US3831662A - Casting mold with constricting device - Google Patents

Casting mold with constricting device Download PDF

Info

Publication number
US3831662A
US3831662A US00317522A US31752272A US3831662A US 3831662 A US3831662 A US 3831662A US 00317522 A US00317522 A US 00317522A US 31752272 A US31752272 A US 31752272A US 3831662 A US3831662 A US 3831662A
Authority
US
United States
Prior art keywords
casting
riser
cavity
metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
US00317522A
Inventor
J Nieman
R Worman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Tractor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Tractor Co filed Critical Caterpillar Tractor Co
Priority to US00317522A priority Critical patent/US3831662A/en
Priority to GB5829173A priority patent/GB1457436A/en
Priority to GB2811776A priority patent/GB1457437A/en
Priority to DE2363940A priority patent/DE2363940A1/en
Priority to FR7346013A priority patent/FR2211304B1/fr
Priority to ES421688A priority patent/ES421688A1/en
Priority to JP49004440A priority patent/JPS4996923A/ja
Application granted granted Critical
Publication of US3831662A publication Critical patent/US3831662A/en
Priority to US06/194,535 priority patent/USRE31972E/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/084Breaker cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D31/00Cutting-off surplus material, e.g. gates; Cleaning and working on castings

Definitions

  • ABSTRACT A stricture is formed between riser and cast article in a conventional metal mold casting process to facilitate clean removal of the riser after casting by interposing thin-walled frangible constriction means between riser cavity and casting cavity prior to pouring molten metal; the flow of metal into casting cavity is also regulated thereby.
  • This invention relates to metal foundry techniques.
  • this invention relates to techniques employed in metal founding to obtain a formed metal casting which requires a minimum amount of grinding or machining after being removed from the mold.
  • cast metal articles are made in the foundry industry by introducing molten metal into casting molds, and allowing the metal to cool and harden. Since the molten metal shrinks on cooling. resulting in an imperfect casting if further molten metal is not introduced to till the voids in the mold created by shrinkage, the industry conventionally employs risers, or molten metal reservoirs to supply molten metal to the filled mold required during the cooling process.
  • risers are normally provided with ports of fairly large cross-sectional area.
  • risers with such large port areas has, how ever, contributed its own problems. Although the absence of a constricting throat in these risers generally permits sufficient molten metal into the mold cavity during hardening to obviate the problem of shrinkage in the casting, the presence of the large cross-sectional area constitutes a strong connection between casting and riser when the liquid metal therein has cooled and hardened.
  • the riser is, of course, integrally cast with the casted article in the mold. and the riser must subsequently be separated from the casting. Such separation is frequently effected by, for example, sawing apart the two sections in the vicinity of the port between riser and casting; the casting must then be ground off to remove excess metal, and machined to obtain a smooth finish in the separation area.
  • the separation process is further complicated by the fact that often padding metal is included in the casting at the juncture of riser and casting; this excess metal is provided as a cushion" between the casting and the separation point in order to aid in preventing rupture of the casting itself when it is forcibly separated from the riser.
  • This padding metal must also be removed by grinding prior to machining.
  • Mold II conventionally includes a cope portion 12 fitted on a drag portion 13, with the juncture of these two parts indicated by line 14.
  • Molten metal is poured into the mold through a conventional type gating system 15 which includes a pouring basin 16, a downsprue l7, and a runner 18.
  • a choke is provided at the lower end of downsprue 17 to regulate the flow of metal therethrough. Molten metal flows through downsprue l7 and runner 18 to riser cavity 22, and from riser cavity 22 into adjoining casting cavity 24 through riser port 25. Casting cavity 24 will of course conform to the desired mold pattern.
  • the mold cavity 24, as illustrated, is defined by upper surface 26 disposed along juncture line 14, lower surface 27, and cylindrically shaped side surfaceor wall 28.
  • Riser port intersects casting cavity 24 preferably at one of the casting cavity surfaces having a lesser dimension, in this instance at side surface 28 having a height H determined by the vertical spacing between upper and lower surfaces 26 and 27, respectively.
  • the cross-sectional surface area of riser port 25 is generally rectangular, as shown in FIG. 3, and advantageously has a vertical dimension corresponding with height H of mold cavity 24.
  • constricting devicd 10 comprising outer peripheral rib 48 which is tapered on the inner surface thereof to form this wall 45.
  • the radius R between projections or flanges 42 of outer peripheral rib 48 is sufficiently large to provide a smooth transition to inlet side of wall to relieve stress concentrations therebetween which could otherwise be induced by high temperatures of the molten metal.
  • Rib 48 further contributes strength and rigidity to constricting device 10, reducing likelihood of breakage thereof during handling or casting.
  • Wall 45 is further provided with aperture 46 through which molten metal flows into mold cavity 24 indicated by mold cavity surfaces 26 and 27.
