US3840463A - Sulfur and phosphorus bearing lubricant - Google Patents
Sulfur and phosphorus bearing lubricant Download PDFInfo
- Publication number
- US3840463A US3840463A US00227234A US22723472A US3840463A US 3840463 A US3840463 A US 3840463A US 00227234 A US00227234 A US 00227234A US 22723472 A US22723472 A US 22723472A US 3840463 A US3840463 A US 3840463A
- Authority
- US
- United States
- Prior art keywords
- metal
- phosphorus
- additive
- antimony
- lubrication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/041—Coatings or solid lubricants, e.g. antiseize layers or pastes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/065—Sulfides; Selenides; Tellurides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/12—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of organic compounds, e.g. with PxSy, PxSyHal or PxOy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2225/00—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2225/04—Organic macromolecular compounds containing phosphorus as ingredients in lubricant compositions obtained by phosphorisation of macromolecualr compounds not containing phosphorus in the monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/10—Groups 5 or 15
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/044—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for manual transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/046—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
- C10N2070/02—Concentrating of additives
Definitions
- This invention relates to heavy-duty lubricants, and particularly to addition agents for such lubricants and to the lubricants containing the same.
- lubricant base oils which may be petroleum fractions or synthetic liquids, with compounds containing sulfur and phosphous to improve the lubrication performance.
- base oils can be improved to an extent not available heretofore by the addition of a synergistic mixture of metal-organic compounds and compounds free from heavy metal and containing sulfur and phosphorus.
- the mixtures of the invention are added to natural or synthetic base oils in amounts of 0.1% to 20% of the weight of the base, the lower limit being useful for lubricants intended for relatively light duty, and the higher limit typically being reached in concentrates intended to be diluted with more base oil.
- the lubricant ready for use should contain between 1 and 12% of a mixture of the invention.
- the metal-organic component in the mixtures of the invention contains zinc, lead, tin, tungsten, molybdenum, niobium, lanthanum, antimony, bismuth, chromium, vanadium, or cadmium.
- the organic moiety of the compound should include alkyl radicals, also sulfur and/or phosphorus.
- the metal-organic compounds best suited for the mixtures of the invention are N-alkyldithiocarbamates and alkyl, aryl, and alkyl-aryl dithiophosphates of the heavy metals enumerated.
- R R are members of the groups consisting of straight-chained, branched, and cyclic alkyl having 2 to 10 carbon atoms, and R R may be members of the same group or phenyl, o-alkylphenyl, or p-alkylphenyl, the alkyl groups of the alkylphenyls having 1-6 carbon atoms.
- Me is one of the heavy metals referred to above, y is 0 or an integer up to 4, x is zero or an integer up to 6, zirconium, calcium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium, magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium magnesium
- z is preferably 2 when Me is molybdenum, cadmium, zinc, lead, tin, tungsten, chromium, niobium or lanthanum. z is preferably 3 when Me is antimony or bismuth.
- w is preferably 1 when Me is antimony, bismuth, cadmium, zinc, lead, tin, niobium or lanthanum, and is 2 when Me is tungsten, chromium, vanadium or molybdenum.
- x and y are preferably 0 when Me is tin, lead, zinc, niobium, lanthanum, cadmium, antimony or bismuth.
- x is preferably 2, 4 or 6 and y is 2, 4 or preferably 0 when Me is molybdenum, tungsten, vanadium or chromium.
- the dithiocarbamates and dithiophosphates of heavy metals according to the above formulas are known, and many are staple articles of commerce sold, for example, by R. T. Vanderbilt Co. Inc. of New York, NY. the following compounds are representative of the metal-organic compounds in the mixtures of the invention:
- Lead N-diamyldithiocarbamate Lead N-dihexyldithiocarbamate, Lead N-dicyclohexyldithiocarbamate, Lead N-diheptyldithiocarbamate, Lead N-dioctyldithiocarbamate, Lead N-dinonyldithiocarbamate, Lead N-didecyldithiocarbamate, Lead N-di-n-buty1dithiocarbamate, Lead N-diisobutyldithiocarbamate, Lead N-dicyclopentyldithiocarbamate,
- Antimony 0,0-dinonyldithiophosphate Antimony 0,0-didecyldithiophosphate, Antimony 0,0-diphenyldithiophosphate, Antimony 0,0-di-o-methylphenyldithiophosphate, Antimony 0,0-di-p-methylphenyldithiophosphate, Antimony 0,0-di-o-ethylphenyldithiophosphate, Antimony 0,0-di-o-propylphenyldithiophosphate, Antimony 0,0-di-o-butylphenyldithiophosphate, Antimony 0,0-di-o-pentylphenyldithiophosphate, Antimony 0,0-di-o-hexylphenyldithiophosphate, Antimony 0,0-di-p-hexylphenyldithiophosphate,
- the metal-organic compounds are preferably present in lubricants of the invention which are ready for use in amounts of 0.5% to 4%, and may be present in concentrates in amounts of up to 15%, all percentage figures being by weight unless otherwise stated specifically.
- Suitable sulfur-phosphorus compounds free from heavy metal include the phosphorus sulfides, such as P 8 P (P 8 and P 8 and corresponding polysulfides containing additional sulfur, also thiophosphates in which phosphorus is directly bound to sulfur, and the like. Sulfur may be replaced in these compounds partly or entirely by selenium or tellurium. Preferred compounds of this type are obtained by sulfurization and/or phosphorization of organic substances containing one or more olefinic double bonds, e.g. sperm oil butadienes or terpenes.
- Sulfurized sperm oil esterified with dithiophosphate, sulfurized terpene esterified with dithiophosphate, and sulfurized sperm oil phosphated by reaction with phosphorus pentoxide are among the more complex compounds free from heavy metals which constitute the second component of the synergistic mixtures of this invention.
- the last-mentioned compounds also are known and constitute ingredients of complex commercial mixtures, not capable of precise structural analysis, such as Anglamol 99 (Lubrizol Corp., Cleveland, Ohio), which has a nominal sulfur content of 31.5% and a phosphorus content of 1.75%.
- the sulfur and phosphorus bearing components of the mixtures of the invention which are free of heavy metal may be present in the improved lubricants in the same amounts as the metal-organic compounds, and the same ranges of concentration are preferred.
- the individual values, however, are preferably chosen in such a manner that the sulfur-phosphorus compounds are present in amounts of two to six times the weight of the metal-organic compound.
- the mixtures are combined with base oils conventional in the manufacture of lubricants. Good results are obtained with mineral oils having viscosities between 1.8 E. (Engler) and C. to 35 E. at 50 C.
