the workpieces, said raised polishing means freely falling back onto the surfaces of the workpieces and at the same time reducing the rebound tendency of the polishing means from the surfaces of the workpieces during impact therewith by means of said frictionreducing medium, thus converting the free-falling motion of the polishing means upon impact with the surfaces of the workpieces into a sliding motion along the surfaces of the workpieces so as to subject the workpiece surfaces to a compression and sliding motion effect, to thereby treat the surfaces of the workpieces by the polishing means.
5. The method as defined in claim 4, further including the step of employing in conjunction with the polishing means a friction-reducing medium which contains a foam retarding agent.
6. The method as defined in claim 5, wherein the foam retarding agent is silicone.
7. The method as defined in claim 4, including the step of processing the workpieces through a container which is nearly completely open at its lower situated region which defines the exit location for the workpieces.
US00226691A 1971-02-22 1972-02-16 Method for the treatment of workpiece surfaces Expired - Lifetime US3848373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/509,106 US3948003A (en) 1971-02-22 1974-09-25 Apparatus for the treatment of workpiece surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH252271A CH538333A (en) 1971-02-22 1971-02-22 Process for processing the surface of workpieces, device for carrying out the process and application of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/509,106 Division US3948003A (en) 1971-02-22 1974-09-25 Apparatus for the treatment of workpiece surfaces

Publications (1)

Publication Number Publication Date
US3848373A true US3848373A (en) 1974-11-19

Family

ID=4235673

Family Applications (1)

Application Number Title Priority Date Filing Date
US00226691A Expired - Lifetime US3848373A (en) 1971-02-22 1972-02-16 Method for the treatment of workpiece surfaces

Country Status (11)

Country Link
US (1) US3848373A (en)
AT (1) AT310607B (en)
AU (1) AU466352B2 (en)
CA (1) CA972161A (en)
CH (1) CH538333A (en)
DE (2) DE2205784C3 (en)
FR (1) FR2126279B1 (en)
GB (1) GB1379621A (en)
HU (1) HU168971B (en)
IT (1) IT947551B (en)
NL (1) NL7201897A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128789A (en) * 1975-04-01 1976-11-09 Tipton Mfg Corp Cylindrical barrel tank for fluidity- processing and its manufacturing method
US4795496A (en) * 1985-01-31 1989-01-03 Murata Manufacturing Co., Ltd. Method of removing adherent foreign matter from work pieces
US4818333A (en) * 1987-08-03 1989-04-04 Rem Chemicals, Inc. Metal surface refinement using dense alumina-based media
WO1994012284A1 (en) * 1992-11-30 1994-06-09 Massachusetts Institute Of Technology Cleaning and finishing a ceramic mold
US5829131A (en) * 1997-11-21 1998-11-03 Chrysler Corporation Method of making camshaft lobes
US20070107217A1 (en) * 2005-05-31 2007-05-17 Mtu Aero Engines Gmbh Method for surface blasting of integrally bladed rotors
CN100446925C (en) * 2004-10-11 2008-12-31 宋杰 Method for fabricating refined ballstone
CN106735236A (en) * 2016-12-06 2017-05-31 江苏精研科技股份有限公司 Metal injection molded post processing tumbling technique
CN108890439A (en) * 2018-09-09 2018-11-27 合肥安信通用阀片制造有限公司 A kind of drum-type valve block light polishing machine
CN114012592A (en) * 2021-11-11 2022-02-08 深圳市华阳通达精密机械有限公司 Automatic grinding and polishing machine
US11260494B2 (en) * 2018-05-28 2022-03-01 Best Finishing S.R.L. Devices for surface finishing of parts

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO793529L (en) * 1979-11-02 1981-05-05 Erik Holger Hansen PROCEDURE AND APPARATUS FOR AA MAKE INFORMATION ON MOVIE CARDS.
US4691400A (en) * 1983-06-09 1987-09-08 Arneson Howard M Article buffing apparatus and method
US4800605A (en) * 1983-06-09 1989-01-31 Arneson Howard M Buffing apparatus
US4566144A (en) * 1983-06-09 1986-01-28 Arneson Howard M Apparatus for buffing articles
CN104416636B (en) * 2013-08-27 2017-08-29 中集集团集装箱控股有限公司 Remove the blue or green method and apparatus of thick bamboo tube surface bamboo

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU237633A1 (en) * METHOD OF VIBRATION REMOVAL OF SCALE AND DENSITY OXIDE FILMS
US2416504A (en) * 1945-01-03 1947-02-25 Gulf Research Development Co Prevention of foaming of hydrocarbon oils
GB751458A (en) * 1953-09-29 1956-06-27 American Cyanamid Co Improvements relating to grinding media
US2955305A (en) * 1957-04-12 1960-10-11 Co Bartlett & Snow Co Sprue cleaning mill
GB857781A (en) * 1956-03-27 1961-01-04 Roto Finish Ltd Improved method and means for barrel finishing
US3161997A (en) * 1960-08-10 1964-12-22 Gunther W Balz Finishing and polishing method
US3395869A (en) * 1965-02-25 1968-08-06 Dominion Eng Works Ltd Structure for large diameter grinding mill
US3543452A (en) * 1968-03-01 1970-12-01 Ibm Finishing process for metallic surfaces
US3693639A (en) * 1969-10-27 1972-09-26 Hockley Chemical Co Ltd Apparatus for treating articles with liquid treatment media

