US3823821A - Method and apparatus for producing weight controlled groups of sliced food product - Google Patents

Method and apparatus for producing weight controlled groups of sliced food product Download PDF

Info

Publication number
US3823821A
US3823821A US00293146A US29314672A US3823821A US 3823821 A US3823821 A US 3823821A US 00293146 A US00293146 A US 00293146A US 29314672 A US29314672 A US 29314672A US 3823821 A US3823821 A US 3823821A
Authority
US
United States
Prior art keywords
slices
weight
conveyor
weighing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00293146A
Inventor
G Wallace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPX Corp
Original Assignee
Chemetron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemetron Corp filed Critical Chemetron Corp
Priority to US00293146A priority Critical patent/US3823821A/en
Application granted granted Critical
Publication of US3823821A publication Critical patent/US3823821A/en
Assigned to CHEMETRON PROCESS EQUIPMENT, INC. reassignment CHEMETRON PROCESS EQUIPMENT, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE MARCH 24, 1980. Assignors: CHEMETRON-PROCESS EQUIPMENT, INC.,
Assigned to AMCA INTERNATIONAL CORPORATION, DARTMOUTH NATIONAL BANK BLDG., HANOVER, NEW HAMPSHIRE, 03755, A CORP. reassignment AMCA INTERNATIONAL CORPORATION, DARTMOUTH NATIONAL BANK BLDG., HANOVER, NEW HAMPSHIRE, 03755, A CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHEMETRON PROCESS EQUIPMENT, INC. A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • B26D7/30Means for performing other operations combined with cutting for weighing cut product

Abstract

A method and apparatus for producing weight controlled stacks of counted slices cut from an elongated mass of food product includes means for feeding the mass longitudinally along a downward feed path into a cutting path normal thereto, a rotary knife movable around the cutting path to cut slices from the mass, means below the cutting path for accumulating a selected number of the slices into a group, means positioned below the accumulating means for weighing a group of slices and producing a signal in response to the weight thereof, means for removing the group from the weighing means after the signal is produced, means for varying the rotary speed of the knife around the cutting path according to the weight signal, and means for accepting or rejecting weighed groups in response to the weight signal.