- Synthetic oils such as diisodecyl phthalate, trimethyl adipate, or the dioctyl ester of sebacic acid, are most favorably affected at viscosities between 1.8 E. at 20 C. to about 65 E. at 50 C.
- the lubricant compositions of the invention substantially reduce wear of the lubricated surfaces, improve the adhesion of the interfacial lubricant film, enhance the oxidation resistance and thus the useful life of the lubricant, and reduce the coefiicient of friction and thus the operating temperature.
- oils of low viscosity may be employed where lubricants of high viscosity were required heretofore, as in automotive transmissions and differential gearing.
- the same lubricant composition of the invention may be employed in an automotive vehicle in the transmission and differential gearing as well as in the engine.
- the lubricant compositions of the invention may be adapted to a wide variety of operating conditions and unusual applications, and only few preliminary tests are needed for arriving at the most suitable composition.
- lubricant compositions of the invention and controls were tested in an apparatus commercially available under the name Lubrimeter from Sommer & Runge in Berlin, Germany.
- the specific testing device employed was of the improved Lohmaier design. Its basic elements are a piston pin and two small, rotating rollers frictionally engaging the pin. The wear of the pin and of the rollers under a constant load is determined.
- the apparatus also permits the measurement of the coefiicient of friction, temperature, and contact pressure at the end of a test run. The condition of the engaged surfaces, particularly changes in the surface of the rollers, can be measured and/ or observed.
- Terminal contact pressure, kp./mm. 102 Coeflicient of friction, after- 12 hours 0. 060 0. 062
- Composition XII yielded the test results indicated below. It differed from Composition X in containing 1.5 cadmium N-diamyldithiocarbamate instead of the corresponding lead compound.
- Anglamol 99 is merely representative of the phosphorus and sulfur bearing additive compositions, usually of undefinable chemical composition, which are now on the market, and tests performed with other proprietary products and with the well-defined sulfides of phosphorus show the synergistic cooperation with the metal-organic compounds described above.
- a lubricant composition including a base oil of mineral or synthetic origin and a lubrication-improving additive containing chemically bound phosphorus and sulfur while free from chemically bound heavy metal, said additive being a member of the group consisting of sulfides and polysulfides of phosphorus, thiophosphates, and products of the sulfurization and phosphorization of organic compounds containing at least one olefinic double bond, the improvement which comprises:
- said dithiocarbamate having the formula wherein R, and R are members of the group consisting of straight-chained alkyl, branched alkyl, and cycloalkyl, said members having 2 to 10 carbon atoms, Me is a metal of the group consisting of zinc, lead, tin, tungsten, molybdenum, niobium, lanthanum, antimony, bismuth, chromium, vanadium, and cadmium, and z is the valance of said metal and 2 or 3,
- the amount of said lubrication-improving additive being between one and six times the weight of said dithiocarbamate.
- said lubrication-improving additive being a phosphorus sulfide.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
Abstract
1. IN A LUBRICANT COMPOSITION INCLUDING A BASE OIL OF MINERAL OR SYNTHETIC ORGIN AND A LUBRICATION-IMPROVING ADDITIVE CONTAINING CHEMICALLY BOUND PHOSPHORUS AND SLFUR WHILE FREE FROM CHEMICALLY BOUND HEAVY METAL, SAID ADDITIVE BEING A MEMBER OF THE GROUP CONSISTING OF SULFIDES AND POLYSULFIDES OF PHOSPHORUS, THIOPHOSPHATES, AND PRODUCTS OF THE SULFURIZATION AND PHOSPHORIZATION OF ORGANIC COMPOUNDSS CONTAINING AT LEAST ONE OLEFINIC DOUBLE BOND THE IMPROVEMENT WHICH COMPRISES: (A) A METAL-ORGANIC DITHIOCARBAMATE IN AN AMOUNT SUFFICIENT TO ENCHANCE THE LUBRICATION-IMPROVING EFFECT OF SAID ADDITIVE, (B) SAID DITHIOCARBAMATE HAVING THE FORMULA
(R1-N(-R2)-C(=S)-S-)Z ME
WHEREIN R1 AND R2 ARE MEMBERS OF THE GROUP CONSISTING OF STRAIGHT-CHANED ALKYL, BRANCHED ALKYL, AND CYCLOALKYL, SAID MEMBERS HAVING 2 TO 10 CARBON AOMS, ME IS A METAL OF THE GROUP CONSISTING OF ZINC LEAD, TIN, TUNGSTEN, MOLYBDENUM, NIOBIUM, LANTHANUM, ANTIMONY, BISMUTH, CHROMIUM, VANADIUM, AND CADMIUM, AND Z IS THE VALENCE OF SAID METAL AND 2 OR 3 (C) THE COMBINED AMOUNT OF SAID LUBRICATION-IMPROVING ADDITIVE AND OF SAID DITHIOCARBAMATE BEING BETWEEN 0.1% AND 20% OF THE WEIGHT OF SAID BASE OIL.
(R1-N(-R2)-C(=S)-S-)Z ME
WHEREIN R1 AND R2 ARE MEMBERS OF THE GROUP CONSISTING OF STRAIGHT-CHANED ALKYL, BRANCHED ALKYL, AND CYCLOALKYL, SAID MEMBERS HAVING 2 TO 10 CARBON AOMS, ME IS A METAL OF THE GROUP CONSISTING OF ZINC LEAD, TIN, TUNGSTEN, MOLYBDENUM, NIOBIUM, LANTHANUM, ANTIMONY, BISMUTH, CHROMIUM, VANADIUM, AND CADMIUM, AND Z IS THE VALENCE OF SAID METAL AND 2 OR 3 (C) THE COMBINED AMOUNT OF SAID LUBRICATION-IMPROVING ADDITIVE AND OF SAID DITHIOCARBAMATE BEING BETWEEN 0.1% AND 20% OF THE WEIGHT OF SAID BASE OIL.
Description
United States Patent 3,840,463 SULFUR AND PHOSPHORUS BEARING LUBRICANT Rasmus Froeschmann, Irschenhausen, and Friedrich Spriigel, Munich, Germany, assignors to Optimol- Olwerke GmbH, Munich, Germany No Drawing. Filed Feb. 17, 1972, Ser. No. 227,234 Claims priority, application Germany, Feb. 24, 1971, P 21 08 780.9 Int. Cl. C10m N48 US. Cl. 252-42.7 7 Claims ABSTRACT OF THE DISCLOSURE The performance of lubricants having a mineral oil or synthetic oil base can be improved greatly by N-dialkyldithiocarbamates of zinc, lead, tin, tungsten, molybdenum, niobium, lanthanum, antimony, bismuth, chromium, vanadium, or cadmium or of dithiophosphates of these heavy metals esterified with alkyl, aryl, or alkyl-aryl groups in synergistic cooperation with additives free from heavy metals, but containing sulfur and phosphorus, such as sulfides of phosphorus and known addition agents.
