US3847507A - Liquid supply system by pump - Google Patents
Liquid supply system by pump Download PDFInfo
- Publication number
- US3847507A US3847507A US00361139A US36113973A US3847507A US 3847507 A US3847507 A US 3847507A US 00361139 A US00361139 A US 00361139A US 36113973 A US36113973 A US 36113973A US 3847507 A US3847507 A US 3847507A
- Authority
- US
- United States
- Prior art keywords
- motor
- cylinder
- differential amplifier
- piston
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0203—Burettes, i.e. for withdrawing and redistributing liquids through different conduits
- B01L3/0206—Burettes, i.e. for withdrawing and redistributing liquids through different conduits of the plunger pump type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
- G01N2030/326—Control of physical parameters of the fluid carrier of pressure or speed pumps
Definitions
- ABSTRACT A system for supplying a liquid at constant pressure for use in a liquid chromatograph characterized by a pump having a cylinder and a piston reciprocably disposed therein for drawing liquid into and discharging liquid from the cylinder, wherein a tacho-generator is connected to an electric motor which is controlled by an automatic control circuit for detecting the hydraulic pressure in the cylinder having a differential amplifier therein, and in which a signal from the tachogenerator is fed back to the differential amplifier for controlling the movement of the piston being effected by the motor through a gearing arrangement, and a screw drive means connecting the motor and the piston.
- This invention relates generally to a liquid supply system utilizing a pump which is especially adapted for use in liquid chromatography applications because of its capability of maintaining a constant liquid pressure.
- a pump being used for a liquid chromatography system preferably has no pulsation and is capable of maintaining a constant pressure therein.
- improvements in the separation columns and detectors of liquid chromatography systems remarkably increased the accuracy and capabilities of the overall systems and measurement of quite small amounts of samples are now possible, and because of such developments, a pump having greater stability has become an even more important factor in determining the success of such systems.
- the conventional cam type pump provides severe pulsation, because of the principle of its structure, and accordingly, it has been necessary to set a large volume accumulator in the path. Thus, even though space efficiency were disregarded to set the accumulator, a pressure fluctuation still cannot be prevented, when the repeated operation of a check valve is not reproducible.
- air-hydropumps have heretofore been employed for moving a piston in an air-cylinder utilizing air-pressure asa driving force.
- air-pressure of the air-cylinder is kept constant, a constant pressure of the liquid supply system is given.
- a severe pressure drop is caused each time the piston is returned. Accordingly, it is necessary to set valves for preventing backward flow in front and back of the separation column, and this has proven to be disadvantageously expensive.
- Equation 3 Equation 3
- FIG. 1 is a partially sectional front view of one embodiment of a novel pump constructed according to this invention
- FIG. 2 is a block diagram of an automatic pressure control circuit according to the invention.
- FIG. 3a is a graph showing the change in pressure when the output of a tacho-generator is not fed back, wherein the vertical axis designates a liquid supply pressure P and the horizontal axis designates a time t;
- FIG. 3b is a graph showing the change in the output of the tacho-generator wherein the vertical axis is for an output level V and the horizontal axis is for a time
- FIG. 3c is a graph showing the change of pressure at the time of feed-back of the output of the tachogenerator wherein the vertical axis is for a liquid supply pressure P and the horizontal axis is for a time t;
- FIG. 4 is a schematic view of a liquid supply system according to this invention, wherein two pumps are connected to one diaphragm.
- a piston 1 of a pump is reciprocably disposed in a cylinder 2, and a packing gland 3 for maintaining air-tightness is fitted within the cylinder 2 being secured therein by a screw nut 4.
- Check valves 7 and 8 are respectively placed in a suction or inlet duct 9 and a discharge duct 10 so as to control the supply and discharge of liquid into and out of the cylinder 2.
- a d.c. electric motor 11 is directly connected with a reduction gear12 having a suitable reduction ratio and is interlocked with gears 13 and 14 for increasing the strength of the structure.
- a screw rod 15 is directly connected with the reduction gear 14 and one end of the screw rod is inserteclinto a hollow end of the piston l.
- a driving nut 16 is fixedly mounted on the piston l on the hollow end thereof and is reciprocable along a guide rod 17, which projects through an arm portion thereof to permit relative sliding motion of the driving nut therewith while preventing rotation of the driving nut, such sliding motion being attained through a threaded engagement of the driving nut 16 and the screw rod 15. Reciprocation of the piston l of course is dependent upon reciprocating motion of the nut 16 along the guide rod 17.
- Micro-switches l8 and 19 are respectively positioned on the guide rod 17 at both an initial point and an end point of the path of motion of the driving nut 16 and are connected to control the rotary direction of the screw rod 15 through the turning of the motor 11.