Description

GROUPS OF SLICED FOOD PRODUCT [75] Inventor: Gary Leonard Wallace, Oak Lawn,
Ill.
[73] Assignee: Chemetron Corporation, Chicago,
Ill.
[22] Filed: Sept. 28, 1972 [21] Appl. No.: 293,146
52 us. c1. 209/74 R, 209/121 [51] Int. Cl B07b 13/08 [58] Field of Search... 209/73, 121, 74 R; 198/31 AC, 190
[56] References Cited UNITED STATES PATENTS 2,334,384 11/1943 Cohen 198/31 AC 2,664,557 12/1953 Sargrove 209/121 X 2,880,847 4/1959 Kelley 198/190 X 2,938,626 5/1960 Dahms 209/121 United States Patent 1191 1111 3,823,821 Wallace 7 July 16, 1974 [54] METHOD AND APPARATUS FOR 3,190,432 6/1965 Vanderhoof 209/121 x PRODUCING WEIGHT CONTROLLED 3,724,570 4/1973 Chenut 209/121 Primary Examiner-Allen N. Knowles 57 ABSTRACT A method and apparatus for producing weight controlled stacks of counted slices cut from an elongated mass of food product includes means for feeding the mass longitudinally along a downward feed path into a the cutting path according to the weight signal, and
means for accepting or rejecting weighed groups in response to the weight signal.
6 Claims, 18 Drawing Figures PATENTED JUL 1 61974 SHEET 01 or 1 PATENTEU L 1 6 374 SHEET 02 0F 13 PATENTED L I 1974 saw on or 13 PATENTEDJUHSIW sum as 3,823,821
Qua
PATENTEU JUL 1 6 m4 SHEET ()7 g; 13 3 823,821
Now b3 Qm Em PATENTEU JUL 1 6 I974 sum 12 or 13 The present invention is directed towards a new and improved method and apparatus for producing weight controlled stacks or groups of counted slices cut from an elongated mass or loaf of a food products such as cold cuts, sausage, cheese or the like. Food products such as process cheese, luncheon meats, bologna,-salami and the like are produced in elongated loaves, often four to six feet long, having generally uniform cross-sections of various shapes and dimensions. These products are sold at retail outlets to the consuming public in relatively small packages containing a selected number of relatively thin slices cut transversely from the loaf.
In commercial practice, each package containing a stack or other group of counted slices must have a net food product weight exceeding or at least equal to a weight printed or otherwise indicated on the package. It is desirable to produce such packages which closely meet the weightsindicated on the packages with a minimum number of underweight rejects. Also it is very important to minimize the amount of excess food'product furnished above the weights indicated on the packages. Thus, great savings can be obtained by mass producing the packages within close tolerances on an automatic weight-controlled slicing system capable of operating at high production rates.
Prior cutters and weighers are capable of maintaining production rates of only about percent of the production rate of the apparatus of the present invention.
- Accordingly, the present invention provides great economic savings in terms of an increased production rate, a reduction in the occurrence of underweight and overweight packages and a significant savings in labor cost per package.
It is therefore an object of the present invention to provide a new and improved method and apparatus for producing weight controlled stacks of counted slices cut from an elongated mass or loaf of food product.
Another object of the present invention is to provide a new and improved method and apparatus of the character described, which is capable of operating at high production rates and maintaining a low percentage of underweight rejects while at the same time minimizing the amount of excess packaged food product above the minimum package weight required.
Another object of the present invention is to provide a new and improved apparatus of the character described which is extremely fast and reliable in operation and which is automatic from the time that a loaf of food product is first introduced into thesystem until after the weight'classified stacks or other groups of counted slices leave the system for further handling.
Another objectof the present invention is to provide a new and improved slicer for continuously cutting successive slices from an elongated loaf of food product wherein the loaf is moved uninterruptedly along a feed path into a cutting path and wherein a speed adjustable rotary knife is provided for cutting successive slices from the loaf at a rotary speed controlled according to the weight of the slices. A
Another object of the present invention is to provide a slicer having a new and improved feeder for feeding 2 a loaf of food product along a feed path into the cutting path of a rotary knife.
Another object of the present invention is to provide a new and improved slicer of the character described wherein the loaf is fed through a restricted orifice located above the cutting path of the knife for compressively holding and positively aligning the loaf at a level closely adjacent to the cutting path of the knife.
Another object of the present invention is to provide a new and improved slicer of the character described wherein the orifice is tapered inwardly in the direction of the feeding of the loaf.
Another object of thepresent invention is to provide a new and improved slicer of the character described wherein the margin of the orifice is positioned to provide a shearing surface Cooperating with the knife in the cutting of successive slices from the loaf.
Another object of the present invention is to provide a new and improved slicer for cutting successive slices from elongated loaves of food product wherein the speed of a rotary knife is varied in response to a signal produced from a slice weight measuring means.
Another object of the present invention is to provide a new and improved slicer of the character described in combination with a stacker for accumulating slices cut successively from a loaf and for separating the slices into separate groups containing a selected number of slices.
Another object of the present invention is to provide a new and improved stacker of the character described wherein each successive slice cut from a loaf fails a substantially .constant distance onto -a receiver movable downwardly at a rate infinitely variable within a range to equal substantially the rate at which the loaf is fed to be sliced.
Another object of the present invention is to provide a new and improved stacker of the character described having means for rapidly releasing a group of a counted. number of accumulated slices without interruption of the succession of slices from the cutter supplied to the stacker.
Another object of the present invention is to provide a new and improved stacker of the character described which does not require interruption of the feed of the loaf during the time agroup of counted slices is released by the stacker.
Another objectof the present invention is to provide a new and improved stacker of the character described operable to rapidly deposit an accumulated stack of slices onto a weighing device.
Another object of the present invention is to provide a new and improved weighing system. capable of accurately weighing an "accumulated group of slices and producing a signal in response thereto.
Another object of the present invention is to provide a new and improved weighing system of the character described wherein the signal produced represents a deviation in the weight of a group of slices from a selected reference weight. 1
Another object of .the present invention is the provision of a new and improved control means for automatically controlling the apparatus of the present invention to divide an elongated mass of a food product into a plurality of'separate groups, each group containing a plurality of separate members, said control means including means for weighing each of the groups and for determining whether the weight of each of the groups is within a predetermined acceptable weight range.
Another object of the present invention is the provision of a new and improved control means for automatically controlling the apparatus of the present invention to divide an elongated mass of a food product into a plurality of separate groups, each group having a plurality of separate members, wherein the control means includes means for weighing each of the groups and for generating an error signal indicative of the amount by which the weight of each of the groups differs from a predetermined desired weight.