This invention relates to heavy-duty lubricants, and particularly to addition agents for such lubricants and to the lubricants containing the same.
It is known to mix lubricant base oils, which may be petroleum fractions or synthetic liquids, with compounds containing sulfur and phosphous to improve the lubrication performance.
It has now been found that such base oils can be improved to an extent not available heretofore by the addition of a synergistic mixture of metal-organic compounds and compounds free from heavy metal and containing sulfur and phosphorus. The mixtures of the invention are added to natural or synthetic base oils in amounts of 0.1% to 20% of the weight of the base, the lower limit being useful for lubricants intended for relatively light duty, and the higher limit typically being reached in concentrates intended to be diluted with more base oil. For heavy duty service in automotive engines and transmissions the lubricant ready for use should contain between 1 and 12% of a mixture of the invention.
The metal-organic component in the mixtures of the invention contains zinc, lead, tin, tungsten, molybdenum, niobium, lanthanum, antimony, bismuth, chromium, vanadium, or cadmium. The organic moiety of the compound should include alkyl radicals, also sulfur and/or phosphorus. The metal-organic compounds best suited for the mixtures of the invention are N-alkyldithiocarbamates and alkyl, aryl, and alkyl-aryl dithiophosphates of the heavy metals enumerated.
The metal-organic compounds of the invention thus have the formula (S=AS ,-Me S,gO wherein A is In these formulas R R are members of the groups consisting of straight-chained, branched, and cyclic alkyl having 2 to 10 carbon atoms, and R R may be members of the same group or phenyl, o-alkylphenyl, or p-alkylphenyl, the alkyl groups of the alkylphenyls having 1-6 carbon atoms.
Me is one of the heavy metals referred to above, y is 0 or an integer up to 4, x is zero or an integer up to 6, zis2or3,andwis1or2.
"ice
z is preferably 2 when Me is molybdenum, cadmium, zinc, lead, tin, tungsten, chromium, niobium or lanthanum. z is preferably 3 when Me is antimony or bismuth.
w is preferably 1 when Me is antimony, bismuth, cadmium, zinc, lead, tin, niobium or lanthanum, and is 2 when Me is tungsten, chromium, vanadium or molybdenum.
x and y are preferably 0 when Me is tin, lead, zinc, niobium, lanthanum, cadmium, antimony or bismuth. x is preferably 2, 4 or 6, and y is 2, 4 or preferably 0 when Me is molybdenum, tungsten, vanadium or chromium.
The dithiocarbamates and dithiophosphates of heavy metals according to the above formulas are known, and many are staple articles of commerce sold, for example, by R. T. Vanderbilt Co. Inc. of New York, NY. the following compounds are representative of the metal-organic compounds in the mixtures of the invention:
Lead-N-diethyldithiocarbamate,
Lead N-diamyldithiocarbamate, Lead N-dihexyldithiocarbamate, Lead N-dicyclohexyldithiocarbamate, Lead N-diheptyldithiocarbamate, Lead N-dioctyldithiocarbamate, Lead N-dinonyldithiocarbamate, Lead N-didecyldithiocarbamate, Lead N-di-n-buty1dithiocarbamate, Lead N-diisobutyldithiocarbamate, Lead N-dicyclopentyldithiocarbamate,
and the corresponding N-dialkyldithiocarbamates of zinc, cadmium, tin, lanthanum, and niobium in which 1 is 2, w is 1, and x and y are zero; the corresponding N-dialkyldithiocarbamates of bismuth, antimony, and lanthanum, in which z is 3, w is 1, and x and y are 0; the corresponding N-dialkyldithiocarbamates of tungsten, molybdenum, vanadium, niobium, and chromium wherein z is 2, w is 2, y is 2 or 4, and x is 2 or 4, also Antimony, 0,0-diethyldithiophosphate, Antimony 0,0-dipropyldithiophosphate, Antimony 0,0-dibutyldithiophosphate, Antimony 0,0-dipentyldithiophosphate, Antimony 0,0-dicyclopentyldithiophosphate, Antimony 0,0-dihexyldithiophosphate, Antimony O,O-dicyclohexyldithiophosphate, Antimony 0,0-diheptyldithiophosphate, Antimony 0,0-dioctyldithiophosphate,
Antimony 0,0-dinonyldithiophosphate, Antimony 0,0-didecyldithiophosphate, Antimony 0,0-diphenyldithiophosphate, Antimony 0,0-di-o-methylphenyldithiophosphate, Antimony 0,0-di-p-methylphenyldithiophosphate, Antimony 0,0-di-o-ethylphenyldithiophosphate, Antimony 0,0-di-o-propylphenyldithiophosphate, Antimony 0,0-di-o-butylphenyldithiophosphate, Antimony 0,0-di-o-pentylphenyldithiophosphate, Antimony 0,0-di-o-hexylphenyldithiophosphate, Antimony 0,0-di-p-hexylphenyldithiophosphate,
the corresponding bismuth and lanthanum N-dialkyldithiophosphates in which z is 3, w is one, and x and y are 0; the corresponding 0,0-disubstituted dithiophosphates of lead, zinc, tin, and cadmium wherein z is 2, w is 1, and x and y are 0; the corresponding 0,0-substituted dithiophosphates of molybdenum, tungsten, chromium, vanadium, and niobium wherein z is 2, w is 2, x is 2, and y is 2.
The metal-organic compounds are preferably present in lubricants of the invention which are ready for use in amounts of 0.5% to 4%, and may be present in concentrates in amounts of up to 15%, all percentage figures being by weight unless otherwise stated specifically.
Suitable sulfur-phosphorus compounds free from heavy metal include the phosphorus sulfides, such as P 8 P (P 8 and P 8 and corresponding polysulfides containing additional sulfur, also thiophosphates in which phosphorus is directly bound to sulfur, and the like. Sulfur may be replaced in these compounds partly or entirely by selenium or tellurium. Preferred compounds of this type are obtained by sulfurization and/or phosphorization of organic substances containing one or more olefinic double bonds, e.g. sperm oil butadienes or terpenes. Sulfurized sperm oil esterified with dithiophosphate, sulfurized terpene esterified with dithiophosphate, and sulfurized sperm oil phosphated by reaction with phosphorus pentoxide are among the more complex compounds free from heavy metals which constitute the second component of the synergistic mixtures of this invention.
The last-mentioned compounds also are known and constitute ingredients of complex commercial mixtures, not capable of precise structural analysis, such as Anglamol 99 (Lubrizol Corp., Cleveland, Ohio), which has a nominal sulfur content of 31.5% and a phosphorus content of 1.75%.