  • Aperture 46 is defined by rounded peripheral edge 47 of wall 45, whereby aperture 46 is narrowest in diameter approximately midway through wall 45.
  • Constricting device 10 is composed of a non-fusible material which will withstand high temperatures incountered in metal casting, and is preferably frangible to allow it to be readily broken away from the hardened metal casting. Many common fired ceramics will serve this purpose.
  • Wall 45 creates a stricture in the metal casting between the riser portion and cast article portion thereof, enabling the riser to be readily broken away from the cast article when the metal has cooled and hardened. It is necessary that wall 45 be sufficiently thin and have sufficient thermal conductivity to transmit a sufficient amount of heat to permit the proper directional solidification of a casting, and avoid premature blockage of the channel between riser and mold cavity with hardened metal.
  • wall 45 will depend on the relative thermal conductivity of the material comprising constriction device 10; however, it is preferable that device 10 be formed of a ceramic material, and in this case a wall thickness of about one-eighth inch will suffice. In general, wall thicknesses of from about onesixteenth inch to about one-fourth inch are contemplated.
  • Aperture 46 the sole connection between riser 22 and mold cavity 24, is proportioned relative to the size of choke 20 to control the flow of metal during pouring to permit the level of the molten metal in the riser cavity 22 to rise slightly above the aperture while the casting cavity is being filled. Impurities, such as slag and dross, normally floating on the surface of the metal are thus prevented from entering casting cavity 24.
  • Outlet wall 36 comprises the forward surface of mold cavity 24 and is contoured in the desired pattern to form this surface. Rib 48, including wall 45 thereof extends beyond the mold cavity opening, defined by surfaces 26 and 27, as indicated at sections 41 of rib 48. As is best seen in FIG. 3, inlet wall 35 is larger than riser port 25; riser port 25 in this instance has a height dimension equivalent to that of mold cavity 24.
  • a recess 43 is provided in the mold to receive constricting device 10.
  • the recess 43 is so located as to allow constricting device 10 to fit as tightly as possible between mold cavity 24 and riser port 25 to avoid leakage of molten metal therebetween which would require additional grinding or machining.
  • Constricting device 10 is firmly held in mold l] by the portions of rib 48 which extend into mold 11 (FIGS. 1 and 2). Constricting device 10 may be formed by any conventional means; however, die casting is frequently advantageous as it provides a greater degree of flexibility in obtaining configurations necessary to conform to the corresponding mold pattern surface.
  • mold 11 is conventionally formed by packing molding sand in the cope portion 12 and drag portion 13 about a pattern (not shown) which conforms to the shape of the desired casting.
  • the constricting device 10 is inserted into recess 43 when the mold is opened and the pattern removed.
  • recess 43 can be formed in the mold by any desired method, it is conveniently formed therein by a core print added to the casting pattern.
  • molten metal poured into pouring basin l6 flows down downsprue 17, into runner l8 and begins filling riser cavity 22.
  • the constricted aperture 46 permits the level of metal in the riser to rise above aperture 46 to prevent slag and dross floating on the surface of the metal from entering casting cavity 24 during the filling thereof.
  • wall 45 permits the transmission of heat from the metal in the riser to the adjacent metal in the casting to insure proper directional solidification of the casting.
  • mold 11 is usually placed on a mechanical shaker to remove the mold sand from around the metal.
  • the riser will normally be broken off from the casting by inertial forces due to the relatively small size of the structure between riser and casting.
  • device 10 will be fractured and crumbled from the casting as well. This eliminates the necessity of laboriously removing the riser by hand.
  • the casting is substantially free of superflouous metal normally found at the casting surface when the riser has been removed. Thus, the casting does not require any grinding or other preliminary operations performed on it prior to ma? chining.
  • a mold assembly for casting having an upper portion and a lower portion and a casting cavity defined by said upper and lower portions in which a casting is to be formed, said upper and lower portions mating along an interface plane, said casting cavity communicating with a riser cavity in which a riser is formed for feeding molten material to the casting cavity as the casting solidifies, means for forming a stricture between the riser cavity and casting cavity and for regulating the flow of molten metal from the riser cavity into the casting cavity, said means including a constriction device having aperture means therein, said device being interposed between the casting cavity and the riser cavity at the point of communication thereof, and said device simultaneously engaging both said upper and lower portion of said mold when said portions are in mating engagement along said interface plane.
  • constriction device comprises a frangible thinwalled member defin ing an aperture therethrough and further having a thickened ribbed peripheral portion.
  • said aperture means is of a size sufficient for inhibiting the flow of molten metal from the riser cavity into the casting cavity to maintain the level of molten metal within the riser cavity above said aperture means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Abstract