Another object of the present invention is the provision of a new and improved control means for automatically controlling the apparatus of the present invention to divide an elongated mass of a food product into a plurality of separate groups, each group having a plurality of separate slices, wherein the control means includes a slicer mechanism having means for adjusting the slicing rate in response to a signal indicative of the amount by which the weight of each of the groups dif-' fers from a predetermined desired weight.
Another object of the present invention isto provide new and improved means forv dividing an elongated mass of a food product into a plurality of separate groups, each group having a plurality of separate slices, and means for forming the plurality of separate groups, wherein the forming means includes means for receiving the slices to form the separate groups sequentially, and means for discharging each sequentially formed group from the receiving means in response to a control signal.
Another object of the present invention is the provision of new and improved means for dividing an elongated mass into a plurality of separate groups, each group having a plurality of separate members, wherein the dividing means includes a slicing mechanism for forming the separate members and means for increasing the speed of the slicing mechanism in response to the receipt of a signal indicating that the weight of one of the plurality of groups of separate members is greater than a predetermined desired weight.
Another objectof the present invention is to provide new and improved means for dividing an elongated mass into a plurality, of separate groups, each group having a pluralityof separate members, wherein the dividing means incudes a slicing mechanism for forming the separate members and means for decreasing the speed of the slicing mechanism in response to the receipt of a signal indicating that the weight of one of the plurality of separate groups of separate members is less than a predetermined desired weight.
Another object of the present invention is to provide new and improved means for dividing an elongated mass into a plurality of separate groups, each group having a plurality of separate members,,wherein the dividing means includes means for controllably discharging each of the groups of separate members along one of two discharge paths dependent upon the presence or absence of a control signal. V I
Another object of the present invention is to provide new and improved means for dividing an elongated mass into a plurality of separate groups, each group having a plurality of separate members, wherein the dividing means includes means for discharging one of the groupsofseparate members along a first of two discharge paths in response to the receipt of a control signal indicating that the weight of that one group is outside of a predetermined acceptable weight range.
Another object of the present invention is to provide new and improved means for dividing an elongated 'mass into a plurality of separate groups, each group having a plurality of separate members, wherein the dividing means includes means for discharging one of the plurality of separate groups of separate members along a second of two discharge paths after a determination that the weight of that one of the plurality of separate groups is within .a predetermined acceptable weight range.
Another object of this invention is toprovide new and'improved mechanism for transferring successive groups of sliced material from a platform.
Another object of the present invention is to provide new .and' improved mechanism of the character described comprising a platen having a plurality of fingers adapted to move upwardly through parallel slots extending inwardly from an edge of the platform and a stop member positioned above the platen to engage the uppermost of the slices-to limit upward travel of the group as the group is elevated, and means for laterally moving the platen toward and away from the platform.
Another object of the present invention is toprovide new and improved mechanism of the character described including means for lifting the platen from a lower to an'upper level .to elevate a group of slices from a platform at the beginning of a return stroke and for lowering the platen to deposit a group of slices on the upper belt runs of a belt conveyor at the end of a return stroke.
Another object of the present invention is to provide new and improved apparatus for classifying successive groups of the slices.
'Another object of the present invention is to provide new and. improved classifying apparatus of the character described comprising weighing means for producing signals responsive to the weight of successive groups, a conveyor having a receiving portion and'a discharging portion, the discharging. portion being movable between a first and a second position, means for transferring successive groups from the weighing means to the receiving portion of the conveyor, and means for moving the discharging portion of the conveyor between the first and second positions ones of the signals.
Another object of the present invention is to provide new and improved classifying apparatus of the character described wherein the conveyor has conveying and returning runs and comprises endless parallel bands entrained over parallel roll means at opposite ends of the runs of the conveyor and wherein the moving means axially shifts the roll means at one-end of the runs in response to the aforesaid selected ones of the signals.
These and other objects, features, and advantages of the present invention will be evident from the following description, with the aid of the accompanying drawings, of a preferred embodiment of the present invention.
Briefly, in a preferred embodiment of theapparatus of the present invention'there is provided an automatically controlled apparatus forproducing weight controlled stacks of a selected counted number of slices cut from an elongated mass or load of food product. The apparatus includes means for feeding the loaves in response to selectedv knife thereby to vary the thickness of the slices being cut from the loaf in response to the weight of a stack or group of slices weighed. The signal from the weighing system is also provided for initiating action of a product accept-reject mechanism which delivers the stacks in succession to a discharge conveyor. The position of delivery to the conveyor is indicative of whether or not the stack is to be accepted or rejected. A high speed transfer system is provided for removing the weighed stacks of sliced product from the scale platform of the weighing system and for transferring the stacks to the product accept-reject mechanism.
For a better understanding of the present invention reference should be had to the following detailed description taken in conjunction with the drawings in which:
FIG. 1 is a side elevational view of a new and improved apparatus for producing weight controlled groups of sliced food product and the like constructed in accordance with the features of the present invention;
FIG. 2 is a top plan view of the apparatus of FIG. 1;
FIG. 3 is an isometric diagram in schematic animated form illustrating the flow path of movement of the food product as it is moved through the various components of the complete apparatus;
FIG. 4 is an enlarged top plan view looking downwardly into the upper receiving end of a feeder for diment for the belts of the feeder;
FIG. 7 is an elevational sectional view of the feeder drive train taken substantially along line 7-7 of FIG.
FIG. 8 is a horizontal sectional view illustrating a stacker of the apparatus in accordance with the fea-' tures of the present invention; I
FIG. 9 is a front elevational view of the stacker;
FIG. 10 is a transverse sectional elevational view taken substantially along line l010 of FIG. 9;