The sulfur and phosphorus bearing components of the mixtures of the invention which are free of heavy metal may be present in the improved lubricants in the same amounts as the metal-organic compounds, and the same ranges of concentration are preferred. The individual values, however, are preferably chosen in such a manner that the sulfur-phosphorus compounds are present in amounts of two to six times the weight of the metal-organic compound.
The mixtures are combined with base oils conventional in the manufacture of lubricants. Good results are obtained with mineral oils having viscosities between 1.8 E. (Engler) and C. to 35 E. at 50 C. Synthetic oils, such as diisodecyl phthalate, trimethyl adipate, or the dioctyl ester of sebacic acid, are most favorably affected at viscosities between 1.8 E. at 20 C. to about 65 E. at 50 C.
As compared to known lubricants, the lubricant compositions of the invention substantially reduce wear of the lubricated surfaces, improve the adhesion of the interfacial lubricant film, enhance the oxidation resistance and thus the useful life of the lubricant, and reduce the coefiicient of friction and thus the operating temperature.
It is a particular advantage of this invention that the listed improvements are available over very wide ranges of viscosities as mentioned above. Thus, oils of low viscosity may be employed where lubricants of high viscosity were required heretofore, as in automotive transmissions and differential gearing. The same lubricant composition of the invention may be employed in an automotive vehicle in the transmission and differential gearing as well as in the engine. When the components are suitably matched, the lubricant compositions of the invention may be adapted to a wide variety of operating conditions and unusual applications, and only few preliminary tests are needed for arriving at the most suitable composition.
The following Examples further illustrate the invention. In these Examples, lubricant compositions of the invention and controls were tested in an apparatus commercially available under the name Lubrimeter from Sommer & Runge in Berlin, Germany. The specific testing device employed was of the improved Lohmaier design. Its basic elements are a piston pin and two small, rotating rollers frictionally engaging the pin. The wear of the pin and of the rollers under a constant load is determined. The apparatus also permits the measurement of the coefiicient of friction, temperature, and contact pressure at the end of a test run. The condition of the engaged surfaces, particularly changes in the surface of the rollers, can be measured and/ or observed.
In all tests, the velocity of relative sliding movement was 0.6 m./sec. The relative travel amounted to 51,840
m. in 24 hours. 0.4 liter oil was circulated to make the rate of oil application 45 liters per hour.
EXAMPLE 1 Composition I II III Wear loss, mg 0. 074 1. 49 0. 66 Terminal contact pressure, kp./mm." 91 27 36 Coefiicient of friction, t, after-- 5 minutes 0. 066 0. 078 0. 054
12 hours. 0. 058 0. 094 0. 052
24 hours 0. 054 0. 090 0. 053 Condition of contact are Rough Sludge formation Slight Heavy 1 Very smooth. 1 Smooth.- 3 Very heavy:
As is evident from the above data, replacing 1.5 Anglamol by the molybdenum compound reduces the weight loss by wear to approximately one twentieth although the metal-organic compound, even when used alone in an amount of 8%, only moderately reduces wear. The contact pressure figures, as determined at the end of the test runs, indicate the enlargement of the contact area by wear and confirm the wear values determined by weight loss. The condition of the frictionally engaged surfaces is far superior with the combination of the invention than with either component alone, resulting in a corresponding reduction in sludge. The coeificient of friction produced by the metal-organic compound alone is somewhat lower initially, but there is no significant difference after 24 hours.
EXAMPLE 2 Cnmpn ih'nn IV V Wear loss, mg 0. 115 O. 148 Terminal contact pressure, kp./mm. 76 67 Coefficient of friction, [4, after 5 minutes O. 076 0.095
12 hours 0. 059 0. 070
24 hours 0. 059 0. 067 Condition of contact areas Sludge formation Shght l Very smooth. 1 Fine grooves. 8 Very slight.
EXAMPLE 3 Antimony dioctyldithiophosphate was substituted for the zinc compound of Compositions IV and V in the Compositions VI and VII respectively with the following results:
Cnmpn itinn VI VII Wear loss, mg 0. 074 0. 60
Terminal contact pressure, kp./mm. 102 Coeflicient of friction, after- 12 hours 0. 060 0. 062
Sludge formation 1 Very smooth. 3 Fine grooves.
EXAMPLE 4 The following data were obtained by testing a composition VIII difiering from Composition VI by containing 8 Very heavy.
1.5 lead diamyldithiocarbamate instead of the antimony compound, all other conditions being unchanged.
When 1.5 cadmium di-(Z-ethylhexyl)-dithiophosphate was substituted for the lead compound in Composition VIII, the test results obtained with the resulting Compound IX under otherwise identical conditions were as follows:
Wear loss, mg. 0.173. Terminal contact pressure, kp./mm. 65. Coeflicient of friction, 11.:
After 5 min 0.078.
After 12 hours 0.061.
After 24 hours 0.062. Condition of contact areas Very smooth. Sludge formation Moderate.
EXAMPLE 6 Lead N-diamyldithiocarbamate in an amount of 1.5% was mixed with the base oil of viscosity SAE 90 and 6.5% was mixed with the base oil of viscosity SAE 90 and 6.5% Anglamol 99 as in the preceding Examples to produce a Composition X which was tested under the standard conditions described above. The results were as follows:
Wear loss, mg. 0.050. Terminal contact pressure, kg./mm. 112. Coeflicient of friction, a:
After5 min. 0.068.
After 12 hours 0.049.
After 24 hours 0.048. Condition of the contact areas Very smooth. Sludge formation None.
EXAMPLE 7 A Composition XI was tested as described above. It contained zinc N-diamyldithiocarbamate instead of the lead compound in Composition X.
Wear loss, mg. 0.098. Terminal contact pressure, kp./mm. 80. Coeflicient of friction, 1.:
After 5 minutes 0.070.
After 12 hours 0.053.
After 24 hours 0.053. Condition of the contact area Very smooth. Sludge formation None.
EXAMPLE 8 Composition XII yielded the test results indicated below. It differed from Composition X in containing 1.5 cadmium N-diamyldithiocarbamate instead of the corresponding lead compound.
Wear loss, mg. 0.122. Terminal contact pressure. kp./mm. 73. Coefiicient of friction, ,u:
After 5 minutes 0.075.
After 12 hours 0.064.
After 24 hours 0.063. Condition of contact areas Very smooth.
Sludge formation Very slight.
6 EXAMPLE 9 In the procedure of Example 5, 1% molybdenum di-(2- ethylhexyl)-dithiophosphate and 0.5% zinc di-(Z-ethylhexyl)-dithiophosphate were substituted for the corresponding cadmium compound, and the Composition XIII so obtained yielded the following test results under the standard conditions reported above:
Wear loss, mg. 0.065. Terminal contact pressure, kp./mm. 100. Coeflicient of friction, a:
After 5 minutes 0.060.
