US3820598A - Apparatus for cooling liquids - Google Patents
Apparatus for cooling liquids Download PDFInfo
- Publication number
- US3820598A US3820598A US00309807A US30980772A US3820598A US 3820598 A US3820598 A US 3820598A US 00309807 A US00309807 A US 00309807A US 30980772 A US30980772 A US 30980772A US 3820598 A US3820598 A US 3820598A
- Authority
- US
- United States
- Prior art keywords
- housing
- pipe
- liquid
- pipes
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 54
- 238000001816 cooling Methods 0.000 title claims abstract description 25
- 239000002826 coolant Substances 0.000 claims abstract description 41
- 230000000712 assembly Effects 0.000 claims abstract description 4
- 238000000429 assembly Methods 0.000 claims abstract description 4
- 238000004891 communication Methods 0.000 claims description 2
- 239000000446 fuel Substances 0.000 abstract description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 238000007710 freezing Methods 0.000 description 11
- 230000008014 freezing Effects 0.000 description 10
- 230000008016 vaporization Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/048—Boiling liquids as heat transfer materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/10—Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/02—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
- G01N25/04—Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering of melting point; of freezing point; of softening point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
- G01N33/2811—Oils, i.e. hydrocarbon liquids by measuring cloud point or pour point of oils
Definitions
- ABSTRACT Apparatus for cooling liquids, particularly fuels comprises steps of passing liquid to be cooled along plurality of separate paths interconnected at starting and end points of paths. Cooling medium is countercurrently passed along a plurality of paths equal to number of liquid paths with each path of cooling medium associated with one of liquid paths. Cooling medium paths are interconnected at starting and end points.
- Devicefor cooling liquids comprises heat exchanger having housing and plurality of pipe assemblies therein.
- Each pipe assembly includes inner pipe for carrying liquid being processed and outer pipe for carrying cooling medium. Chambers in housing interconnect all of inner pipes and separately interconnect all of outer pipes.
- the present invention relates to an apparatus for i cooling liquids, particularly fuels or similar liquids, to nearly the freezing point or pour point. It is particularly useful in the aircraft industry for testing fuel equipment with fuels when they are near freezing point.
- the fuel equipment in question includes equipment used for The cooling test in the entire examination of the stated apparatus only takes a short period of time, and the test benches with individual cooling machines and a cooling medium in an individual cycle are very expensive.
- the cooling medium is only cooled to the temperature of the fuel to be cooled, the heat exchange between the cooling medium and the fuel must be very large in order to achieve in the required fuel throughput the desired cooling up to nearly the pour point.
- the customary equipment is expensive to manufacture and also has an increased floor space requirement.
- the object of the present invention is to eliminate the stated disadvantages and to provide a process and an arrangement for the cooling of liquids, particularly fuels or similar liquids, up to nearly the-freezing point or pour point, particularly for examining fuel equipment, such as devices for conducting the fuel, dosing the fuel, and the like, which has low manufacturing costs and quick cooling of the fuel even with large throughput quantities.
- the cooling of the liquid occur directly by the vaporization of a cooling medium supplied to a pipe heat exchanger.
- the vaporization temperature of the cooling medium is below the freezing point or pour point of the liquid to be cooled, and the supply of the coolant and the flow-through speed of the liquid to be cooled are selected in such a manner that the liquid emerges from the heat exchanger at a temperature near its freezing point.
- the coolant is liquid nitrogen
- the liquid is conducted with a spin through the pipes of the heat exchanger in order to avoid a sticking or freezing of the liquid on the walls of the pipes through which it is conveyed.
- the device for the use of the process consists of a pipe heat exchanger having a pipe assembly characterized in that each assembly has a double wall and the liquid flows through the inner opening of the assembly while the vaporizing coolant is introduced from the bottom upwardly in the space between the inner and outer pipes of the assembly.
- each double-walled assembly consist of two telescoping concentric pipes.