FIGS. 11a and 11b are a side elevational view of a weighing system and transfer system of the apparatus in accordance with the present invention;
FIGS. 12a and 12b are a top plan view of the weighing and transfer systems showing a product acceptreject mechanism of the apparatus in accordance with the present invention;
FIG. 12A is a sectional view taken substantially along line l2Al2A of FIG. 11, and
FIGS. 13A, B, and C illustrate schematically an elec- I trical control system for operating and controlling the apparatus of the present invention.
DESCRIPTION OF THE APPARATUS Referring now more particularly to the drawings, in FIGS. 1, 2 and 3 is illustrated in general fashion a new and improved apparatus 20 constructed in accordance with the features of the present invention for producing weight controlled stacks .or groups containing a selected number of slices cut from an elongated mass or loaf of food product such as cheese, meats, cold cuts, sausage, etc-The system is especially well adapted for producing discrete or separate groups or stacks of a counted number of slices of food product, each group having'a measured weight equal to or exceeding aselected net weight which is printed or indicated on the package in which the stack is sold. The apparatus in-- cludes a loader 30 for receiving elongated masses or loaves 32 of food product or the like and elevating, orienting and feeding the loaves in end-to-end relation onto a downward feed path toward a feeder 34. The feeder is adapted to feed the loaves at a selected feed rate into the cutting path of a rotating knife 36 of a slicer 37. The knife is carried ona shaft 38 generally parallel to the feed path of the loaves into the slicer and is driven by a variable speed motor 40 to vary the thickness of the slices to produce stacks or groups meeting a'minimum weight measurement for a selected number of slices in a package. The knife motor and shaft aresupported from a top wall 108 of a knife housing 110, which housing in turn is pivotally supported from a main apparatus housing 164 (FIGS. 1 and 2) on a pair of pivot pin assemblies 168. The main housing 164 is supported from a floor or other structure on legs 166.
As shown in FIG. 5, the cutting path of the rotating knife 36 beneath the top wall 108 of the knife housing is in shearing relation with the margin or lower edge of a restrictive orifice defining ring 42 positioned at the lower or discharge end of the feeder 34. The feeder 34 guides the loaves through the restricted orifice opening which compresses and holds the product as the slices are cut therefrom. As the slices are cut by the knife they fall onto a stacker or stacking mechanism 44 (FIGS. 8, 9 and 10) for accumulation and separationinto groups or stacks 46, each of which contains a counted selected number of slices having a prescribed minimum weight. The stacker 44 accumulates a counted selected number of slices which are fed from the .slicer at substantially constant intervalsbetween slices and discharges or deposits the stacks onto a scale platform 220 of a weighing system .48 which includes means forrapidly weighing the stacks and determining whether or not a stack meets the minimum weight requirement.'The weighing system provides a control signal for adjusting the speed of the motor 40 and conse quently the knife speed to vary the thickness of the slices cut so that subsequent stacks will closely approach a desired optimum weight value. After weighing of the stacks has been completed the stacks are removed from the scale platform by a transfer system 50 and are classified by a product accept-reject-mechanism before deposit onto a discharge conveyor 52. In accordance with the present invention the weighing system 48, in conjunction with the accept-reject system 51 of the transfer system 50, positions the stacks 46 of slices on the final discharge conveyor 52 in a manner whereby the position of the stacks indicates whether the stack is of acceptable weight or must be rejected because it is underweight or overweight. As shown in FIG. 2, one of the stacks 46 is positioned out of line with respect to the other stacks moving along the conveyor and this out of line position is an indication to an operator at a subsequent processing or machine location that the stack is a reject and should be returned for rework.
The method and apparatus of the present invention is adapted to handle elongated masses or loaves 32 of meat and other food products such as cheese, etc., which is produced with a variety of different transverse cross sectional shapes and dimensions and the apparatus is adjustable by an operator to produce stacks of slices numbering in a wide range, for example, from two to 29 slices per'stack, and a wide range of stack weights, for example a range from approximately two to thirty ounces. Depending upon the density of the particular product being sliced, the number of slices in a stack to provide a given weight may vary somewhat and an operator may select both the number of slices in a stack and a minimum stack weight, as well as a tolerance range for overweight rejects to thereby minimize the amount of extra product supplied over the minimum required. A control console 39 with suitable indicators is provided for the operator for monitoring and selecting the number of slices and the weight minimum for the stacks. The elongated loaves of product to be sliced are of a substantially uniform cross-section throughout their length except possibly for the ends of the loaves which may be rounded in a sort of bullet shape.
The loaves 32 are normally brought at random time intervals by trucks or the like to the loader and are unloaded to lay side, by side horizontally on a table structure 54 which is positioned at a normal working or supply level. The loaves are held in readiness on the table structure and elevated one by one by an upright elevating mechanism 56 to an upper level for eventual discharge in longitudinal end-to-end relation by a lateral discharge conveyor 58. The loaves are directed laterally outwardly by the conveyor into a downwardlyv curving chute structure 60 which changes their direction of feed from generally horizontal toward a vertical feed path into the upper end of the feeder 34. If it is desired or necessary the bullet shaped ends 32a of the loaves may be chopped off or cropped in the loader by a pair of rotating knives 62 driven by motors 64. Details of the loader 30 are set forth in the copending US. Pat. application Ser. No. 293,145 filed Sept. 28, 1972 and assigned to the same assignee as the present application.
The loaves 32 are directed'by the feeder 34 into the slicer 37 along a downward feed path through the restricted orifice opening in the orifice ring 42. The feed path intersects the cutting plane of the rotating knife 36 below the top wall 108 ofthe knife housing. The feeder 34 includes a pair of cleated endless belts 66 and 68 driven at a selected speed by a reversible feederretractor motor 70. The. belts 66 and 68 are cleated on both sides and are driven by a pair of lower drive rolls 72 and 74 having cleat engaging ridges and grooves thereon 'for positively synchronizing the feed speed of the belts to produce a substantially constant rate of feed into thecutting path. The drive roll 72 is mounted 8 on a shaft 76 having a toothed gear 78 on one end, which gear is in driven engagement with a main drive gear 80 (FIG. 6). The drive gear 80 is carried on a shaft 82 coupled to the output shaft of the motor 70. The cleated belt 66 is movable along a fixed, downwardly extending belt run and the opposite belt 68 is adjustable laterally toward and away from the belt run to accommodate different cross-sectional shapes and sizes of loaves that are handled by the feedeL The drive roll 74 of the cleated belt 68 is mounted on a shaft 84 havinga gear 86 on one end thereof and this gear is in driving engagement with an idler gear 88 mounted on an idler shaft 90. The shaft 90 is linked with the shaft 82 by a pivot link 92 and, as best shown in FIG. 6, as addrive belts 66 and 68 are made, the gear 86 is moved toward and away from the gear 78 (as indicated by the arrow A) while in continuous synchronous driven engagement therewith through the main driven gear 86 and the idler gear 88. In order to insure that the idler gear 88 is continuously biased into driving engagement between the gears and 86, the shaft includes a flatted end portion 90a which is urged downwardly by a finger 92 biased downwardly by a coil spring 94 (FIG. 7)
