US3826693A - Atmosphere controlled annealing process - Google Patents

Atmosphere controlled annealing process Download PDF

Info

Publication number
US3826693A
US3826693A US00327537A US32753773A US3826693A US 3826693 A US3826693 A US 3826693A US 00327537 A US00327537 A US 00327537A US 32753773 A US32753773 A US 32753773A US 3826693 A US3826693 A US 3826693A
Authority
US
United States
Prior art keywords
strip
atmosphere
hydrogen
maximum
annealing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00327537A
Inventor
T Fisher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bethlehem Steel Corp
Original Assignee
Bethlehem Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bethlehem Steel Corp filed Critical Bethlehem Steel Corp
Priority to US00327537A priority Critical patent/US3826693A/en
Application granted granted Critical
Publication of US3826693A publication Critical patent/US3826693A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment

Definitions

  • the hardness of the strip after a first cold reduction is such as to require a softening treatment.
  • the two conventional treatments are known as a box anneal, where the strip is heated in a controlled atmosphere in coil form, and a process anneal. In the latter, a plurality of coils welded end to end are treated continuously in an elongated furnace.
  • the strip moves at speeds of up to about 2000 ft./min. through the furnace.
  • it To metallurgically affect the steel, it must be rapidly heated, recrystallized, and cooled in a relatively short period of time.
  • the prior art as exemplified by U.S. Pat. No. 3,099,592 to Garber, is directed to a method of cutting the time needed to effect the anneal so as to take advantage of smaller and less costly furnaces. While such a system represents an advance over existing systems, it did not recognize the significance of controlling the annealing atmospheres, nor the advantages to be gained therefrom.
  • This invention is directed to a continuous process of annealing a ferrous strip, followed by temper rolling thereof, which strip is suitable for use as a subsequently metallic coated or uncoated strip, to reveal a bright uniform surface appearance. More particularly, said invention covers a preferred sequential operation as follows:
  • Temper rolling to effect a reduction of said strip by an amount up to about 2.0%.
  • FIG. 1 is a schematic representation of a continuous anneal line and temper mill for treating a ferrous strip in accordance with the present invention.
  • insufi'icient heat remains in the slabs, they are reheated to a temperature above about 2000 F. and converted to a fiat rolled strip and coiled in a conventional manner by hot rolling to thicknesses ranging between about 0.075 to .180 inches, depending on the final application therefor.
  • the hot rolled strip is cleaned, such as by pickling, and cold rolled in one or more stages by an amount up to about At this stage the thickness of the strip ranges between about .0077 to .015 inches.
  • the hard, cold rolled ferrous strip is .fed from a decoiler 10 to a strip welder 12 where successive coils, welded end to strip end, exit therefrom to effect the continuous operation.
  • the strip surface Prior to entering the annealing cycle, the strip surface is subjected to a cleaning operation 14 where the oil is removed.
  • the strip enters a conventional furnace heating section 16 which raises the temperature of the strip to between about ll00 to 1200 F. For a line speed of about 2000 ft./min., this raise in temperature would take about 20 seconds.
  • the temperature of the strip is maintained for an additional period of time, typically about 20 seconds at the speed above, in a conventional holding section 18 to effect complete recrystallization of said strip. While it is important that the atmosphere in sections 16 and 18 be reducing to preclude the formation of oxides on the strip surface, it is the controls imposed in the subsequent sections, particularly the rapid cooling section, which result in the improvements noted previously.
  • the strip is cooled in two stages, namely, a controlled cooling and a final rapid cooling 22.
  • the first stage cools the strip to a temperature between about 700 to 1000 F., which typically takes about 20 seconds.
  • the final cooling or quenching is to room temperature with an approximate elapsed time of 20 seconds.
  • high hydrogen contents such as up to 7%
  • the atmosphere within the cooling section 20 must contain no more than about 1.5%, preferably a maximum of about 1.0% hydrogen.
  • the hydrogen must be kept to a maximum of about 0.5%.
  • the annealing atmosphere used herein is essentially a hydrogen free reducing gas composed of nitrogen, inert, or non-oxidizing and non-carburizing gases.
  • Chromium .03 Molybdenum .009 Tin .003 Iron Balance was subjected toth processing sequence below (a) Hot reduced to .080 inches. (b) Cold reduced to .0084 inches. (c) Annealed, at a line speed of about 2000 ft./min.
  • balance N (3) cooled to about 1000 F. in 20 seconds in atmosphere of 1.1% hydrogen, balance N with a dew point of 34 F.,
  • the resulting strip exhibited a uniformly bright surface.