- the motor 11 is driven so as to turn the screw rod 15 to move the driving nut 16 and the piston l fixed thereto in the direction indicated by arrow A.
- the motor is then driven so as to move the driving nut 16 and the piston l affixed thereto in the direction designated by arrow B.
- the reference numeral 20 designates a base frame for the apparatus, and a plate 21 is provided for fitting the electric motor 11 and the reduction gear 12, to the base frame 20.
- a spacer 22 separates the plate 21 and the frame 20.
- a resistant wire type strain gauge 23 which converts a pressure change to a signal change is positioned on the side of the diaphragm 5 opposite the liquid contacting side 5a thereof.
- a tacho-generator 24 is directly connected to the electric motor 11 so as to generate a voltage proportional to the rotary speed of the motor 11.
- a pressure detective circuit 25 for detecting deviation of the resistant wire type strain gauge 23 fitted to the diaphragm 5 is shown in FIG. 2 and will transmit a signal of electrical fluctuation corresponding to the pressure fluctuation, through a pre-amplifier 26 to an indicator 27.
- a differential amplifier 28 transmits the output of a reference voltage generator 29 and the output of the pressure detective circuit 25 being transmitted through the pre-amplifier 26.
- a synchronous rectifier 30 receives the output of the tacho-generator 24 and is connected to a first input 31a of another differential amplifier 31, which also receives the output of the differential amplifier 28 at a second input 31b.
- the reference numeral 32 designates a rotary speed control circuit of the motor 11, and a reference numeral 33 designates a load duct connected to the discharge duct 10, which corresponds to a separation column in a liquid chromatograph.
- the diaphragm 5 When the pressure automatic control circuit in FIG. 2 is alerted from a standstill condition having hydraulic pressure of zero, the diaphragm 5 does not receive any deformation stress because the hydraulic pressure is zero. Accordingly, the resistant wire type strain gauge 23 is not receiving any strain, so that the output signal of the pressure detective circuit 25 is zero. Accordingly, the output of the pre-amplifier 26 is zero and the indicator 27 also reflects a zero reading.
- the differential amplifier 28 When the output of the reference voltage generator 29 is zero, the output of the differential amplifier 28 is zero and the output of the differential amplifier 31 also is zero so that the electric motor 11 is not alerted by the rotary speed control circuit 32.
- the reference voltage generator 29 When the reference voltage generator 29 is actuated to originate a certain value of output signal, the differential amplifier 28 originates a differential output depending upon the input to cause operation of the next differential amplifier 31.
- the rotary speed control circuit 32 alerts the electric motor 11 so as to rotate the screw rod through the reduction gears l2, l3 and 14, move the piston l in the direction of arrow line A through the driving nut 16. At this time, the rotation of the electric motor 11 results in acceleration which is substantially in proportion to the output of the differential amplifier 31.
- rotation of the electric motor 11 is not supplied to thedifferential the movement of the electric motor 11 to cause the piston 1 to move in the direction of the arrow A causes a fluctuation of pressure as shown in the equation 7 and in FIG. 3a.
- the feed-back signal from the tacho-generator 24 is supplied to the differential amplifier 31, and accordingly, the electric motor 11 is positively damped based on the increase of its rotary speed, whereby excess acceleration of the piston 1 caused by delay in the increase of the hydraulic pressure resulting from the breathing action of the diaphragm 5 and the rest of the liquid transfer system, and the oscillation mode, or hunting, of a constant pressure level can be easily caused to disappear, as shown in FIG. 30.
- the hunting phenomenon is thus eliminated and a constant pressure is maintained.
- the time for reaching the pressure equilibrium is dependent upon the manner for providing the gains of the two feed-back circuits.
- a critical damping can be easily determined, and even though a leakage or a blockage occurs in the load duct 33, the check valves 7 and 8, the packing 3, and the like, it is possible to transfer the liquid under a constant pressure.
- liquid transferring pump When the liquid transferring pump is applied to a liquid chromatography system, it is necessary to supply liquid for a long time. Accordingly, two of the same type pumps can be used, if desired, so that the suction and discharging steps are alternately repeated by each, as shown in H0. 4.
- the micro-switches l8 and 19 are used not only for switching the circuit for positive and reverse rotation of the electric motor 11, but also for maintaining a constant pressure without mechanical adjustment of the stroke of the piston.
- the switches also serve to operate without fluctuation of the pressure at the time of switching, the respective pumps when a level difference is given to the output of the reference voltage generator 29 of the liquid transferring pump and the output level is alternately switched.