The upper ends of the belts are supported by idler rolls 96 and 98 respectively and each belt has an inside, downward run opposite and facing the other for positive driving engagement on opposite sides of the loaves 32. As best shown in FIG. 5 the belt 66 is provided with a backing guide member 100 having a belt engaging surface formed with alternate ridges and grooves thereon providing an undulated guide path for the driving run of the belt. The belt 68 has a similar backing guide member 102 with an undulated guide surface and the ridges on one guide member are disposed opposite the grooves on the opposite guide so that a serpentine path is defined between the guides 100 and 102 by the driving runs of the belts 66 and 68. The serpentine path provided by the drive runs of the belts 66 and 68 provides for positive gripping and feeding of the loaves into the slicer 37 and a substantially constant downward feed rate is maintained with very little if any slippage. The belt backing guides 100 and 102 insure that each loaf passing through the feeder 34 is positively fed along a precise feed path into the cutting path of the knife 36 at a substantially constant selected feed rate.
In order to accommodate loaves 32 having various different cross sections and transverse dimensions, the belt 68 and backing structure 102 are supported on a support 104 movable toward and away from the run of v the slicer is in a nonnal operating position. When it is desired to clean the slicer'or change the knife 36, the
knife housing is pivoted on the pivot axles 168 to expose the underside of the wall 102 and knife 36. The support 106 for the belt 66 includes an upright guide 1 12 of generally Z-shaped transverse cross-section (FIG. 4) and the lower end of this structure is attached to the housing wall 108 by a pair of pivot pins 114 having pull rings in the end for extracting the pins so that the feeder 34 may be disconnected from the knife housing 110 for cleaning or maintenance if required. The pins 114 normally extend through aligned apertures in a pair of brackets 116 secured to the guide structure 112 and a pair of upstanding brackets 118 mounted on the top wall 108 of the knife housing.
As best shown in FIG. 5, the Z-shaped guide 112 is formed with a plurality of spaced apart, horizontal fingers 120 along one flange thereof, said fingers projecting outwardly of the face of the driving run of the belt 66 for engaging and laterally guiding a transverse side of a loaf 32 fed down the feed path into the orifice ring 42. The support 104 for the belt 68 includes a similar guide 122 of Z-shaped transverse cross-section ('FIG. 4) and this guide has a plurality of spaced apart, horizontal fingers 124 along one flange adaptedto extend into the slots and mesh between the fingers 120 of the guide 106 when the spacing interval between the belts 66 and 68 is reduced to accommodate relatively thin loaves of food product. Pairs of guide fingers 120 and 124 thus cooperate to provide a transverse guiding surface that is adjustable in width and generally transverse to paths of the driving runs 68.
The guide structure 122, endless belts 68 and backing member 102 are supported for movement toward and away from the belt 66 from a pair of parallel horizontal rods 126 disposed outwardly of opposite edges of the belts 66 and 68. The support rods extend between sleeves-128 mounted adjacent the upper end of the upright 112 and mounting apertures provided in the upper end of an upright support 130 spaced outwardly of the belt 68. The drive shafts 76 and 84 for the drive rolls 72 and 74 and the shafts for the upper idler rolls 96 and 98 of the belts 66 and 68, are mounted and supported on bearings (not shown in detail) carried on the finger flanges of the respective upright guides 112 and 122. The guide 122 is provided with a pair of support sleeves 132 similar to the sleeves 128 and in sliding enof the endless belts 66 and gagement on the support rods 126 so that the belt 68' may be adjusted in the direction of the arrows .B in FIGS. 4 and toward and away from the belt 66. The
upright support 130 is detachably connected to the top wall 108 of the knife housing 110 by means of a pair of removable pins 134 having pull rings at one end and the pins are adapted to project through aligned openings in the lower end of the upright support 130 and a pair of upstanding lugs .136 secured to the knife housing top wall 108 (FIG. 5). By removing both sets of pins 114 and 134, the entire feeder 34 can be dismounted from the knife housing 110 of the slicer 37 and if only the pins 134 are removed, the structure of the feeder can be pivoted in a counterclockwise direction (FIG. 5) about the axis pins 114 to expose the lower or discharge end of the feeder and expose the removable orifice ring 42.
Orifice rings having various different shapes and sizes of restricted orifices are insertable in an opening in the housing top wall 108 offset outwardly of the axis of the drive shaft 38 of the knife as best shown in FIG. 5. Each time that loaves of'a different cross-section are sliced, an appropriately shaped orifice ring is inserted and locked in place in the-opening in the knife housing top wall 108.
Adjustment of the position of the endless belt 68 toward or away from the belt 66 in the directions indicated by the arrows B to accommodate different types of product is set and controlled by a hand wheel 138 mounted on the end of a threaded shaft 140. The shaft, which extends through an internally threaded collar 142 provided on the upright, 130, is coupled at its inner end to the back side of the guide member 122 via a-coupling 144. Turning of the hand wheel 138 positively adjustsand holds spacing between the belts 66 and 68 providing a'serpentine path of selected width for the loaves 32 fed into the cutting path of the knife Referring to FIG. 4, the feeder 34 is provided with an elongated upright guide bar 146 spaced opposite the cooperating guide fingers 120 and 124 and adjustably positioned to move toward and away from the guide fingers as well as toward and away from the faces of the belts 66 and 68 asindicated in the dotted lines of FIG. 4. The guide bar 146 is provided with a pair of support pins 148 extending outwardly and slidably mounted in openings provided in a separate upright member150. The upright 150 in turn is slidably supported on a pair of rods 152 extending outwardly from a relatively fixed member 154. A hand wheel 156' on the outer end. of a threaded adjustment rod 158 is provided for adjusting (in the direction of the arrows C) and setting the position of the guide bar 146 (FIG. 4) relative to the opposite guide fingers 120 and 124. The inner end of the adjustment rod 158 is rotatively coupled to the guide bar and the rod extends through an internally threaded collar attached to the'member 150 to provide in and out position adjustment of the guide bar relative to the support member 150. The support 150 is slidable on the rods 152 and is movable in the direction of the arrows D. Clamping means is provided for securing the member 150 in a selected position on the rods 152 after an adjustmentis made and a. position is selected.
The elongated loaves 32 of food product are positively fed at a selected substantially constant rate along the feed path by the driving engagement of the driving runs of the cleated feed belts 66 and 68 and the product is compressed and bent in reverse direction as it'moves down the serpentine path defined by the belts and their backing members 102. Each loaf is positively gripped by the belts and fed into the path of the cutting knife 36 so that little if any slippage occurs. The loaves are retained between the feed belts by, the cooperating guide fingers 120 and 124 on one sideand the adjustable guide bar 146 on the opposite side.