After 12 hours 0.051.
After 24 hours 0.050. Condition of the contact area Very smooth. Sludge formation Very slight.
The tests described in the several Examples employed the same base oil and the same sulfur and phosphorus bearing component free from heavy metal and the same weight ratio of the metal-organic compounds to the other components to permit direct comparison of the results obtained. Substantially the same relationship of the test results was found when the mineral oil base of SAE was replaced by a fraction of lower viscosity or by a synthetic lubricating oil. A combination of 1.5% metalorganic compound and 6.5 Anglamol 99 was found to produce particularly good lubricants with the mineral oil base used, but the ratio had to be varied within the limits indicated above to produce the best possible lubricant characteristics for other base oils, mineral or synthetic, and was readily determined for each particular set of conditions by a few elementary trial runs. No specific rules can be based on physical or chemical characteristics of the base oil or of the additives.
Anglamol 99 is merely representative of the phosphorus and sulfur bearing additive compositions, usually of undefinable chemical composition, which are now on the market, and tests performed with other proprietary products and with the well-defined sulfides of phosphorus show the synergistic cooperation with the metal-organic compounds described above.
While the invention has been described with particular reference to specific embodiments, it is to be understood, therefore, that it is not limited thereto, but is to be construed broadly and restricted solely by the scope of the appended claims.
What is claimed is:
1. In a lubricant composition including a base oil of mineral or synthetic origin and a lubrication-improving additive containing chemically bound phosphorus and sulfur while free from chemically bound heavy metal, said additive being a member of the group consisting of sulfides and polysulfides of phosphorus, thiophosphates, and products of the sulfurization and phosphorization of organic compounds containing at least one olefinic double bond, the improvement which comprises:
(a) a metal-organic dithiocarbamate in an amount sufficient to enhance the lubrication-improving effect of said additive,
(b) said dithiocarbamate having the formula wherein R, and R are members of the group consisting of straight-chained alkyl, branched alkyl, and cycloalkyl, said members having 2 to 10 carbon atoms, Me is a metal of the group consisting of zinc, lead, tin, tungsten, molybdenum, niobium, lanthanum, antimony, bismuth, chromium, vanadium, and cadmium, and z is the valance of said metal and 2 or 3,
(c) the combined amount of said lubrication-improving additive and of said dithiocarbamate' being between 0.1% and 20% of the weight of said base oil.
2. In a composition as set forth in claim 1, said metal being lead, zinc, or cadmium. Y
3. In a composition as set forth in claim 1, R and R being equal.
4. In a composition as set forth in claim 1, R and R being amyl.
5. In a composition as set forth in claim 1, the amount of said lubrication-improving additive being between one and six times the weight of said dithiocarbamate.
6. In a composition as set forth in claim 5, said phosphorus being directly bound to said sulfur in said lubrication-improving additive.
7. In a composition as set forth in claim 5, said lubrication-improving additive being a phosphorus sulfide.
. 8 4 References Cited UNITED STATES PATENTS HELEN M. S. SNEED, Primary Examiner U.S. c1.v X.R.
E E E E E
Claims (1)
1. IN A LUBRICANT COMPOSITION INCLUDING A BASE OIL OF MINERAL OR SYNTHETIC ORGIN AND A LUBRICATION-IMPROVING ADDITIVE CONTAINING CHEMICALLY BOUND PHOSPHORUS AND SLFUR WHILE FREE FROM CHEMICALLY BOUND HEAVY METAL, SAID ADDITIVE BEING A MEMBER OF THE GROUP CONSISTING OF SULFIDES AND POLYSULFIDES OF PHOSPHORUS, THIOPHOSPHATES, AND PRODUCTS OF THE SULFURIZATION AND PHOSPHORIZATION OF ORGANIC COMPOUNDSS CONTAINING AT LEAST ONE OLEFINIC DOUBLE BOND THE IMPROVEMENT WHICH COMPRISES: (A) A METAL-ORGANIC DITHIOCARBAMATE IN AN AMOUNT SUFFICIENT TO ENCHANCE THE LUBRICATION-IMPROVING EFFECT OF SAID ADDITIVE, (B) SAID DITHIOCARBAMATE HAVING THE FORMULA
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2108780A DE2108780C2 (en) | 1971-02-24 | 1971-02-24 | Lubricant or lubricant concentrate |
Publications (1)
Publication Number | Publication Date |
---|---|
US3840463A true US3840463A (en) | 1974-10-08 |
Family
ID=5799688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00227234A Expired - Lifetime US3840463A (en) | 1971-02-24 | 1972-02-17 | Sulfur and phosphorus bearing lubricant |
Country Status (6)
Country | Link |
---|---|
US (1) | US3840463A (en) |
DE (1) | DE2108780C2 (en) |
FR (1) | FR2126405B1 (en) |
GB (1) | GB1373588A (en) |
IT (1) | IT947840B (en) |
NL (1) | NL172758C (en) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3925213A (en) * | 1971-02-24 | 1975-12-09 | Optimol Oelwerke Gmbh | Sulfur and phosphorus bearing lubricant |
US4025458A (en) * | 1975-02-18 | 1977-05-24 | Phillips Petroleum Company | Passivating metals on cracking catalysts |
US4031002A (en) * | 1975-02-18 | 1977-06-21 | Phillips Petroleum Company | Passivating metals on cracking catalysts with antimony compounds |
US4151099A (en) * | 1977-01-03 | 1979-04-24 | Basf Wyandotte Corporation | Water-based hydraulic fluid and metalworking lubricant |
US4208292A (en) * | 1979-01-29 | 1980-06-17 | Mobil Oil Corporation | Phosphomolybdate compounds and their use as lubricant additives |
US4289635A (en) * | 1980-02-01 | 1981-09-15 | The Lubrizol Corporation | Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines |
US4290902A (en) * | 1979-12-03 | 1981-09-22 | Texaco Inc. | Oxymolybdenum dialkyldithiophosphates and lubricants containing same |
US4421658A (en) * | 1980-12-18 | 1983-12-20 | Michael Ebert | Halocarbon-soluble molybdenum composition |