- a d.c. electric motor is employed.
- a corresponding circuit may easily be designed by replacing it with a synchronous motor or a pulse motor.
- a pressure detector may be placed on the cylinder and the tacho-generator may be directly connected to the motor.
- the fitting place is not limited, but can be changed to another suitable place.
- a liquid can be transferred at a constant pressure in stable condition and a predetermined pressure can be automatically maintained without causing a fluctuation of pressure in or out of the system.
- a system for supplying a liquid at constant pressure comprising:
- a cylinder having an inlet and an outlet
- a piston reciprocably disposed within said cylinder for drawing liquid into and discharging liquid from said cylinder
- said means for detecting the speed of said motor comprises a tacho generator.
- a system in accordance with claim 1, wherein said means for detecting a pressure change comprises a strain gauge disposed within said cylinder.
- a system in accordance with claim 1, wherein said means for actuating said motor comprises a rotary speed control circuit.
- said means responsive to said speed detection means comprises a differential amplifier.
- said means for detecting apressure change in said cylinder comprises a reference voltage generator connected to the input of a differential amplifier.
- a system for supplying a liquid at constant pressure comprising:
- a cylinder having an inlet and an outlet
- a piston reciprocably disposed within said cylinder for drawing liquid into and discharging liquid from said cylinder
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Clinical Laboratory Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Reciprocating Pumps (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP47048139A JPS4912401A (ja) | 1972-05-17 | 1972-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3847507A true US3847507A (en) | 1974-11-12 |
Family
ID=12794994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00361139A Expired - Lifetime US3847507A (en) | 1972-05-17 | 1973-05-17 | Liquid supply system by pump |
Country Status (3)
Country | Link |
---|---|
US (1) | US3847507A (ja) |
JP (1) | JPS4912401A (ja) |
GB (1) | GB1435733A (ja) |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4076458A (en) * | 1975-05-07 | 1978-02-28 | Whittaker Corporation | Automatic pump speed controller |
US4131393A (en) * | 1977-01-21 | 1978-12-26 | Altex Scientific, Inc. | Fluid pump mechanism |
US4137011A (en) * | 1977-06-14 | 1979-01-30 | Spectra-Physics, Inc. | Flow control system for liquid chromatographs |
US4145161A (en) * | 1977-08-10 | 1979-03-20 | Standard Oil Company (Indiana) | Speed control |
US4180375A (en) * | 1977-01-21 | 1979-12-25 | Altex Scientific, Inc. | Liquid chromatography pump |
FR2428158A2 (fr) * | 1978-06-07 | 1980-01-04 | Magnussen Haakon Jun | Pompe pour chromatographie en phase liquide |
US4182491A (en) * | 1977-03-25 | 1980-01-08 | Micro-Gen Equipment Corp. | Remote control spraying apparatus |
EP0009013A1 (en) * | 1978-09-04 | 1980-03-19 | Lkb Clinicon Aktiebolag | A pipetting and dosing device |
US4255088A (en) * | 1979-06-14 | 1981-03-10 | Valleylab, Inc. | Liquid pumping system having means for detecting gas in the pump |
US4352636A (en) * | 1980-04-14 | 1982-10-05 | Spectra-Physics, Inc. | Dual piston pump |
US4359312A (en) * | 1978-08-15 | 1982-11-16 | Zumtobel Kg | Reciprocating pump for the pulsation-free delivery of a liquid |
USRE31586E (en) * | 1977-01-21 | 1984-05-15 | Altex Scientific, Inc. | Liquid chromatography pump |
USRE31608E (en) * | 1977-01-21 | 1984-06-19 | Altex Scientific, Inc. | Fluid pump mechanism |
US4492524A (en) * | 1980-09-23 | 1985-01-08 | Bruker-Analytische Messtechnik Gmbh | Multiple piston pump with a constant discharge capacity |
US4509904A (en) * | 1983-10-04 | 1985-04-09 | Petrophysical Services, Inc. | Metering pump |