In accordance with the present invention, in order to hold and precisely guide the productloaves 32 in cutting engagement with the rotating knife 36, the insertable orifice rings 42 are seated in the opening provided in the top wall 108 of the knife housing. For each different cross-sectional shape or size of loaf being slices,
' an appropriate orifice ring 42 is provided. The rings are dimensioned so that the dimension at the lower edge or margin of the orifice opening is slightly smaller than the normal uncompressed cross-section of the product loaf being sliced. The loaves, being substantially uniform in.
cross-section, are compressed inwardly towards the longitudinal axis thereof by engagement with the walls of the orifice ring 42. The loaves are also compressed in a longitudinal direction when forced through the orifice ring because the walls of the orifice opening are convergently tapered. The orifice ring and its compression effect on the loaf supports the end portion and permits a loaf to be sliced down to its end after it is no longer in engagement with the belts of the feeder.
As shown in FIG. 5, the margin or lower edge of the orifice'ring 42 is secured in shear cutting relation with the cutting path defined by the cutting edge of the rotating knife 36 so that precise and rapid slicing of the positively held food product loaves 32 is achieved. As slices from the loaf 32 are cut by the high speed rotary knife 36, the individual slices fall downwardly from the cutting path for grouping into stacks having a selected number of slices therein by the stacker 44 (FIGS. 8, 9 and 10). The slices are cut from the loaves 32 on an uninterrupted basis as the loaves are moved downwardly into the slicer 37 at a constant rate by the feeder 34 through the orifice ring 42. It is a feature of the present invention that no interruption in feeding of the loaves is required because the stacker 44 is operable to rapidly handle and separate accumulated slices into stacks having the selected number of slices therein. In addition, the stacker 44 provides for a substantially'constant distance of fall for each slice as it leaves. the cutting plane to a level whereat the slice is supported either by a preceding slice as the stack is accumulating or by a support platen. A substantially constant distance of fall from the cutting path to a support level for each slice being cut is accomplished by providing a vertically reciprocating carriagel60 movable from an upper orstarting level on a downward stroke at substantially the same speed as the loaves 32 are fed downwardly by the feeder 34 into the cutting path of the knife 36. As a stack is collected and the height or thickness of the stack increases, the downward travel of the carriage 160 compensates to provide essentially a constant support level for each successive slice falling from the cutting path. The stacker 44 of the present invention is operable at very high speeds so that production rates as high as 160 stacks per minute or greater are achieved. The stacker includes a rectangular enclosure or housing 162 mounted beneath the knife housing 110 and within the main housing or enclosure 164 of the apparatus.
The carriage 160 comprises a vertical front plate supporting a pair of horizontal shaft housings 172 which project outwardly thereof and are detachably mounted on the front plate. The housings include circular base flanges 174 removably attached to the carriage plate by large headed fasteners 176. The shaft housings-172 are aligned in horizontal parallel relation and are spaced on opposite sides of a vertical centerline through the front plate 170 aligned below the downward feed path of loaves moving through the feeder 34 and the slices cut from the loaves by the rotating knife 36. As best shown in FIG. 10, the front plate of the stacker carriage is provided with a pair of rearwardly extending lugs 178 having vertical apertures therein and slidably disposed on an upright guide rod 180 for guiding the travel 'of the carriage in repetitive cycles comprising downward and return strokes. The carriage is biased upwardly to an upper starting level by acoil spring 182 disposed on the rod and a cushion 184 is provided adjacent the upper end of the rod to aid in cushioning the carriage at the end of an upward return stroke. A pair of incremental stepping motors 186 and l87,are mounted on the back of the carriage plate 170 and the axes of the motors are in coaxial alignment with the left and right hand shaft housings 172. The stepping motors are adapted to drive and are detachably coupled to a pair of outwardly extending platen control shafts 188 with each shaft supporting three rows of outwardly extending hair pin shaped fingers 190 arranged in planes spaced at angles apart around the axes of the shafts as viewed in FIG. 9. The sets of fingers 190 in each plane on the left hand shaft 188 comprises a paddle-like platen 192 and similarly for the right shaft, platens 192R are formed. Successive pairs of horizontally aligned intermeshing platens 192L and 192R provide support for accumulating successive stacks of sliced product cut from the loaves 32 by the knife 36 in the cutting path above. As best shown in FIG. 9 the left and right shafts 188 are indexed by stepping motors in increments of 120 in opposite directions so that the pairs of platens 192L and 192R cooperate to discharge an accumulated stack downwardly toward the weighing system and the next pair of platens 192L and 192R then form a horizontal support for accumulating the next successive stack of slices 46 thereon.
As additional slices are cut and added to a stack formed on the platens, the carriage is traveling downwardly at a rate substantially the same as the rate of feed of the loaves 32 into the cuttingpath of the knife 36. Accordingly, a substantiallyconstant distance offall from the cutting path to a support level is provided by the stacker 44 for the successive slices in a stack. As the last slices in the stack are being added the carriage 160 is approaching the lowestmost position, and the stepping motors 186 and 187 are energized by controlled pulses to rotatively index the shafts 188 by 120 in opposite directions as shown in FIG. 9 to discharge or release the accumulated stack of meat slices and form the next support means with a successive set of cooperative platens 192L and 192R moving into the horizontal position ready to accumulate the slices of the succeeding stack.,lndexing of the shafts 188 by the stepping motors 186 and 187 is rapid so that the already accumulated stack of slices is released and the next set of platens 192L and 193R move into horizontal position with no interruption of the normal feed rate of the load into the slicer. Indexing of the platens occurs during the timev that the carriage 160 is moving upwardly on its return stroke by the spring 182 so that, as the first slice arrives for the next successive stack, a substantially constant dropping is maintained. As each successive slice is accumulated in a stack, the carriage 160 has moved downwardly by an increment substantially equal to the thickness of the slice.
Travel of the carriage 160' on a downward stroke while accumulating the sliced meat product is accomplished by means of a vertical, toothed rack 194 secured to the back of the carriage plate on a supporting structure 196. The rack is in meshing engagement with a pinion 19 8 mounted on a pinion shaft 200 which is coupled to the output. shaft of an electromagnetic particle clutch 202. An input shaft of the clutch 202 is coupled to a gear reducer204 which in turn is coupled to the output shaft of a continuously rotating stacker drive motor 206 through a right angle gear box 208 as best shown in FIG. 9. The stacker drive motor, thespeed of which is infinitely variable over a range to enable the rate of downward movement of the carriage 160 substantially to equal the rate at which the load being sliced is fed to the slicer, is continuously energized and running when the apparatus 20 is in opera-- tion and the clutch 202 is intermittently supplied with power for precise intervals of time to rotate the pinion