A stricture is formed between riser and cast article in a conventional metal mold casting process to facilitate clean removal of the riser after casting by interposing thin-walled frangible constriction means between riser cavity and casting cavity prior to pouring molten metal; the flow of metal into casting cavity is also regulated thereby.

Description

United States Patent [191 Nieman et al.
CASTING MOLD WITH CONSTRICTING DEVICE Inventors: John R. Nieman, Pekin; Roger A.
Worman, Peoria, both of I11.
Assignee: Caterpillar Tractor Co., Peoria, 111. Filed: Dec. 22, 1972 Appl. No.: 317,522
us. (:1. 164/362 hit. or. B22 9/08 Field 6: Search 164/359, 362, 363
References Cited UNITED STATES PATENTS 10/1908 Washburn 164/359 6/l9l2 Erlandson 164/363 X 11] 3,831,662 Aug. 27, 1974 1,049,877 1/1913 Lange 164/359 x 1,657,952 l/l928 Zoda 164/363 x 2,451,505 10/1948 Myskowski et a1. 164/359 x Primary Examiner-J. Spencer Overholser Assistant Examiner-John E. Roethel Attorney, Agent, or Firm-Phillips, Moore, Weissenberger Lempio & Strabala [57] ABSTRACT A stricture is formed between riser and cast article in a conventional metal mold casting process to facilitate clean removal of the riser after casting by interposing thin-walled frangible constriction means between riser cavity and casting cavity prior to pouring molten metal; the flow of metal into casting cavity is also regulated thereby.
8 Claims, 4 Drawing lFigures 1 CASTING MOLD WITH CONSTRICTING DEVICE BACKGROUND OF THE INVENTION This invention relates to metal foundry techniques. In particular, this invention relates to techniques employed in metal founding to obtain a formed metal casting which requires a minimum amount of grinding or machining after being removed from the mold.
Typically, cast metal articles are made in the foundry industry by introducing molten metal into casting molds, and allowing the metal to cool and harden. Since the molten metal shrinks on cooling. resulting in an imperfect casting if further molten metal is not introduced to till the voids in the mold created by shrinkage, the industry conventionally employs risers, or molten metal reservoirs to supply molten metal to the filled mold required during the cooling process.
It is necessary that these risers be provided with an opening or port communicating with the mold cavity sufficiently large to prevent the formation in the riser of a constricting throat at this juncture that will act as a heat dissipator or sink. This occurrence will, of course, result in a blockage of the channel between riser and mold with cooled, hardened metal, and prevent the liquid metal in the riser from flowing into the mold cavity as required. Thus, risers are normally provided with ports of fairly large cross-sectional area.
The use of risers with such large port areas has, how ever, contributed its own problems. Although the absence of a constricting throat in these risers generally permits sufficient molten metal into the mold cavity during hardening to obviate the problem of shrinkage in the casting, the presence of the large cross-sectional area constitutes a strong connection between casting and riser when the liquid metal therein has cooled and hardened.
The riser is, of course, integrally cast with the casted article in the mold. and the riser must subsequently be separated from the casting. Such separation is frequently effected by, for example, sawing apart the two sections in the vicinity of the port between riser and casting; the casting must then be ground off to remove excess metal, and machined to obtain a smooth finish in the separation area.
The separation process is further complicated by the fact that often padding metal is included in the casting at the juncture of riser and casting; this excess metal is provided as a cushion" between the casting and the separation point in order to aid in preventing rupture of the casting itself when it is forcibly separated from the riser. This padding metal must also be removed by grinding prior to machining. These separation procedures are time-consuming and expensive, especially in terms of labor and time costs.
Another problem associated with the use of risers and the introduction of molten metal therethrough into the mold cavity is that of metal flow control between the riser and mold cavity. Although it is frequently desirable to retain the molten metal within the riser for a period of time sufficient to permit the disposition ofimpurities such as dross or slag to reduce the impurity content of the molten metal flowing into the casting cavity, constrictions required to effect this at the riser port have at times resulted in the metallic blockage problem noted above.
This problem has been partially solved by the use of metal strainers to trap larger impurities in the molten metal flow channels when casting such metals as aluminum or magnesium; these strainers cannot, however, be used when casting steel, as the very high temperatures involved would result in the fusion of these strainers.
Accordingly, it is an object of this invention to provide a means of casting metal articles by a process using at least one riser whereby the riser may be readily separated from the cast metal article after cooling.