US4515529A (en) * | 1982-10-21 | 1985-05-07 | Woodhull William M | Energy transducer for hydraulic wind power conversion system and instrumentation therefor |
WO1985001993A1 (en) * | 1983-11-01 | 1985-05-09 | Ab Rovac | Metering device |
US4552513A (en) * | 1983-03-07 | 1985-11-12 | Spectra-Physics, Inc. | Multiple piston pump control |
US4566868A (en) * | 1980-09-17 | 1986-01-28 | Geotechnical Digital Systems Limited | Pressure source |
US4566858A (en) * | 1981-10-08 | 1986-01-28 | Nikkiso Co., Ltd. | Pulsation-free volumetric pump |
US4627243A (en) * | 1985-09-26 | 1986-12-09 | Union Carbide Corporation | Gas supply system for variable demand application |
US4643649A (en) * | 1984-07-20 | 1987-02-17 | The Perkin-Elmer Corporation | Digital control for rapid refill of a liquid chromatograph pump |
US4699570A (en) * | 1986-03-07 | 1987-10-13 | Itt Industries, Inc | Vacuum pump system |
US4787822A (en) * | 1986-04-10 | 1988-11-29 | National Instrument Company, Inc. | Volume control for multi-nozzle rotary pump filling systems |
US4808077A (en) * | 1987-01-09 | 1989-02-28 | Hitachi, Ltd. | Pulsationless duplex plunger pump and control method thereof |
US4820129A (en) * | 1982-06-08 | 1989-04-11 | Altex Scientific, Inc. | Pressure measurement in fluid pump systems |
US4919595A (en) * | 1987-03-03 | 1990-04-24 | Beckman Instruments, Inc. | Fluid delivery system with deficit flow compensation |
US4980059A (en) * | 1986-09-17 | 1990-12-25 | U.S. Philips Corporation | Liquid chromatograph |
US4990076A (en) * | 1989-05-31 | 1991-02-05 | Halliburton Company | Pressure control apparatus and method |
US5141408A (en) * | 1990-11-09 | 1992-08-25 | Prc | Product pumping apparatus |
WO1995002764A1 (en) * | 1993-07-13 | 1995-01-26 | Uhp Corporation | High pressure pump system and method of operation thereof |
US5393420A (en) * | 1993-01-11 | 1995-02-28 | Zymark Corporation | Liquid chromatography system |
US5450743A (en) * | 1994-01-10 | 1995-09-19 | Zymark Corporation | Method for providing constant flow in liquid chromatography system |
FR2744175A1 (fr) * | 1996-01-25 | 1997-08-01 | Geodesign Sa | Pompe pour l'injection a tres haute pression d'un liquide dans un appareil recepteur |
EP0839576A2 (en) * | 1996-10-29 | 1998-05-06 | TOA MEDICAL ELECTRONICS CO., Ltd. | Syringe pump |
US5792967A (en) * | 1996-07-17 | 1998-08-11 | Applied Power Inc. | Pumping unit with speed transducer |
US5846056A (en) * | 1995-04-07 | 1998-12-08 | Dhindsa; Jasbir S. | Reciprocating pump system and method for operating same |
US5920006A (en) * | 1997-06-16 | 1999-07-06 | Digichrom, Inc. | Liquid chromatographic pump and valve assembly |
US6257052B1 (en) * | 1999-07-06 | 2001-07-10 | Digichrom, Inc | Pump, sample feed and valving for high performance liquid chromatography (HPLC) |
US6494685B2 (en) * | 2001-03-29 | 2002-12-17 | Kadant, Inc. | Pump and motor assembly with constant pressure output |
US20040136833A1 (en) * | 2003-01-10 | 2004-07-15 | Allington Robert W. | High pressure reciprocating pump and control of the same |
US20040202575A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Signal to noise ratio in chromatography |
US20040204866A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Method and apparatus to enhance the signal to noise ratio in chromatography |
US20040204864A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Signal to noise ratio in chromatography |
US20040205422A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Signal to noise ratio in chromatography |
WO2005093257A1 (en) * | 2004-03-05 | 2005-10-06 | Waters Investments Limited | Device and methods of measuring pressure |
EP1783368A1 (en) * | 2005-11-07 | 2007-05-09 | Dresser Wayne Aktiebolag | Vapour recovery pump |
US20110020155A1 (en) * | 2008-03-26 | 2011-01-27 | Biocon Limited | Ultra high pressure pump with an alternating rotation to linear displacement mechanism |