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014315A (en) * 1961-12-26 Gravel washer
DE615438C (en) * 1935-07-04 Charles Senaud Polishing drum for silver dishes
BE554164A (en) *
US1946440A (en) * 1933-11-17 1934-02-06 Bantam Ball Bearing Company Apparatus and method of finishing rollers
GB516457A (en) * 1938-06-30 1940-01-02 Anthony Ralph Lucas Improvements in and relating to rumbles
US2523258A (en) * 1947-06-06 1950-09-19 Ransohoff Inc N Continuous feed tumbling mill
GB724438A (en) * 1953-03-09 1955-02-23 Emil Podszus Device for flattening and rolling metal and other powders
US3431684A (en) * 1966-10-27 1969-03-11 Mcdowell Wellman Eng Co Rotary abrading device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU237633A1 (en) * METHOD OF VIBRATION REMOVAL OF SCALE AND DENSITY OXIDE FILMS
US2416504A (en) * 1945-01-03 1947-02-25 Gulf Research Development Co Prevention of foaming of hydrocarbon oils
GB751458A (en) * 1953-09-29 1956-06-27 American Cyanamid Co Improvements relating to grinding media
GB857781A (en) * 1956-03-27 1961-01-04 Roto Finish Ltd Improved method and means for barrel finishing
US2955305A (en) * 1957-04-12 1960-10-11 Co Bartlett & Snow Co Sprue cleaning mill
US3161997A (en) * 1960-08-10 1964-12-22 Gunther W Balz Finishing and polishing method
US3395869A (en) * 1965-02-25 1968-08-06 Dominion Eng Works Ltd Structure for large diameter grinding mill
US3543452A (en) * 1968-03-01 1970-12-01 Ibm Finishing process for metallic surfaces
US3693639A (en) * 1969-10-27 1972-09-26 Hockley Chemical Co Ltd Apparatus for treating articles with liquid treatment media

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128789A (en) * 1975-04-01 1976-11-09 Tipton Mfg Corp Cylindrical barrel tank for fluidity- processing and its manufacturing method
US4795496A (en) * 1985-01-31 1989-01-03 Murata Manufacturing Co., Ltd. Method of removing adherent foreign matter from work pieces
US4818333A (en) * 1987-08-03 1989-04-04 Rem Chemicals, Inc. Metal surface refinement using dense alumina-based media
WO1994012284A1 (en) * 1992-11-30 1994-06-09 Massachusetts Institute Of Technology Cleaning and finishing a ceramic mold
US5829131A (en) * 1997-11-21 1998-11-03 Chrysler Corporation Method of making camshaft lobes
CN100446925C (en) * 2004-10-11 2008-12-31 宋杰 Method for fabricating refined ballstone
US20070107217A1 (en) * 2005-05-31 2007-05-17 Mtu Aero Engines Gmbh Method for surface blasting of integrally bladed rotors
CN106735236A (en) * 2016-12-06 2017-05-31 江苏精研科技股份有限公司 Metal injection molded post processing tumbling technique
US11260494B2 (en) * 2018-05-28 2022-03-01 Best Finishing S.R.L. Devices for surface finishing of parts
CN108890439A (en) * 2018-09-09 2018-11-27 合肥安信通用阀片制造有限公司 A kind of drum-type valve block light polishing machine
CN108890439B (en) * 2018-09-09 2021-01-05 合肥安信通用阀片制造有限公司 Drum-type valve block finishing machine
CN114012592A (en) * 2021-11-11 2022-02-08 深圳市华阳通达精密机械有限公司 Automatic grinding and polishing machine

Also Published As

Publication number Publication date
DE2205784C3 (en) 1980-02-28
CH538333A (en) 1973-06-30
NL7201897A (en) 1972-08-24
FR2126279B1 (en) 1973-06-29
AU3920172A (en) 1973-08-23
FR2126279A1 (en) 1972-10-06
AU466352B2 (en) 1973-08-23
CA972161A (en) 1975-08-05
HU168971B (en) 1976-08-28
DE2205784A1 (en) 1972-08-31
DE2205784B2 (en) 1979-06-28
GB1379621A (en) 1975-01-02
IT947551B (en) 1973-05-30
AT310607B (en) 1973-10-10
DE2265282A1 (en) 1977-07-07

Similar Documents

Publication Publication Date Title
US3848373A (en) Method for the treatment of workpiece surfaces
CA2004850C (en) Vibratory tumbling apparatus
US3680266A (en) Apparatus and method for burnishing metal objects
US3948003A (en) Apparatus for the treatment of workpiece surfaces
US3090166A (en) Polishing method and device
US2707314A (en) Method of reclaiming granular material
US3761984A (en) Cutlery polishing machine
US3291304A (en) Process of reclaiming metallic particles from foundry sand
US2440819A (en) Tumbling mill
US3715840A (en) Apparatus and method for finishing workpieces
US2809473A (en) Apparatus for smoothing the surfaces of articles
US3442691A (en) Surface treating of articles by rotating and reciprocating the treatment container
US6808439B2 (en) Vibratory finisher with blasting nozzle
US3494327A (en) Vibratory-rotary tumbler
US4384684A (en) Apparatus and method for autogenous grinding by countercurrent flow of two material streams
US3312403A (en) Machine and process for reclaiming foundry sand
JPS63502974A (en) Multi-stage finishing equipment and method
NO116763B (en)
US3561163A (en) Low pressure abrasive blasting system
CN207685310U (en) A kind of efficient leather surface finishing machine
US3685213A (en) Orbital finishing system
EP0186357B1 (en) Tumbling apparatus
US4753046A (en) Process for treatment by bulk agitation of rough castings or machined parts and machine for implementing the process
US2925689A (en) Surface treating machine
KR940002006A (en) Shot blasting device for wheel polishing