Abstract

A METHOD OF CONTROLLING THE SURFACE APPEARANCE OF CONTINUOUS ANNEALED AND TEMPER ROLLED STEEL STRIP SUITABLE FOR USE IN THE MANUFACTURE OF METALLIC COATED STEEL STRIP, SUCH AS TIN PLATE. THE BRIGHT AND UNIFORM APPEARANCE OF THE STRIP IS ACHIEVED BY PROVIDING A PRPTECTIVE ATMOS PHERE CONTAINING A MAXIMUM OF ABOUT 1.5% HYDROGEN DURING THE CONTROLLED COOLING DOWN TO ABOUT 1000'''' 1., AND A MAXIMUM OF ABOUT 0.5% HYDROGEN DURING THE RAPID COOLING DOWN TO BELOW ABOUT 250*F.

Description

T. FISHER 3,
ATMOSPHERE CONTROLLED ANNEALING PROCESS July 30, 19m
Filed Jan. 29, 1973 'IIIIIIIIIII' 923000 QmJJOEkZOO OZEJOI United States Patent ATMOSPHERE CONTROLLED ANNEALING PROCESS Thomas W. Fisher, Bethlehem, Pa, assignor to Bethlehem Steel Corp. Filed Jan. 29, 1973, Ser. No. 327,537 Int. Cl. C21d 1/76 11.8. CI. 148- 121 4 Claims ABSTRACT OF THE DISCLOSURE BACKGROUND OF THE INVENTION This invention is directed to a process for controlling the surface appearance of a cold-reduced steel strip which is subjected to a process anneal followed by a skinpass or temper rolling. While the process anneal has long been established as a practice in the steel industry, insuflicient attention has been given to the imposition of controls on the annealing atmosphere. The present invention treats that aspect of said process, and as a result has found a means for achieving a bright and uniform surface appearance without affecting the roll surfaces of the temper mills.
In the production of cold-reduced carbon steels, the hardness of the strip after a first cold reduction is such as to require a softening treatment. The two conventional treatments are known as a box anneal, where the strip is heated in a controlled atmosphere in coil form, and a process anneal. In the latter, a plurality of coils welded end to end are treated continuously in an elongated furnace.
In order to attain high production from the latter process, the strip moves at speeds of up to about 2000 ft./min. through the furnace. To metallurgically affect the steel, it must be rapidly heated, recrystallized, and cooled in a relatively short period of time. The prior art, as exemplified by U.S. Pat. No. 3,099,592 to Garber, is directed to a method of cutting the time needed to effect the anneal so as to take advantage of smaller and less costly furnaces. While such a system represents an advance over existing systems, it did not recognize the significance of controlling the annealing atmospheres, nor the advantages to be gained therefrom.
SUMMARY OF THE INVENTION This invention is directed to a continuous process of annealing a ferrous strip, followed by temper rolling thereof, which strip is suitable for use as a subsequently metallic coated or uncoated strip, to reveal a bright uniform surface appearance. More particularly, said invention covers a preferred sequential operation as follows:
ice
e. Temper rolling to effect a reduction of said strip by an amount up to about 2.0%.
BRIEF DESCRIPTION OF DRAWING The figure is a schematic representation of a continuous anneal line and temper mill for treating a ferrous strip in accordance with the present invention.
DESCRIPTION OF PREFERRED EMBODIMENT In the practice of this invention, an improved process anneal is imposed on a cold reduced ferrous strip resulting in a bright uniform surface appearance following the temper rolling thereof. Such a process results in considerable cost savings as a result of less frequent temper mill roll changes and greater mill yields. The advantages will become more apparent hereinafter.
By way of background, and in. preparation for treatment by the invention herein, a ferrous alloy having a chemistry within the following maximum limits, by weight:
Percent Carbon 0. l 3 Manganese 0.60 Phosphorus 0.015 Sulfur 0.05 Silicon 0.010 Copper 0.06 Nickel 0.04 Chromium 0.06 Molybdenum 0.05 Other residuals 0.02 Iron Balance is melted and then cast, either by a continuous practice into cut slabs, or cast into ingots and rolled to slabs. While the above chemistry represents typical limits for capped and rimmed steels, it may be modified to yield a killed or semi-killed steel. Thus, the process is broadly applicable to all said steels.
In any case, where insufi'icient heat remains in the slabs, they are reheated to a temperature above about 2000 F. and converted to a fiat rolled strip and coiled in a conventional manner by hot rolling to thicknesses ranging between about 0.075 to .180 inches, depending on the final application therefor. To achieve a cold reduced product therefrom, the hot rolled strip is cleaned, such as by pickling, and cold rolled in one or more stages by an amount up to about At this stage the thickness of the strip ranges between about .0077 to .015 inches.
In order to facilitate cold reducing of the strip and to protect the surface against oxidation, a thin coating of oil is applied thereto. For the processing subsequent to the oil coating, reference may be made to the Figure.