US20120308413A1 (en) * | 2010-02-18 | 2012-12-06 | Grundfos Mamagement A/S | Toothed wheel and pump aggregate with such a toothed wheel |
US20140050597A1 (en) * | 2011-01-31 | 2014-02-20 | Michael Absmeier | Pump Unit for a High-Pressure Pump |
US20150086386A1 (en) * | 2012-04-23 | 2015-03-26 | Siemens Healthcare Diagnostics Inc. | Multi-chamber pump apparatus, systems, and methods |
US20160265521A1 (en) * | 2015-03-12 | 2016-09-15 | Colterwell Ltd. | Pump assemblies |
EP3327434A1 (en) * | 2016-11-29 | 2018-05-30 | Spark Holland B.V. | High or ultra high performance liquid chromatography pump |
CN108374783A (zh) * | 2017-01-31 | 2018-08-07 | 泰肯贸易股份公司 | 通过吸液进行吸入的方法和吸液装置 |
KR20190028691A (ko) * | 2016-08-03 | 2019-03-19 | 니폰 필라고교 가부시키가이샤 | 왕복동 펌프 |
US10371141B1 (en) | 2016-07-25 | 2019-08-06 | Yury Zelechonok | Gradient high pressure syringe pump |
US10422333B2 (en) | 2010-09-13 | 2019-09-24 | Quantum Servo Pumping Technologies Pty Ltd | Ultra high pressure pump |
US10907631B2 (en) * | 2018-08-01 | 2021-02-02 | Rolls-Royce Corporation | Pump ripple pressure monitoring for incompressible fluid systems |
US11060518B2 (en) * | 2016-08-03 | 2021-07-13 | Nippon Pillar Packing Co., Ltd. | Reciprocating pump |
US11327056B2 (en) * | 2017-09-12 | 2022-05-10 | Shimadzu Corporation | Plunger pump |
US11391131B2 (en) * | 2017-07-12 | 2022-07-19 | Oklas Technologies Limited Liability Company | Downhole pump drive including reverse reduction gear with switching mechanism |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19644961A1 (de) * | 1996-10-29 | 1998-04-30 | Samsung Heavy Ind | Verfahren zum Steuern des Motor-Pumpe-Systems einer hydraulischen Baumaschine |
GB2343018B (en) * | 1998-09-05 | 2003-03-12 | Zeta Controls Ltd | Control systems |
US20210340974A1 (en) * | 2019-02-21 | 2021-11-04 | Xi'an Jiao Tong University | Device and method for monitoring oil pressure in oil cylinder of diaphragm compressor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1335238A (en) * | 1915-04-29 | 1920-03-30 | Electric Tachometer Corp | Indicator |
US3093946A (en) * | 1959-10-08 | 1963-06-18 | Pitt Arnold | Load responsive control for power systems |
US3342195A (en) * | 1964-08-11 | 1967-09-19 | Gen Electric | Speed and motive fluid pressure control system for steam turbines |
US3373872A (en) * | 1964-04-13 | 1968-03-19 | Ceskoslovenska Akademie Ved | Apparatus for carrying out a rapid chromatography of amino acid and similar mixtures |
US3439622A (en) * | 1966-09-02 | 1969-04-22 | Phillips Petroleum Co | Motor control circuit utilizing a voltage controlled rectifier |
US3514217A (en) * | 1968-02-23 | 1970-05-26 | Shell Oil Co | Method of controlling pipeline slurries |
US3556679A (en) * | 1968-08-08 | 1971-01-19 | Continental Oil Co | Metering pump |
US3612729A (en) * | 1968-03-29 | 1971-10-12 | Rhone Poulenc Sa | Volumetric metering pump |
-
1972
- 1972-05-17 JP JP47048139A patent/JPS4912401A/ja active Pending
-
1973
- 1973-05-16 GB GB2336773A patent/GB1435733A/en not_active Expired
- 1973-05-17 US US00361139A patent/US3847507A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1335238A (en) * | 1915-04-29 | 1920-03-30 | Electric Tachometer Corp | Indicator |
US3093946A (en) * | 1959-10-08 | 1963-06-18 | Pitt Arnold | Load responsive control for power systems |
US3373872A (en) * | 1964-04-13 | 1968-03-19 | Ceskoslovenska Akademie Ved | Apparatus for carrying out a rapid chromatography of amino acid and similar mixtures |
US3342195A (en) * | 1964-08-11 | 1967-09-19 | Gen Electric | Speed and motive fluid pressure control system for steam turbines |
US3439622A (en) * | 1966-09-02 | 1969-04-22 | Phillips Petroleum Co | Motor control circuit utilizing a voltage controlled rectifier |
US3514217A (en) * | 1968-02-23 | 1970-05-26 | Shell Oil Co | Method of controlling pipeline slurries |
US3612729A (en) * | 1968-03-29 | 1971-10-12 | Rhone Poulenc Sa | Volumetric metering pump |