It is a further object of this invention to provide a means of casting metal articles by a process using at least one riser whereby the flow of molten metal through the riser port into the mold cavity is controlled, thereby permitting impurities such as dross or slag to be disposed within the riser away from the riser port.
It is an additional object of this invention to provide a means of casting metal articles by a process using at least one riser whereby no blockage of the channel between riser and mold cavity occurs, and yet separation of the riser from the cast metal article after cooling may be readily effected.
It is another object of this invention to provide a means of casting metal articles by a process using at least one riser whereby the cast metal article may be readily separated from the riser after cooling, and requireminimum amounts of grinding and/or machining thereafter to remove excess metal.
It is yet another object of this invention to provide an inexpensive means, effective at high temperatures such as encountered in steel casting, whereby a metal casting comprising a riser portion and cast article portion may readily be separated into its component parts.
Further objects and uses of the invention will be apparent from the following specification and claims appended hereto.
BRIEF SUMMARY OF THE INVENTION 7 These objects are accomplished by means of this invention which broadly comprises a frangible, nonfusible constricting means placed at the juncture of the riser port and the mold cavity. The constricting means is provided with a relatively thin apertured wall which precisely conforms to at least one dimension of the mold cavity and forms a surface thereof; the wall is of sufficient thinness with respect to the thermal conductivity of the wall material to prevent loss of heat with resultant premature cooling and hardening of the molten metal at the juncture.
BRIEF DESCRIPTION OF THE DRAWINGS DETAILED DESCRIPTION OF THE INVENTION With particular reference to FIG. device of this invention is meral 10,
l, the constricting generally indicated by nushown in place in green sand casting mold II.
Mold II conventionally includes a cope portion 12 fitted on a drag portion 13, with the juncture of these two parts indicated by line 14.
Molten metal is poured into the mold through a conventional type gating system 15 which includes a pouring basin 16, a downsprue l7, and a runner 18. A choke is provided at the lower end of downsprue 17 to regulate the flow of metal therethrough. Molten metal flows through downsprue l7 and runner 18 to riser cavity 22, and from riser cavity 22 into adjoining casting cavity 24 through riser port 25. Casting cavity 24 will of course conform to the desired mold pattern.
The mold cavity 24, as illustrated, is defined by upper surface 26 disposed along juncture line 14, lower surface 27, and cylindrically shaped side surfaceor wall 28. Riser port intersects casting cavity 24 preferably at one of the casting cavity surfaces having a lesser dimension, in this instance at side surface 28 having a height H determined by the vertical spacing between upper and lower surfaces 26 and 27, respectively.
The cross-sectional surface area of riser port 25 is generally rectangular, as shown in FIG. 3, and advantageously has a vertical dimension corresponding with height H of mold cavity 24.
With particular reference to FIG. 4, constricting devicd 10 is shown comprising outer peripheral rib 48 which is tapered on the inner surface thereof to form this wall 45. The radius R between projections or flanges 42 of outer peripheral rib 48 is sufficiently large to provide a smooth transition to inlet side of wall to relieve stress concentrations therebetween which could otherwise be induced by high temperatures of the molten metal. Rib 48 further contributes strength and rigidity to constricting device 10, reducing likelihood of breakage thereof during handling or casting.
Wall 45 is further provided with aperture 46 through which molten metal flows into mold cavity 24 indicated by mold cavity surfaces 26 and 27. Aperture 46 is defined by rounded peripheral edge 47 of wall 45, whereby aperture 46 is narrowest in diameter approximately midway through wall 45.
Constricting device 10 is composed of a non-fusible material which will withstand high temperatures incountered in metal casting, and is preferably frangible to allow it to be readily broken away from the hardened metal casting. Many common fired ceramics will serve this purpose.
Wall 45 creates a stricture in the metal casting between the riser portion and cast article portion thereof, enabling the riser to be readily broken away from the cast article when the metal has cooled and hardened. It is necessary that wall 45 be sufficiently thin and have sufficient thermal conductivity to transmit a sufficient amount of heat to permit the proper directional solidification of a casting, and avoid premature blockage of the channel between riser and mold cavity with hardened metal.
The exact thickness of wall 45 will depend on the relative thermal conductivity of the material comprising constriction device 10; however, it is preferable that device 10 be formed of a ceramic material, and in this case a wall thickness of about one-eighth inch will suffice. In general, wall thicknesses of from about onesixteenth inch to about one-fourth inch are contemplated.