- Each inner pipe is tightly connected at each end between a pair of intermediate plates in the housing of the heat exchanger while each outer pipe is tightly connected to another intermediate plate.
- An inlet feed pipe for the liquid coolant is arranged between the lowermost and adjacent intermediate plates.
- An outlet feed pipe for the vaporized coolant is arranged in the housing of the heat exchanger between the uppermost and adjacent intermediate plate.
- the housing of the heat exchanger is provided with a bellows for equalizing the variable thermal expansions between the inner pipes and the housing.
- FIG. 1 shows a front elevational view of a heat exchanger according to the present invention with portions broken away to show details
- FIG. 2 illustrates an arrangement for the application of the process of the present invention using liquid nitrogen as a coolant
- FIG. 3 illustrates an arrangement for the application of the process of the present invention wherein the heat exchanger serves as the vaporizer in a customary cooling system.
- the drawing shows that the heat exchanger for the execution of the present process consists of a housing 1 sealed at each end with housing closures 4.
- Each closure includes an inlet or outlet connecting pipe 3 with a flange at the outer end thereof.
- the housing closures 4 are mounted by means of screws 6 and nuts 5 to the housing flanges 7 with seals 8 therebetween.
- Housing 1 includes a bellows 2 which allows for the equalization of variable thermal expansions.
- Intermediate plates'l2, l3 and 14 are welded into housing 1, and a plurality of inner pipes 11 for the passage of the fuel are securely welded to the intermediate plates 12 and 13, as shown.
- a plurality of outer pipes 9 serves to conduct coolant and each pipe 9 is securely welded to the intermediate plate 14 at the lower end of the pipe.
- the upper end of each pipe 9 terminates just before the intermediate plate 12.
- a web 10 is spirally wound about the inner pipe.
- the web ID has a certain pitch and the exterior thereof engages to interior of the pipe 9.
- a plurality of inner and outer pipe arrangements 9, 11 are provided with each such arrangement disposed in the housing 1 in the manner of the one shown in FIG. 1.
- a connecting pipe 16 for the liquid coolant is welded to housing 1 in such a manner that the liquid coolant enters the space between the intermediate plates 13 and 14. From there the coolant enters into the spaces 9a between the inner pipes 11 and the outer pipes 9, as is clear from FIG. 1 of the drawing.
- the vaporized coolant is drawn off through outlet connecting pipes 18 situated at the housing 1 after it emerges from the upper end of the pipes 9.
- a connecting pipe 19 is welded to the housing for introducing compressed air into the system. The air may be heated.
- the passing liquid is given a certain spin in that a spirally turned, flat band 17 is arranged in the inner pipes 11.
- the width of the flat band corresponds to the inside diameter of the inner pipe 11.
- liquid coolant is introduced through the inlet pipe 16.
- the coolant flows upwardly in countercurrent fashion through spaces 90 between the inner pipes 11 and the outer pipes 9 and is thereby vaporized. In this manner, for the cooling of the passing liquid, both the vaporization heat of the coolant and the heating of the vaporized coolant are utilized.
- a coolant is employed whose vaporization temperature is below the pour point or of the freezing point of the liquid to be cooled.
- liquefied gases particularly liquid nitrogen
- These materials are usually ordered by a contractor in liquid form and are conducted from a heat-isolating vessel 20 by means of valve 21 to the pipe 16, as shown in FIG. 2.
- the liquid nitrogen is forced into the heat exchanger by the gas pressure in the container, which is produced by a separate vaporizer (not shown).
- the quantity of the coolant supplied is regulated depending on the outlet temperature of the fuel from the heat exchanger.
- the heat exchanger functions as a vaporizer in the circulation of a customary cooling system.
- the coolant used have a vaporization temperature which is not excessively below the pour point or the freezing point of the liquid to be cooled.
- the customary coolants which may be used in such cooling systems have a vaporization temperature of 75 C., which is sufficient to achieve a satisfactory cooling effect.