US3556679A (en) * | 1968-08-08 | 1971-01-19 | Continental Oil Co | Metering pump |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4076458A (en) * | 1975-05-07 | 1978-02-28 | Whittaker Corporation | Automatic pump speed controller |
USRE31586E (en) * | 1977-01-21 | 1984-05-15 | Altex Scientific, Inc. | Liquid chromatography pump |
US4131393A (en) * | 1977-01-21 | 1978-12-26 | Altex Scientific, Inc. | Fluid pump mechanism |
USRE31608E (en) * | 1977-01-21 | 1984-06-19 | Altex Scientific, Inc. | Fluid pump mechanism |
US4180375A (en) * | 1977-01-21 | 1979-12-25 | Altex Scientific, Inc. | Liquid chromatography pump |
US4182491A (en) * | 1977-03-25 | 1980-01-08 | Micro-Gen Equipment Corp. | Remote control spraying apparatus |
US4137011A (en) * | 1977-06-14 | 1979-01-30 | Spectra-Physics, Inc. | Flow control system for liquid chromatographs |
US4145161A (en) * | 1977-08-10 | 1979-03-20 | Standard Oil Company (Indiana) | Speed control |
FR2428158A2 (fr) * | 1978-06-07 | 1980-01-04 | Magnussen Haakon Jun | Pompe pour chromatographie en phase liquide |
US4359312A (en) * | 1978-08-15 | 1982-11-16 | Zumtobel Kg | Reciprocating pump for the pulsation-free delivery of a liquid |
EP0009013A1 (en) * | 1978-09-04 | 1980-03-19 | Lkb Clinicon Aktiebolag | A pipetting and dosing device |
US4298575A (en) * | 1978-09-04 | 1981-11-03 | Lkb Clinicon Aktiebolag | Pipetting and dosing device |
US4255088A (en) * | 1979-06-14 | 1981-03-10 | Valleylab, Inc. | Liquid pumping system having means for detecting gas in the pump |
US4352636A (en) * | 1980-04-14 | 1982-10-05 | Spectra-Physics, Inc. | Dual piston pump |
US4566868A (en) * | 1980-09-17 | 1986-01-28 | Geotechnical Digital Systems Limited | Pressure source |
US4492524A (en) * | 1980-09-23 | 1985-01-08 | Bruker-Analytische Messtechnik Gmbh | Multiple piston pump with a constant discharge capacity |
US4566858A (en) * | 1981-10-08 | 1986-01-28 | Nikkiso Co., Ltd. | Pulsation-free volumetric pump |
US4820129A (en) * | 1982-06-08 | 1989-04-11 | Altex Scientific, Inc. | Pressure measurement in fluid pump systems |
US4515529A (en) * | 1982-10-21 | 1985-05-07 | Woodhull William M | Energy transducer for hydraulic wind power conversion system and instrumentation therefor |
US4552513A (en) * | 1983-03-07 | 1985-11-12 | Spectra-Physics, Inc. | Multiple piston pump control |
US4509904A (en) * | 1983-10-04 | 1985-04-09 | Petrophysical Services, Inc. | Metering pump |
WO1985001993A1 (en) * | 1983-11-01 | 1985-05-09 | Ab Rovac | Metering device |
US4643649A (en) * | 1984-07-20 | 1987-02-17 | The Perkin-Elmer Corporation | Digital control for rapid refill of a liquid chromatograph pump |
US4627243A (en) * | 1985-09-26 | 1986-12-09 | Union Carbide Corporation | Gas supply system for variable demand application |
US4699570A (en) * | 1986-03-07 | 1987-10-13 | Itt Industries, Inc | Vacuum pump system |
US4787822A (en) * | 1986-04-10 | 1988-11-29 | National Instrument Company, Inc. | Volume control for multi-nozzle rotary pump filling systems |
US4980059A (en) * | 1986-09-17 | 1990-12-25 | U.S. Philips Corporation | Liquid chromatograph |
US4808077A (en) * | 1987-01-09 | 1989-02-28 | Hitachi, Ltd. | Pulsationless duplex plunger pump and control method thereof |
US4919595A (en) * | 1987-03-03 | 1990-04-24 | Beckman Instruments, Inc. | Fluid delivery system with deficit flow compensation |
US4990076A (en) * | 1989-05-31 | 1991-02-05 | Halliburton Company | Pressure control apparatus and method |
US5141408A (en) * | 1990-11-09 | 1992-08-25 | Prc | Product pumping apparatus |
US5393420A (en) * | 1993-01-11 | 1995-02-28 | Zymark Corporation | Liquid chromatography system |
US5393434A (en) * | 1993-01-11 | 1995-02-28 | Zymark Corporation | Liquid chromatography method |
WO1995002764A1 (en) * | 1993-07-13 | 1995-01-26 | Uhp Corporation | High pressure pump system and method of operation thereof |