Aperture 46, the sole connection between riser 22 and mold cavity 24, is proportioned relative to the size of choke 20 to control the flow of metal during pouring to permit the level of the molten metal in the riser cavity 22 to rise slightly above the aperture while the casting cavity is being filled. Impurities, such as slag and dross, normally floating on the surface of the metal are thus prevented from entering casting cavity 24.
The size and contour of the surface of the casting cavity 24 adjoining riser port 25, and the crosssectional area or riser port 25, primarily determine the size and shape of constricting device 10. Outlet wall 36 comprises the forward surface of mold cavity 24 and is contoured in the desired pattern to form this surface. Rib 48, including wall 45 thereof extends beyond the mold cavity opening, defined by surfaces 26 and 27, as indicated at sections 41 of rib 48. As is best seen in FIG. 3, inlet wall 35 is larger than riser port 25; riser port 25 in this instance has a height dimension equivalent to that of mold cavity 24.
A recess 43 is provided in the mold to receive constricting device 10. Preferably, the recess 43 is so located as to allow constricting device 10 to fit as tightly as possible between mold cavity 24 and riser port 25 to avoid leakage of molten metal therebetween which would require additional grinding or machining.
Constricting device 10 is firmly held in mold l] by the portions of rib 48 which extend into mold 11 (FIGS. 1 and 2). Constricting device 10 may be formed by any conventional means; however, die casting is frequently advantageous as it provides a greater degree of flexibility in obtaining configurations necessary to conform to the corresponding mold pattern surface.
In operation, mold 11 is conventionally formed by packing molding sand in the cope portion 12 and drag portion 13 about a pattern (not shown) which conforms to the shape of the desired casting. The constricting device 10 is inserted into recess 43 when the mold is opened and the pattern removed. Although recess 43 can be formed in the mold by any desired method, it is conveniently formed therein by a core print added to the casting pattern. After the closing of the mold, molten metal poured into pouring basin l6 flows down downsprue 17, into runner l8 and begins filling riser cavity 22. The constricted aperture 46 permits the level of metal in the riser to rise above aperture 46 to prevent slag and dross floating on the surface of the metal from entering casting cavity 24 during the filling thereof. During the solidification of the molten metal, wall 45 permits the transmission of heat from the metal in the riser to the adjacent metal in the casting to insure proper directional solidification of the casting.
After complete solidification and cooling, mold 11 is usually placed on a mechanical shaker to remove the mold sand from around the metal. During this mechanical shaking operation, the riser will normally be broken off from the casting by inertial forces due to the relatively small size of the structure between riser and casting. In this process device 10 will be fractured and crumbled from the casting as well. This eliminates the necessity of laboriously removing the riser by hand. Furthermore, because of the relative closeness of the stricture to the surface of the casting, the casting is substantially free of superflouous metal normally found at the casting surface when the riser has been removed. Thus, the casting does not require any grinding or other preliminary operations performed on it prior to ma? chining.
We claim:
ll. In a mold assembly for casting having an upper portion and a lower portion and a casting cavity defined by said upper and lower portions in which a casting is to be formed, said upper and lower portions mating along an interface plane, said casting cavity communicating with a riser cavity in which a riser is formed for feeding molten material to the casting cavity as the casting solidifies, means for forming a stricture between the riser cavity and casting cavity and for regulating the flow of molten metal from the riser cavity into the casting cavity, said means including a constriction device having aperture means therein, said device being interposed between the casting cavity and the riser cavity at the point of communication thereof, and said device simultaneously engaging both said upper and lower portion of said mold when said portions are in mating engagement along said interface plane.
2. The invention of claim l wherein said constriction device comprises a frangible thinwalled member defin ing an aperture therethrough and further having a thickened ribbed peripheral portion.
3. The invention of claim 1, wherein said constricting device is comprised of ceramic material.
4. The invention of claim 2, wherein the thin wall of the constriction device is between about one-sixteenth inch and one-fourth inch thickness.
5. The invention of claim 1, wherein said aperture means is of a size sufficient for inhibiting the flow of molten metal from the riser cavity into the casting cavity to maintain the level of molten metal within the riser cavity above said aperture means.
6. The invention of claim 1, wherein the aperture means is defined by a rounded edge of the thin wall.
7. The invention of claim 2 wherein said constriction device is fabricated from high refractory insulating material.
8. The invention of claim 7 wherein said constriction device is fabricated from ceramic material.
l l l