JPS5975995A (en) * | 1982-10-25 | 1984-04-28 | Showa Shell Sekiyu Kk | Lubricating composition excellent in resistance to wear and extreme pressure and friction properties |
US4456538A (en) * | 1980-02-01 | 1984-06-26 | The Lubrizol Corporation | Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines |
US4529526A (en) * | 1982-11-30 | 1985-07-16 | Honda Motor Co., Ltd. | Lubricating oil composition |
US4559152A (en) * | 1980-09-18 | 1985-12-17 | Texaco Inc. | Friction-reducing molybdenum salts and process for making same |
US4786423A (en) * | 1986-03-26 | 1988-11-22 | Ici Americas Inc. | Lubricant composition containing two heavy metal containing compounds and a phosphorus compound and process of preparing the same |
US4840740A (en) * | 1986-01-16 | 1989-06-20 | Ntn Toyo Bearing Co., Ltd. | Grease for homokinetic joint |
US4842753A (en) * | 1987-05-07 | 1989-06-27 | Shin-Etsu Chemical Co., Ltd. | Silicone grease composition |
US4919830A (en) * | 1988-12-30 | 1990-04-24 | Mobil Oil Corporation | Dithiocarbamate-derived phosphates as antioxidant/antiwear multifunctional additives |
US4978464A (en) * | 1989-09-07 | 1990-12-18 | Exxon Research And Engineering Company | Multi-function additive for lubricating oils |
US4990271A (en) * | 1989-09-07 | 1991-02-05 | Exxon Research And Engineering Company | Antiwear, antioxidant and friction reducing additive for lubricating oils |
US4992186A (en) * | 1989-09-07 | 1991-02-12 | Exxon Research And Engineering Company | Enhancing antiwear and friction reducing capability of certain molybdenum (V) sulfide compounds |
US5019283A (en) * | 1989-09-07 | 1991-05-28 | Exxon Research And Engineering Company | Enhancing antiwear and friction reducing capability of certain xanthate containing molybdenum sulfide compounds |
US5055211A (en) * | 1989-09-07 | 1991-10-08 | Exxon Research And Engineering Company | Lubricating oil containing a mixed ligand metal complex and a metal thiophosphate |
US5207936A (en) * | 1991-04-01 | 1993-05-04 | Ntn Corporation | Grease composition for constant velocity joint |
WO1994028095A1 (en) * | 1993-05-27 | 1994-12-08 | Exxon Research & Engineering Company | Lubricating oil composition |
WO1995015368A1 (en) * | 1993-11-30 | 1995-06-08 | Exxon Research & Engineering Company | Lubrication oil composition |
US5445749A (en) * | 1993-02-01 | 1995-08-29 | The Lubrizol Corporation | Thiocarbamates for metal/ceramic lubrication |
WO1995027022A1 (en) * | 1994-03-31 | 1995-10-12 | Exxon Research & Engineering Company | Lubrication oil composition |
US5494608A (en) * | 1993-08-13 | 1996-02-27 | Asahi Denka Kogyo K.K. | Powdery molybdenum oxysulfide dithiocarbamate composition, a process for producing same, and a grease composition containing the composition |
US5516439A (en) * | 1994-07-15 | 1996-05-14 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5520709A (en) * | 1992-12-18 | 1996-05-28 | Mobil Oil Corporation | Hydrocarbyl ethers of sulfur-containing hydroxyl derived aromatics as synthetic lubricant base stocks |
WO1996037583A1 (en) * | 1995-05-24 | 1996-11-28 | Exxon Research & Engineering Company | Lubricating oil composition |
US5585336A (en) * | 1994-10-05 | 1996-12-17 | Showa Shell Sekiyu K.K. | Grease composition for tripod type constant velocity joint |
US5604187A (en) * | 1996-03-22 | 1997-02-18 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5607906A (en) * | 1995-11-13 | 1997-03-04 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5612298A (en) * | 1995-10-11 | 1997-03-18 | Hyundai Motor Company | Grease for constant velocity joints |
US5612297A (en) * | 1993-08-13 | 1997-03-18 | Asahi Denka Kogyo K.K. | Powdery molybdenum oxysulfide dithiocarbamate composition, a process for producing same, and a grease composition containing the composition |
US5627146A (en) * | 1994-12-27 | 1997-05-06 | Asahi Denka Kogyo K.K. | Lubricating oil composition |
US5672572A (en) * | 1993-05-27 | 1997-09-30 | Arai; Katsuya | Lubricating oil composition |
US5672571A (en) * | 1994-10-21 | 1997-09-30 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5824627A (en) * | 1996-12-13 | 1998-10-20 | Exxon Research And Engineering Company | Heterometallic lube oil additives |
US5880073A (en) * | 1995-05-24 | 1999-03-09 | Tonen Corporation | Lubricating oil composition |
US5939364A (en) * | 1997-12-12 | 1999-08-17 | Exxon Research & Engineering Co. | Lubricating oil containing additive comprising reaction product of molybdenum dithiocarbamate and dihydrocarbyl dithiophosphoric acid |
US5952273A (en) * | 1997-03-31 | 1999-09-14 | Kyodo Yushi Co., Ltd, | Grease composition for constant velocity joints |
US6037314A (en) * | 1996-06-07 | 2000-03-14 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US6153564A (en) * | 1998-06-17 | 2000-11-28 | Infineum Usa L.P. | Lubricating oil compositions |
US6211123B1 (en) * | 1998-06-17 | 2001-04-03 | Infineum Usa L.P. | Lubricating oil compositions |
EP1123967A1 (en) * | 2000-02-08 | 2001-08-16 | Mobil Oil Francaise | Water-soluble aluminium and aluminium alloys hot rolling composition |
US6319880B1 (en) | 1999-06-29 | 2001-11-20 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joint |
US6355602B1 (en) | 1999-06-29 | 2002-03-12 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joint |
US6358894B1 (en) | 1996-12-13 | 2002-03-19 | Infineum Usa L.P. | Molybdenum-antioxidant lube oil compositions |
US6379581B1 (en) | 1991-08-05 | 2002-04-30 | Asahi Denka Kogyo, K.K. | Lubricated refrigerant composition containing fluorocarbon-type refrigerant, synthetic oil and molybdenumoxysulfide derivatives |
WO2017030785A1 (en) | 2015-08-14 | 2017-02-23 | Vanderbilt Chemicals, Llc | Additive for lubricant compositions comprising an organomolybdenum compound, and a derivatized triazole |
CN115302134A (en) * | 2022-03-17 | 2022-11-08 | 山东迈拓凯尔新材料科技有限公司 | Surface protection composition for aluminum foil for welding |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51111805A (en) * | 1975-03-27 | 1976-10-02 | Showa Shell Sekiyu Kk | Lubricant compositions |