The hard, cold rolled ferrous strip is .fed from a decoiler 10 to a strip welder 12 where successive coils, welded end to strip end, exit therefrom to effect the continuous operation. Prior to entering the annealing cycle, the strip surface is subjected to a cleaning operation 14 where the oil is removed. From here the strip enters a conventional furnace heating section 16 which raises the temperature of the strip to between about ll00 to 1200 F. For a line speed of about 2000 ft./min., this raise in temperature would take about 20 seconds. The temperature of the strip is maintained for an additional period of time, typically about 20 seconds at the speed above, in a conventional holding section 18 to effect complete recrystallization of said strip. While it is important that the atmosphere in sections 16 and 18 be reducing to preclude the formation of oxides on the strip surface, it is the controls imposed in the subsequent sections, particularly the rapid cooling section, which result in the improvements noted previously.
The strip is cooled in two stages, namely, a controlled cooling and a final rapid cooling 22. The first stage cools the strip to a temperature between about 700 to 1000 F., which typically takes about 20 seconds. The final cooling or quenching is to room temperature with an approximate elapsed time of 20 seconds. While high hydrogen contents, such as up to 7%, may be tolerated in the heating and holding sections 16 and 18, the atmosphere within the cooling section 20 must contain no more than about 1.5%, preferably a maximum of about 1.0% hydrogen. As for the cooling section 22, the hydrogen must be kept to a maximum of about 0.5%. Thus, the annealing atmosphere used herein is essentially a hydrogen free reducing gas composed of nitrogen, inert, or non-oxidizing and non-carburizing gases. Following said atmosphere controlled anneal, the strip is sheared 24 into coil lengths and finally subjected to a temper rolling 26 or skin pass to reduce the cross section by an amount less than about 2.0%.
In order to demonstrate the effectiveness of this procedure on a ferrous strip, a capped steel having the following chemistry, by weight:
Percent Carbon .09 Manganese .35 Phosphorus .005 Sulfur .020
Copper .02 Silicon .005
Nickel .04
Chromium .03 Molybdenum .009 Tin .003 Iron Balance was subjected toth processing sequence below (a) Hot reduced to .080 inches. (b) Cold reduced to .0084 inches. (c) Annealed, at a line speed of about 2000 ft./min.
(1) heated to 1150 F. in 20 seconds in atmosphere of 2.8% H balance N (2) held forr20 seconds in atmosphere of 3.0%
hydrogen, balance N (3) cooled to about 1000 F. in 20 seconds in atmosphere of 1.1% hydrogen, balance N with a dew point of 34 F.,
(4) cooled to temperature below 250 F. in 20 seconds in atmosphere of .5% hydrogen, balance N with a dewpoint of F., and
(d) Temper rolled /2%.
The resulting strip exhibited a uniformly bright surface.
In similarly processed ferrous strip, where the hydrogen content of the atmosphere exceeded about 3.0% during the heating, holding and cooling thereof, the temper rolled strip revealed a dull appearance. Without desiring to be bound by the theory proposed, it is believed that the air leaking into the furnace reacted directly with the strip surface to form oxides, rather than with the hydrogen. The surface oxides thus formed were immediately reduced by the hydrogen to form a surface of reduced or sponge iron. When the subsequent temper rolling operation was performed on the as-annealed strip, the sponge iron surface quickly wore the blast on the entry stand work rolls. The strip then caused the finishing stand work rolls to dull, which in turn produced a dull strip surface. As a consequence, irrespective of the theory surrounding the problem, unsuitable strip resulted causing frequent changes to be made in the temper mill rolls.
I claim:
1. In a continuous process of annealing followed by temper rolling to produce a steel strip having a bright surface appearance, the improvement comprising in combination therewith the steps of rapidly heating said strip to a temperature between about 1100 to 1200 F., holding at said temperature for a time sufficient to effect complete recrystallization, cooling said strip to a temperature between about 700 to 1000 F. in a protective atmosphere containing a maximum of about 1.5% hydrogen, rapidly cooling the strip to a temperature below about 250 F. in a protective atmosphere containing a maximum of about 0.5% hydrogen, and temper rolling to elfect a reduction in the thickness of said strip by an amount less than about 2.0%.
2. The process according to claim 1 wherein the atmosphere bathing the strip during the heating and holding steps contains a maximum of about 7.0% hydrogen.
3. The process according to claim 1 wherein the maximum hydrogen content in the atmosphere of the initial cooling step is 1.0%.
4. The process according to claim 1 wherein the balance of the atmosphere during the cooling steps is nitrogen.
References Cited UNITED STATES PATENTS l,931,134 10/1933 Kinzel 14816.7 2,085,597 6/1937 Marshall 14816.7 2,340,461 2/1944 Gage et al. 14812.1 2,656,285 10/1953 Burns et al. 14812.1 2,666,003 1/1954 Dougherty et a1. 14816.7
OTHER REFERENCES Marshall et al.: Effect of Variation in Annealing Cycle and Composition on Mechanical Properties of Continuously Annealed Tin Plate; The Annealing of Low Carbon Steel; copyright 1958; pp. -83.
WAYLAND W. STALLARD, Primary Examiner US. Cl. X.R. 148l6.7
US00327537A 1973-01-29 1973-01-29 Atmosphere controlled annealing process Expired - Lifetime US3826693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00327537A US3826693A (en) 1973-01-29 1973-01-29 Atmosphere controlled annealing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00327537A US3826693A (en) 1973-01-29 1973-01-29 Atmosphere controlled annealing process