Claims (8)

1. In a mold assembly for casting having an upper portion and a lower portion and a casting cavity defined by said upper and lower portions in which a casting is to be formed, said upper and lower portions mating along an interface plane, said casting cavity communicating with a riser cavity in which a riser is formed for feeding molten material to the casting cavity as the casting solidifies, means for forming a stricture between the riser cavity and casting cavity and for regulating the flow of molten metal from the riser cavity into the casting cavity, said means including a constriction device having aperture means therein, said device being interposed between the casting cavity and the riser cavity at the point of communication thereof, and said device simultaneously engaging both said upper and lower portion of said mold when said portions are in mating engagement along said interface plane.
2. The invention of claim 1 wherein said constriction device comprises a frangible thin-walled member defining an aperture therethrough and further having a thickened ribbed peripheral portion.
3. The invention of claim 1, wherein said constricting device is comprised of ceramic material.
4. The invention of claim 2, wherein the thin wall of the constriction device is between about one-sixteenth inch and one-fourth inch thickness.
5. The invention of claim 1, wherein said aperture means is of a size sufficient for inhibitinG the flow of molten metal from the riser cavity into the casting cavity to maintain the level of molten metal within the riser cavity above said aperture means.
6. The invention of claim 1, wherein the aperture means is defined by a rounded edge of the thin wall.
7. The invention of claim 2 wherein said constriction device is fabricated from high refractory insulating material.
8. The invention of claim 7 wherein said constriction device is fabricated from ceramic material.
US00317522A 1972-12-22 1972-12-22 Casting mold with constricting device Ceased US3831662A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00317522A US3831662A (en) 1972-12-22 1972-12-22 Casting mold with constricting device
GB5829173A GB1457436A (en) 1972-12-22 1973-12-17 Casting casting
GB2811776A GB1457437A (en) 1972-12-22 1973-12-17 Casting
DE2363940A DE2363940A1 (en) 1972-12-22 1973-12-20 PROCESS AND MOLD FOR MANUFACTURING METAL CASTING PARTS
FR7346013A FR2211304B1 (en) 1972-12-22 1973-12-21
ES421688A ES421688A1 (en) 1972-12-22 1973-12-21 Casting mold with constricting device
JP49004440A JPS4996923A (en) 1972-12-22 1973-12-22
US06/194,535 USRE31972E (en) 1972-12-22 1980-10-06 Casting mold with constricting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00317522A US3831662A (en) 1972-12-22 1972-12-22 Casting mold with constricting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US06/194,535 Reissue USRE31972E (en) 1972-12-22 1980-10-06 Casting mold with constricting device

Publications (1)

Publication Number Publication Date
US3831662A true US3831662A (en) 1974-08-27

Family

ID=23234056

Family Applications (1)

Application Number Title Priority Date Filing Date
US00317522A Ceased US3831662A (en) 1972-12-22 1972-12-22 Casting mold with constricting device

Country Status (6)

Country Link
US (1) US3831662A (en)
JP (1) JPS4996923A (en)
DE (1) DE2363940A1 (en)
ES (1) ES421688A1 (en)
FR (1) FR2211304B1 (en)
GB (2) GB1457437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979000795A1 (en) * 1978-03-20 1979-10-18 Caterpillar Tractor Co Aperture forming member for gasifiable patterns
WO1999000202A1 (en) * 1997-06-26 1999-01-07 Georg Fischer Disa A/S Method and arrangement for casting metal objects in casting cavities adapted to be filled upwardly