US4360438A (en) * | 1980-06-06 | 1982-11-23 | R. T. Vanderbilt Company, Inc. | Organomolybdenum based additives and lubricating compositions containing same |
DE3701780A1 (en) * | 1987-01-22 | 1988-12-01 | Grill Max Gmbh | LUBRICABLE HYDRAULIC LIQUID, ESPECIALLY BRAKE LIQUID, METHOD FOR THEIR PRODUCTION AND THEIR USE |
US4832867A (en) * | 1987-10-22 | 1989-05-23 | Idemitsu Kosan Co., Ltd. | Lubricating oil composition |
CA2093029C (en) * | 1992-04-14 | 2003-07-29 | Jon C. Root | Lubricants, particularly lubricating grease compositions for constant velocity universal joints |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2734865A (en) * | 1956-02-14 | Stabilized lubricating compositions | ||
DE923984C (en) * | 1950-09-03 | 1955-02-24 | Basf Ag | Lubricating oils |
DE941678C (en) * | 1951-05-03 | 1956-04-19 | Basf Ag | Lubricating oils |
US2831810A (en) * | 1951-06-23 | 1958-04-22 | Union Oil Co | Detergent lubricating composition |
US2734864A (en) * | 1952-05-31 | 1956-02-14 | Stabilized lubricating compositions | |
US2758087A (en) * | 1953-05-14 | 1956-08-07 | Socony Mobil Oil Co Inc | Noncorrosive lubricating oil composition |
FR1310171A (en) * | 1960-12-20 | 1963-03-06 | ||
US3151075A (en) * | 1961-03-03 | 1964-09-29 | Lubrizol Corp | Oxidation-resistant lubricating composition |
NL290649A (en) * | 1963-03-26 | |||
GB1081311A (en) * | 1964-08-03 | 1967-08-31 | Lubrizol Corp | Metal salts of organic phosphorus acid mixtures |
GB1052380A (en) * | 1964-09-08 | |||
US3462367A (en) * | 1966-10-31 | 1969-08-19 | Shell Oil Co | Lubricating oils containing an antioxidant mixture of zinc and antimony dialkyl dithiocarbamates |
DE1954452C3 (en) * | 1969-10-29 | 1978-09-28 | Optimol-Oelwerke Gmbh, 8000 Muenchen | lubricant |
-
1971
- 1971-02-24 DE DE2108780A patent/DE2108780C2/en not_active Expired
-
1972
- 1972-02-17 US US00227234A patent/US3840463A/en not_active Expired - Lifetime
- 1972-02-21 GB GB783772A patent/GB1373588A/en not_active Expired
- 1972-02-23 IT IT20951/72A patent/IT947840B/en active
- 1972-02-24 NL NLAANVRAGE7202417,A patent/NL172758C/en not_active IP Right Cessation
- 1972-02-24 FR FR7206336A patent/FR2126405B1/fr not_active Expired
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3925213A (en) * | 1971-02-24 | 1975-12-09 | Optimol Oelwerke Gmbh | Sulfur and phosphorus bearing lubricant |
US4025458A (en) * | 1975-02-18 | 1977-05-24 | Phillips Petroleum Company | Passivating metals on cracking catalysts |
US4031002A (en) * | 1975-02-18 | 1977-06-21 | Phillips Petroleum Company | Passivating metals on cracking catalysts with antimony compounds |
US4151099A (en) * | 1977-01-03 | 1979-04-24 | Basf Wyandotte Corporation | Water-based hydraulic fluid and metalworking lubricant |
US4208292A (en) * | 1979-01-29 | 1980-06-17 | Mobil Oil Corporation | Phosphomolybdate compounds and their use as lubricant additives |
US4290902A (en) * | 1979-12-03 | 1981-09-22 | Texaco Inc. | Oxymolybdenum dialkyldithiophosphates and lubricants containing same |
US4289635A (en) * | 1980-02-01 | 1981-09-15 | The Lubrizol Corporation | Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines |
US4456538A (en) * | 1980-02-01 | 1984-06-26 | The Lubrizol Corporation | Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines |
US4559152A (en) * | 1980-09-18 | 1985-12-17 | Texaco Inc. | Friction-reducing molybdenum salts and process for making same |
US4421658A (en) * | 1980-12-18 | 1983-12-20 | Michael Ebert | Halocarbon-soluble molybdenum composition |
JPH0368920B2 (en) * | 1982-10-25 | 1991-10-30 | Showa Shell Sekiyu | |
JPS5975995A (en) * | 1982-10-25 | 1984-04-28 | Showa Shell Sekiyu Kk | Lubricating composition excellent in resistance to wear and extreme pressure and friction properties |
US4529526A (en) * | 1982-11-30 | 1985-07-16 | Honda Motor Co., Ltd. | Lubricating oil composition |
US4840740A (en) * | 1986-01-16 | 1989-06-20 | Ntn Toyo Bearing Co., Ltd. | Grease for homokinetic joint |
US4786423A (en) * | 1986-03-26 | 1988-11-22 | Ici Americas Inc. | Lubricant composition containing two heavy metal containing compounds and a phosphorus compound and process of preparing the same |
US4842753A (en) * | 1987-05-07 | 1989-06-27 | Shin-Etsu Chemical Co., Ltd. | Silicone grease composition |
US4919830A (en) * | 1988-12-30 | 1990-04-24 | Mobil Oil Corporation | Dithiocarbamate-derived phosphates as antioxidant/antiwear multifunctional additives |
US5019283A (en) * | 1989-09-07 | 1991-05-28 | Exxon Research And Engineering Company | Enhancing antiwear and friction reducing capability of certain xanthate containing molybdenum sulfide compounds |
US4992186A (en) * | 1989-09-07 | 1991-02-12 | Exxon Research And Engineering Company | Enhancing antiwear and friction reducing capability of certain molybdenum (V) sulfide compounds |
US4990271A (en) * | 1989-09-07 | 1991-02-05 | Exxon Research And Engineering Company | Antiwear, antioxidant and friction reducing additive for lubricating oils |
US5055211A (en) * | 1989-09-07 | 1991-10-08 | Exxon Research And Engineering Company | Lubricating oil containing a mixed ligand metal complex and a metal thiophosphate |
US4978464A (en) * | 1989-09-07 | 1990-12-18 | Exxon Research And Engineering Company | Multi-function additive for lubricating oils |
US5207936A (en) * | 1991-04-01 | 1993-05-04 | Ntn Corporation | Grease composition for constant velocity joint |
US6379581B1 (en) | 1991-08-05 | 2002-04-30 | Asahi Denka Kogyo, K.K. | Lubricated refrigerant composition containing fluorocarbon-type refrigerant, synthetic oil and molybdenumoxysulfide derivatives |
US5520709A (en) * | 1992-12-18 | 1996-05-28 | Mobil Oil Corporation | Hydrocarbyl ethers of sulfur-containing hydroxyl derived aromatics as synthetic lubricant base stocks |
US5445749A (en) * | 1993-02-01 | 1995-08-29 | The Lubrizol Corporation | Thiocarbamates for metal/ceramic lubrication |