Claims (6)

1. Apparatus for classifying successive groups of sliced food product comprising weighing means for producing signals responsive to the weight of successive groups, a conveyor having a receiving portion and a discharging portion, said discharging portion being movable between a first and a second position and including one or more endless bands trained over a roll, means for transferring successive groups from said weighing means to the receiving portion of said conveyor, and means for axially shifting said Roll for moving said discharging portion of said conveyor between said first and second positions in response to selected ones of said signals.
2. The apparatus of claim 1 wherein said conveyor has conveying and returning runs and comprises endless parallel elastic bands entrained over parallel roll means at opposite ends of said runs of said conveyor.
3. The apparatus of claim 1 wherein said shifting means includes means for resiliently biasing said discharging portion toward said first position.
4. The apparatus of claim 3 wherein said shifting means includes means for moving said discharging portion of said conveyor against the force of said biasing means toward said second position.
5. The apparatus of claim 4 wherein said selected ones of said signals correspond to a weight value as measured by said weighing means of a group of slices weighing at or above a selected minimum level.
6. The apparatus of claim 1 wherein said weighing means comprises means for producing an error signal in response to a difference between a measured weight of a group of slices and a selected reference weight.
US00293146A 1972-09-28 1972-09-28 Method and apparatus for producing weight controlled groups of sliced food product Expired - Lifetime US3823821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00293146A US3823821A (en) 1972-09-28 1972-09-28 Method and apparatus for producing weight controlled groups of sliced food product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00293146A US3823821A (en) 1972-09-28 1972-09-28 Method and apparatus for producing weight controlled groups of sliced food product