US5992222A (en) * | 1993-07-13 | 1999-11-30 | Uhp Corp. | High pressure pump system and method of operation thereof |
US5450743A (en) * | 1994-01-10 | 1995-09-19 | Zymark Corporation | Method for providing constant flow in liquid chromatography system |
US5846056A (en) * | 1995-04-07 | 1998-12-08 | Dhindsa; Jasbir S. | Reciprocating pump system and method for operating same |
FR2744175A1 (fr) * | 1996-01-25 | 1997-08-01 | Geodesign Sa | Pompe pour l'injection a tres haute pression d'un liquide dans un appareil recepteur |
US5792967A (en) * | 1996-07-17 | 1998-08-11 | Applied Power Inc. | Pumping unit with speed transducer |
EP0839576A3 (en) * | 1996-10-29 | 1999-01-27 | TOA MEDICAL ELECTRONICS CO., Ltd. | Syringe pump |
EP0839576A2 (en) * | 1996-10-29 | 1998-05-06 | TOA MEDICAL ELECTRONICS CO., Ltd. | Syringe pump |
US5920006A (en) * | 1997-06-16 | 1999-07-06 | Digichrom, Inc. | Liquid chromatographic pump and valve assembly |
US6257052B1 (en) * | 1999-07-06 | 2001-07-10 | Digichrom, Inc | Pump, sample feed and valving for high performance liquid chromatography (HPLC) |
US6494685B2 (en) * | 2001-03-29 | 2002-12-17 | Kadant, Inc. | Pump and motor assembly with constant pressure output |
US7037081B2 (en) | 2003-01-10 | 2006-05-02 | Teledyne Isco, Inc. | High pressure reciprocating pump and control of the same |
US20040136833A1 (en) * | 2003-01-10 | 2004-07-15 | Allington Robert W. | High pressure reciprocating pump and control of the same |
US20040151594A1 (en) * | 2003-01-10 | 2004-08-05 | Allington Robert W. | High pressure reciprocating pump and control of the same |
US6997683B2 (en) | 2003-01-10 | 2006-02-14 | Teledyne Isco, Inc. | High pressure reciprocating pump and control of the same |
US20040202575A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Signal to noise ratio in chromatography |
US20040204866A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Method and apparatus to enhance the signal to noise ratio in chromatography |
US20040204864A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Signal to noise ratio in chromatography |
US20040205422A1 (en) * | 2003-04-09 | 2004-10-14 | Allington Robert W. | Signal to noise ratio in chromatography |
US8333568B2 (en) * | 2004-03-05 | 2012-12-18 | Waters Technologies Corporation | Device and methods of measuring pressure |
US20080260558A1 (en) * | 2004-03-05 | 2008-10-23 | Waters Investments Limited | Device and Methods of Measuring Pressure |
GB2428073B (en) * | 2004-03-05 | 2009-02-25 | Waters Investments Ltd | Device and methods of measuring pressure in a pump for use in liquid chromatography |
GB2428073A (en) * | 2004-03-05 | 2007-01-17 | Waters Investments Ltd | Device and methods of measuring pressure |
DE112005000525B4 (de) * | 2004-03-05 | 2017-08-31 | Waters Technologies Corp. (N.D.Ges.D. Staates Delaware) | Vorrichtung und Verfahren zum Druck messen |
WO2005093257A1 (en) * | 2004-03-05 | 2005-10-06 | Waters Investments Limited | Device and methods of measuring pressure |
US8425209B2 (en) | 2005-11-07 | 2013-04-23 | Dresser, Inc. | Vapor recovery pump |
EP1783368A1 (en) * | 2005-11-07 | 2007-05-09 | Dresser Wayne Aktiebolag | Vapour recovery pump |
US20070154332A1 (en) * | 2005-11-07 | 2007-07-05 | Dresser, Inc. (Wayne-Ab Sweden) | Vapor Recovery Pump |
US10240588B2 (en) * | 2008-03-26 | 2019-03-26 | Quantum Servo Pumping Technologies Pty Ltd | Ultra high pressure pump with an alternating rotation to linear displacement drive mechanism |
US20170306938A1 (en) * | 2008-03-26 | 2017-10-26 | Techni Waterjet Pty Ltd | Ultra High Pressure Pump With An Alternating Rotation To Linear Displacement Drive Mechanism |
US9212657B2 (en) * | 2008-03-26 | 2015-12-15 | Techni Waterjet Pty Ltd | Ultra high pressure pump with an alternating rotation to linear displacement mechanism |
US20160076526A1 (en) * | 2008-03-26 | 2016-03-17 | Techni Waterjet Pty Ltd | Ultra High Pressure Pump With An Alternating Rotation To Linear Displacement Drive Mechanism |