WO1994028095A1 (en) * | 1993-05-27 | 1994-12-08 | Exxon Research & Engineering Company | Lubricating oil composition |
US5672572A (en) * | 1993-05-27 | 1997-09-30 | Arai; Katsuya | Lubricating oil composition |
US5494608A (en) * | 1993-08-13 | 1996-02-27 | Asahi Denka Kogyo K.K. | Powdery molybdenum oxysulfide dithiocarbamate composition, a process for producing same, and a grease composition containing the composition |
US5612297A (en) * | 1993-08-13 | 1997-03-18 | Asahi Denka Kogyo K.K. | Powdery molybdenum oxysulfide dithiocarbamate composition, a process for producing same, and a grease composition containing the composition |
WO1995015368A1 (en) * | 1993-11-30 | 1995-06-08 | Exxon Research & Engineering Company | Lubrication oil composition |
WO1995027022A1 (en) * | 1994-03-31 | 1995-10-12 | Exxon Research & Engineering Company | Lubrication oil composition |
US5516439A (en) * | 1994-07-15 | 1996-05-14 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5585336A (en) * | 1994-10-05 | 1996-12-17 | Showa Shell Sekiyu K.K. | Grease composition for tripod type constant velocity joint |
US5672571A (en) * | 1994-10-21 | 1997-09-30 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5627146A (en) * | 1994-12-27 | 1997-05-06 | Asahi Denka Kogyo K.K. | Lubricating oil composition |
US5880073A (en) * | 1995-05-24 | 1999-03-09 | Tonen Corporation | Lubricating oil composition |
WO1996037583A1 (en) * | 1995-05-24 | 1996-11-28 | Exxon Research & Engineering Company | Lubricating oil composition |
US5612298A (en) * | 1995-10-11 | 1997-03-18 | Hyundai Motor Company | Grease for constant velocity joints |
US5607906A (en) * | 1995-11-13 | 1997-03-04 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5604187A (en) * | 1996-03-22 | 1997-02-18 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US6037314A (en) * | 1996-06-07 | 2000-03-14 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joints |
US5824627A (en) * | 1996-12-13 | 1998-10-20 | Exxon Research And Engineering Company | Heterometallic lube oil additives |
US6358894B1 (en) | 1996-12-13 | 2002-03-19 | Infineum Usa L.P. | Molybdenum-antioxidant lube oil compositions |
US5952273A (en) * | 1997-03-31 | 1999-09-14 | Kyodo Yushi Co., Ltd, | Grease composition for constant velocity joints |
US5939364A (en) * | 1997-12-12 | 1999-08-17 | Exxon Research & Engineering Co. | Lubricating oil containing additive comprising reaction product of molybdenum dithiocarbamate and dihydrocarbyl dithiophosphoric acid |
US6211123B1 (en) * | 1998-06-17 | 2001-04-03 | Infineum Usa L.P. | Lubricating oil compositions |
US6153564A (en) * | 1998-06-17 | 2000-11-28 | Infineum Usa L.P. | Lubricating oil compositions |
US6319880B1 (en) | 1999-06-29 | 2001-11-20 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joint |
US6355602B1 (en) | 1999-06-29 | 2002-03-12 | Kyodo Yushi Co., Ltd. | Grease composition for constant velocity joint |
EP1123967A1 (en) * | 2000-02-08 | 2001-08-16 | Mobil Oil Francaise | Water-soluble aluminium and aluminium alloys hot rolling composition |
WO2017030785A1 (en) | 2015-08-14 | 2017-02-23 | Vanderbilt Chemicals, Llc | Additive for lubricant compositions comprising an organomolybdenum compound, and a derivatized triazole |
CN115302134A (en) * | 2022-03-17 | 2022-11-08 | 山东迈拓凯尔新材料科技有限公司 | Surface protection composition for aluminum foil for welding |
Also Published As
Publication number | Publication date |
---|---|
DE2108780A1 (en) | 1972-10-26 |
IT947840B (en) | 1973-05-30 |
DE2108780C2 (en) | 1985-10-17 |
FR2126405B1 (en) | 1974-12-13 |
NL172758B (en) | 1983-05-16 |
NL7202417A (en) | 1972-08-28 |
NL172758C (en) | 1983-10-17 |
GB1373588A (en) | 1974-11-13 |
FR2126405A1 (en) | 1972-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3840463A (en) | Sulfur and phosphorus bearing lubricant | |
US3925213A (en) | Sulfur and phosphorus bearing lubricant | |
US3290245A (en) | Lubricating compositions containing amine tungstates | |
Mitchell | Oil-soluble Mo-S compounds as lubricant additives | |
US2364283A (en) | Modified lubricating oil | |
US4648985A (en) | Extreme pressure additives for lubricants | |
JP2935891B2 (en) | Molybdenum sulfur antiwear and antioxidant lubricant additive | |
US3396109A (en) | Lubricants containing reaction product of a metal phosphinodithioate with an amine | |
EP0417972A1 (en) | Lubricating oil composition | |
EP0308417B1 (en) | Drive train fluids comprising oil-soluble transition metal compounds | |
US4557839A (en) | Synergistic lubricant additives of antimony thioantimonate and molybdenum disulfide or graphite | |
US3351647A (en) | Nitrogen, phosphorus and metal containing composition | |
US3267033A (en) | Lubricating composition having desirable frictional characteristics | |
JPS62207397A (en) | Extreme-pressure grease composition | |
US2690999A (en) | Silver protective agents for sulfurcontaining lubricants | |
EP0131084B1 (en) | Lubricating compositions and process using complex metal chalcogenides | |
US3513094A (en) | Lubricant compositions | |
US2696473A (en) | Halogen containing extreme pressure lubricant stabilized with a polyalkylene polyamine | |
US2351657A (en) | Lubricant | |
US5763370A (en) | Friction-reducing and antiwear/EP additives for lubricants | |
US2645613A (en) | Lubricating composition | |
EP0677571A1 (en) | Final-drive lubricating oil composition | |
EP0291511B1 (en) | Lubricant additive mixture of antimony thioantimonate and antimony trioxide | |
CA2179814A1 (en) | Additives for lubricants | |
US2592497A (en) | Extreme pressure lubricant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OPTITEC AMERICA CORPORATION, SANFORD, NC A NY CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:OPTIMOL-OLWERKE GMBH, A CORP. OF GERMANY;REEL/FRAME:003928/0064 Effective date: 19810305 |
|
AS | Assignment |
Owner name: OPTIMOL OLWERKE INDUSTRIE GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:OPTIMOL-OELWERKE GMBH (A GERMAN CORP.);REEL/FRAME:007054/0190 Effective date: 19920401 |