Publications (1)

Publication Number Publication Date
US3823821A true US3823821A (en) 1974-07-16

Family

ID=23127842

Family Applications (1)

Application Number Title Priority Date Filing Date
US00293146A Expired - Lifetime US3823821A (en) 1972-09-28 1972-09-28 Method and apparatus for producing weight controlled groups of sliced food product

Country Status (1)

Country Link
US (1) US3823821A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978987A (en) * 1973-07-03 1976-09-07 Amf Incorporated Cutting of a stream of tobacco into measured weight portions
US4368790A (en) * 1980-12-29 1983-01-18 Danepak Limited Statistical weighing
FR2588200A1 (en) * 1985-09-11 1987-04-10 Milani Resine Spa AUTOMATIC APPARATUS FOR SELECTING AND ADJUSTING PROFILE BARS BY WEIGHT IN MACHINES PRODUCING EXTRUDED PLASTIC PROFILES
DE3617336A1 (en) * 1986-05-23 1987-11-26 Guenther Weber METHOD AND DEVICE FOR FORMING WEIGHT-CONSTANT PORTIONS OR STACKS OF SLICED FOOD PRODUCTS
US20080109112A1 (en) * 2006-11-08 2008-05-08 Stanton Jennifer L Controlled material processing device, system and method
US20080281461A1 (en) * 2004-12-30 2008-11-13 Fmc Technologies, Inc. Processing of work piece based on desired end physical criteria
US20090108024A1 (en) * 2007-10-31 2009-04-30 Stanton Jennifer L Hydraulic container evacuator and method
WO2018007833A1 (en) * 2016-07-08 2018-01-11 Kenwood Limited Food processor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334384A (en) * 1940-08-26 1943-11-16 Interstate Bakeries Corp Switching conveyer means
US2664557A (en) * 1951-06-20 1953-12-29 Sargrove Electronics Ltd Weight deviation testing device
US2880847A (en) * 1955-04-21 1959-04-07 George B Kelley Flexible conveyor
US2938626A (en) * 1953-11-06 1960-05-31 Emhart Mfg Co Automatic weighing machine
US3190432A (en) * 1963-08-29 1965-06-22 Scale Specialties Inc Conveyor switching device
US3724570A (en) * 1971-06-07 1973-04-03 G Chenut Postal meter with letter weight checking device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334384A (en) * 1940-08-26 1943-11-16 Interstate Bakeries Corp Switching conveyer means
US2664557A (en) * 1951-06-20 1953-12-29 Sargrove Electronics Ltd Weight deviation testing device
US2938626A (en) * 1953-11-06 1960-05-31 Emhart Mfg Co Automatic weighing machine
US2880847A (en) * 1955-04-21 1959-04-07 George B Kelley Flexible conveyor
US3190432A (en) * 1963-08-29 1965-06-22 Scale Specialties Inc Conveyor switching device
US3724570A (en) * 1971-06-07 1973-04-03 G Chenut Postal meter with letter weight checking device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978987A (en) * 1973-07-03 1976-09-07 Amf Incorporated Cutting of a stream of tobacco into measured weight portions
US4368790A (en) * 1980-12-29 1983-01-18 Danepak Limited Statistical weighing
FR2588200A1 (en) * 1985-09-11 1987-04-10 Milani Resine Spa AUTOMATIC APPARATUS FOR SELECTING AND ADJUSTING PROFILE BARS BY WEIGHT IN MACHINES PRODUCING EXTRUDED PLASTIC PROFILES
DE3617336A1 (en) * 1986-05-23 1987-11-26 Guenther Weber METHOD AND DEVICE FOR FORMING WEIGHT-CONSTANT PORTIONS OR STACKS OF SLICED FOOD PRODUCTS
US20080281461A1 (en) * 2004-12-30 2008-11-13 Fmc Technologies, Inc. Processing of work piece based on desired end physical criteria
US7949414B2 (en) * 2004-12-30 2011-05-24 John Bean Technologies Corporation Processing of work piece based on desired end physical criteria
US20080109111A1 (en) * 2006-11-08 2008-05-08 Stanton Jennifer L Viscous material processing control system and method
US20080109112A1 (en) * 2006-11-08 2008-05-08 Stanton Jennifer L Controlled material processing device, system and method
US7593830B2 (en) * 2006-11-08 2009-09-22 Momentive Performance Materials Controlled material processing method
US7610167B2 (en) * 2006-11-08 2009-10-27 Momentive Performance Materials Controlled material processing device, controller and method
US20090108024A1 (en) * 2007-10-31 2009-04-30 Stanton Jennifer L Hydraulic container evacuator and method
US8070021B2 (en) 2007-10-31 2011-12-06 Momentive Performance Materials Hydraulic container evacuator and method
WO2018007833A1 (en) * 2016-07-08 2018-01-11 Kenwood Limited Food processor
GB2552155B (en) * 2016-07-08 2021-08-18 Kenwood Ltd Food Processor

Similar Documents

Publication Publication Date Title
US3821913A (en) Apparatus for accumulating stacks of sliced material
US3824885A (en) Method and apparatus for producing weight controlled groups of sliced food product
US3820428A (en) Method and apparatus for producing weight controlled groups of slicedfood product
EP0726098B1 (en) Takeaway/correction conveyor system for food product machine
JP4127738B2 (en) Raw wood slicer for ham etc.
US7540221B1 (en) Exact weight cutting and destacking system for food products
SU858551A3 (en) Unit for producing lumped portions
US3848757A (en) Sorting and stacking of food slices
US5101702A (en) Slicing machine with alternate-slice stacker
EP0907472B1 (en) Slicing of products
DE2447835A1 (en) DEVICE FOR WEIGHING AND PORTIONING OF DISC-SHAPED GOODS
US3010499A (en) Automatic slicing machine for a meat product or the like
US5419677A (en) Apparatus and method for programmable interleaving and stacking of sheet-carried food products
US3823821A (en) Method and apparatus for producing weight controlled groups of sliced food product
JP2000288984A (en) Method and device for manufacturing sliced ham product
US3855889A (en) Slicer
US11027868B2 (en) Method for handling food portions with a rotation device
JPH06577B2 (en) Apparatus and method for accumulating product from a fed stream of intermittently gapped product into a continuous stream
US3857475A (en) Feeding apparatus for elongated masses of material
US3759126A (en) Transferring, cutting and depositing apparatus for bakery goods
EP2532494B1 (en) Method for cutting open products
US4143773A (en) Apparatus for assembling items
DE4215951A1 (en) Prodn. of packages of equal weight of sliced products esp. salmon - has each slice weighed, and weight fed to computer which adjusts thickness of subsequent slices to achieve required package weight
US3834515A (en) Rapid action article transfer apparatus
JPH03218418A (en) Separate/stack conveying method

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEMETRON PROCESS EQUIPMENT, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:CHEMETRON-PROCESS EQUIPMENT, INC.,;REEL/FRAME:003873/0520

Effective date: 19810227

AS Assignment

Owner name: AMCA INTERNATIONAL CORPORATION, DARTMOUTH NATIONAL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHEMETRON PROCESS EQUIPMENT, INC. A DE CORP.;REEL/FRAME:004188/0073

Effective date: 19830104