US20110020155A1 (en) * | 2008-03-26 | 2011-01-27 | Biocon Limited | Ultra high pressure pump with an alternating rotation to linear displacement mechanism |
US9618107B2 (en) * | 2010-02-18 | 2017-04-11 | Grundfos Management A/S | Toothed wheel and pump aggregate with such a toothed wheel |
US20120308413A1 (en) * | 2010-02-18 | 2012-12-06 | Grundfos Mamagement A/S | Toothed wheel and pump aggregate with such a toothed wheel |
US10422333B2 (en) | 2010-09-13 | 2019-09-24 | Quantum Servo Pumping Technologies Pty Ltd | Ultra high pressure pump |
US10047740B2 (en) * | 2011-01-31 | 2018-08-14 | Continental Automotive Gmbh | Pump unit for a high-pressure pump |
US20140050597A1 (en) * | 2011-01-31 | 2014-02-20 | Michael Absmeier | Pump Unit for a High-Pressure Pump |
US20150086386A1 (en) * | 2012-04-23 | 2015-03-26 | Siemens Healthcare Diagnostics Inc. | Multi-chamber pump apparatus, systems, and methods |
US20160265521A1 (en) * | 2015-03-12 | 2016-09-15 | Colterwell Ltd. | Pump assemblies |
US10371141B1 (en) | 2016-07-25 | 2019-08-06 | Yury Zelechonok | Gradient high pressure syringe pump |
KR20190028691A (ko) * | 2016-08-03 | 2019-03-19 | 니폰 필라고교 가부시키가이샤 | 왕복동 펌프 |
US11060518B2 (en) * | 2016-08-03 | 2021-07-13 | Nippon Pillar Packing Co., Ltd. | Reciprocating pump |
EP3327434A1 (en) * | 2016-11-29 | 2018-05-30 | Spark Holland B.V. | High or ultra high performance liquid chromatography pump |
US10690132B2 (en) | 2016-11-29 | 2020-06-23 | Spark Holland B.V. | Liquid chromatography pump having diversion conduit for air evacuation |
CN108374783A (zh) * | 2017-01-31 | 2018-08-07 | 泰肯贸易股份公司 | 通过吸液进行吸入的方法和吸液装置 |
CN108374783B (zh) * | 2017-01-31 | 2021-10-29 | 帝肯贸易股份公司 | 通过吸液进行吸入的方法和吸液装置 |
US11391131B2 (en) * | 2017-07-12 | 2022-07-19 | Oklas Technologies Limited Liability Company | Downhole pump drive including reverse reduction gear with switching mechanism |
US11327056B2 (en) * | 2017-09-12 | 2022-05-10 | Shimadzu Corporation | Plunger pump |
US10907631B2 (en) * | 2018-08-01 | 2021-02-02 | Rolls-Royce Corporation | Pump ripple pressure monitoring for incompressible fluid systems |
Also Published As
Publication number | Publication date |
---|---|
GB1435733A (en) | 1976-05-12 |
JPS4912401A (ja) | 1974-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3847507A (en) | Liquid supply system by pump | |
US4681513A (en) | Two-stage pump assembly | |
US4422942A (en) | Method for liquid chromatography | |
US4775481A (en) | Apparatus and method for liquid chromatography | |
US6227807B1 (en) | Constant flow fluid pump | |
US5040126A (en) | Method for predicting steady-state conditions | |
US3855129A (en) | Novel pumping apparatus | |
US5257914A (en) | Electronic control interface for fluid powered diaphragm pump | |
EP0309596A1 (en) | Pumping apparatus for delivering liquid at high pressure | |
US3782198A (en) | Device for measuring or detecting gas | |
EP0258399A1 (en) | Apparatus for measuring entrained gas phase content | |
US2800796A (en) | Pressure measuring device | |
US4420393A (en) | Pump for liquid chromatography and a chromatograph including the pump | |
US4772388A (en) | Apparatus for liquid chromatography | |
US4882781A (en) | Method for predicting steady-state conditions | |
US4254657A (en) | Gas detector and meter employing indicator tubes | |
US3835316A (en) | Device for electronically detecting pressure changes in a fluid | |
US4781824A (en) | Apparatus for liquid chromatography | |
US2713266A (en) | Differential altimeter | |
US4769153A (en) | Apparatus and method for liquid chromatography | |
US3625062A (en) | Pressure indicating apparatus | |
US3653264A (en) | Apparatus for detecting a leak in a fluid pressure system | |
CN113482873B (zh) | 一种阀控式变量柱塞泵 | |
CN114485402A (zh) | 一种激光跟随式位置检测系统及方法 | |
US3280628A (en) | High precision capacitive strain gage |