Publications (1)

Publication Number Publication Date
US3826693A true US3826693A (en) 1974-07-30

Family

ID=23276949

Family Applications (1)

Application Number Title Priority Date Filing Date
US00327537A Expired - Lifetime US3826693A (en) 1973-01-29 1973-01-29 Atmosphere controlled annealing process

Country Status (1)

Country Link
US (1) US3826693A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069070A (en) * 1975-11-20 1978-01-17 United States Steel Corporation Method of producing low carbon tin-mill gage steel without annealing border
US4475369A (en) * 1982-08-18 1984-10-09 Sumitomo Metal Industries, Ltd. Method for producing clean cold strip
EP0213810A1 (en) * 1985-08-08 1987-03-11 Kawasaki Steel Corporation Continuous annealing and pickling method and apparatus for steel strips
US20170159151A1 (en) * 2014-07-02 2017-06-08 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069070A (en) * 1975-11-20 1978-01-17 United States Steel Corporation Method of producing low carbon tin-mill gage steel without annealing border
US4475369A (en) * 1982-08-18 1984-10-09 Sumitomo Metal Industries, Ltd. Method for producing clean cold strip
EP0213810A1 (en) * 1985-08-08 1987-03-11 Kawasaki Steel Corporation Continuous annealing and pickling method and apparatus for steel strips
US4713154A (en) * 1985-08-08 1987-12-15 Kawasaki Steel Corporation Continuous annealing and pickling method and apparatus for steel strips
US20170159151A1 (en) * 2014-07-02 2017-06-08 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet
US10570474B2 (en) * 2014-07-02 2020-02-25 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet

Similar Documents

Publication Publication Date Title
US4576656A (en) Method of producing cold rolled steel sheets for deep drawing
US3981752A (en) Method for controlling the temperature of steel during hot-rolling on a continuous hot-rolling mill
US3843422A (en) Rolling method for producing silicon steel strip
JP2003510186A (en) Carbon steel strip, in particular a method for producing a steel strip for packaging, and the steel strip thus produced
CN107201478B (en) A kind of Ultra-low carbon orientation silicon steel preparation method based on reducing twin-roll thin strip continuous casting technology
US2340461A (en) Process of producing stainless steel sheet or strip stock
US2656285A (en) Production of coated soft iron and steel sheets
US5542995A (en) Method of making steel strapping and strip and strapping and strip
US3826693A (en) Atmosphere controlled annealing process
JPH0639625B2 (en) Method for manufacturing composite structure steel strip
JPS6366366B2 (en)
US6290787B1 (en) Process for manufacturing drawable sheet by direct casting of thin strip, and sheet thus obtained
US3613425A (en) Annealing strip during cold rolling
JPS646249B2 (en)
JPH09201654A (en) Thin sheet continuous casting method
JP3175111B2 (en) Manufacturing method of tough direct patented wire rod
US3761323A (en) Method of producing high tensile strength steel strapping
US4291558A (en) Process of rolling iron-silicon strip material
JP7320512B2 (en) Method for softening high-strength Q&P steel hot-rolled coil
JPH0325487B2 (en)
US3820372A (en) Method of making flat steel files
US4294632A (en) Method for overaging of hot dip metal coated steel material
US3591427A (en) Method of processing steel sheet or strip
US2832711A (en) Method of continuously annealing steel strip
JPS5446118A (en) Preparation of steel wire rod generating small amount of scale