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2905682A1 (en) * 1979-02-14 1980-08-21 Miguel Jeanneret Rubber system for gravity casting, esp. in sand moulds - where bottom end of vertical runner has perforated choke plate reducing turbulence in molten metal
AU3387384A (en) * 1983-10-07 1985-04-18 Aikoh Co. Ltd. A method for gas cutting a hot top and a core for carrying out the method
CH676094A5 (en) * 1988-02-12 1990-12-14 Fischer Ag Georg
DE3872873T2 (en) * 1988-05-06 1993-03-04 Miguel Jeanneret FOUNDRY CUTTING SYSTEM.
DK171732B1 (en) 1996-05-01 1997-04-21 Georg Fischer Disa As Arrangement of mold inlet system with post-feeding reservoir in an inlet channel for post-mold casting as well as method for designing mold inlet system
US9364890B2 (en) * 2013-03-11 2016-06-14 Ati Properties, Inc. Enhanced techniques for centrifugal casting of molten materials
CN104772430A (en) * 2015-04-23 2015-07-15 江苏万力机械股份有限公司 Sand lined metal mold crankshaft flange tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US900970A (en) * 1906-03-15 1908-10-13 Edwin C Washburn Riser-lining for molding devices.
US1030066A (en) * 1911-10-17 1912-06-18 August Erlandson Pouring-gate for castings.
US1049877A (en) * 1912-09-06 1913-01-07 Herman H Lange Pattern for skim-gates.
US1657952A (en) * 1926-04-14 1928-01-31 Zoda Salvatore Skim gate
US2451505A (en) * 1945-05-21 1948-10-19 Edwin T Myskowski Screen for casting risers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR913425A (en) * 1942-01-21 1946-09-10 Meehanite Metal Corp Inner lining foundry mold and casting production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US900970A (en) * 1906-03-15 1908-10-13 Edwin C Washburn Riser-lining for molding devices.
US1030066A (en) * 1911-10-17 1912-06-18 August Erlandson Pouring-gate for castings.
US1049877A (en) * 1912-09-06 1913-01-07 Herman H Lange Pattern for skim-gates.
US1657952A (en) * 1926-04-14 1928-01-31 Zoda Salvatore Skim gate
US2451505A (en) * 1945-05-21 1948-10-19 Edwin T Myskowski Screen for casting risers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1979000795A1 (en) * 1978-03-20 1979-10-18 Caterpillar Tractor Co Aperture forming member for gasifiable patterns
WO1999000202A1 (en) * 1997-06-26 1999-01-07 Georg Fischer Disa A/S Method and arrangement for casting metal objects in casting cavities adapted to be filled upwardly
US6341640B1 (en) 1997-06-26 2002-01-29 Georg Fischer Disa A/S Method and arrangement for casting metal objects in casting cavities adapted to be filled upwardly

Also Published As

Publication number Publication date
JPS4996923A (en) 1974-09-13
DE2363940A1 (en) 1974-06-27
GB1457436A (en) 1976-12-01
GB1457437A (en) 1976-12-01
FR2211304A1 (en) 1974-07-19
ES421688A1 (en) 1976-09-16
FR2211304B1 (en) 1977-09-23

Similar Documents

Publication Publication Date Title
US4928746A (en) Moulds for metal casting and sleeves containing filters for use therein
US6289969B1 (en) Metal casting
US4154289A (en) Gating system
US3831662A (en) Casting mold with constricting device
WO2015055654A1 (en) Process and casting machine for casting metal parts
US3905419A (en) Device for rise casting into a mold
TW201726376A (en) Method for manufacturing a wheel and rail car wheel
US20230219129A1 (en) Hybrid casting process for structural castings
US7140415B1 (en) Method and apparatus for direct pour casting
USRE31972E (en) Casting mold with constricting device
GB1594270A (en) Casting method employing a vacuumshaped mould
US3435885A (en) Flask for making precision castings
JPH0138590B2 (en)
CN111283177A (en) Casting method and metal mold
US1752040A (en) Mold
US4188010A (en) Casting risers
US4907640A (en) Foundry gating system
US4089364A (en) Mold having integral preformed gating system
JP5748123B2 (en) Casting method of columnar ingot
US3409267A (en) Riser construction with separate upper relatively large reusable section
JP2001129653A (en) Manufacturing method of female screw and casting component
US3435886A (en) Hollow stem chill vent chaplet
US3570581A (en) Apparatus for casting rings
JP2012240052A (en) Columnar ingot casting apparatus
CN113182496A (en) Casting process design method of high-grade vermicular graphite cast iron cylinder cover