- the heat exchanger must be made larger than that used with liquid nitrogen as the cooling agnetv
- the coolant is compressed in compressor 24, liquefied in condenser 22 and enters the heat exchanger in a liquid state through throttle 23 by means of inlet pipe 16.
- the device disclosed is particularly suited for use in test bench equipment for the examination of fuel apparatus, such as devices for conducting fuel, dosing the fuel, and the like, in the proximity of the pour point of the fuel.
- fuel apparatus such as devices for conducting fuel, dosing the fuel, and the like
- the use is not limited to this example since the process and the device may advantageously be used everywhere where quick cooling of a liquid is required without encountering the danger of having the conduits obstructed by the sticking or freezing of the liquid at the walls. This is the case, for example, with liquids which are cooled to prevent or delay a chemical reaction.
- a device for cooling liquids comprising a heat exchanger having a housing and a plurality of pipe assemblies therein, each pipe assembly including an inner pipe constructed and arranged to carry the liquid being processed and an outer pipe constructed and arranged to carry a cooling medium, chamber means in the housing interconnecting all of the inner pipes and separately interconnecting all of the outer pipes, the housing including opposite end plates for closing the housing and three intermediate plates spaced apart in the housing, each of the inner pipes extending between the uppermost and lowermost intermediate plates and communicating with the spaces in the housing above the uppermost plate and below the lowermost plate, and each of the outer pipes being connected to the middle intermediate plate and providing communication between the space in the housing on opposite sides of the middle intermediate plate, and a bellows between the uppermost and middle intermediate plates for the equalization of the variable thermal expansions between the inner pipes and the housing.
- a device as in claim 1 including a spiral web on the outside of each inner pipe with the exterior of the web engaging the interior of the outer pipe.
- a device as in claim 2 including a spirally turned flat band inside each inner pipe engaging the inside surface of the inner pipe.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19712158716 DE2158716C3 (de) | 1971-11-26 | Verfahren und Vorrichtung zur Kühlung von Flüssigkeiten, insbesondere Kraftstoffen oder ähnlichen Flüssigkeiten, bis in die Nähe des Gefrierpunktes bzw. Stockpunktes |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3820598A true US3820598A (en) | 1974-06-28 |
Family
ID=5826252
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00309807A Expired - Lifetime US3820598A (en) | 1971-11-26 | 1972-11-27 | Apparatus for cooling liquids |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3820598A (enExample) |
| AT (1) | AT339636B (enExample) |
| FR (1) | FR2160867B1 (enExample) |
| GB (1) | GB1382727A (enExample) |
| IT (1) | IT985520B (enExample) |
| NL (1) | NL7213695A (enExample) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2396261A1 (fr) * | 1977-06-28 | 1979-01-26 | Westinghouse Electric Corp | Perfectionnements aux echangeurs de chaleur |
| US4266600A (en) * | 1977-06-28 | 1981-05-12 | Westinghouse Electric Corp. | Heat exchanger with double walled tubes |
| US4346758A (en) * | 1979-04-03 | 1982-08-31 | Borsig Gmbh | Heat exchanger for cooling slag-containing gases from coal gasification |
| AT378602B (de) * | 1982-06-17 | 1985-09-10 | Oemv Ag | Einrichtung zur befestigung und abdichtung des bodens von waermetauschern |
| US4589473A (en) * | 1984-03-30 | 1986-05-20 | Borsig Gmbh | Process and heat exchanger for cooling gases |
| US4848449A (en) * | 1987-05-12 | 1989-07-18 | Borsig Gmbh | Heat exchanger, especially for cooling cracked gas |
| US4989668A (en) * | 1988-12-12 | 1991-02-05 | Toshin Technical Co., Ltd. | Liquid heating or cooling circulator |
| US5046410A (en) * | 1988-12-12 | 1991-09-10 | Toshin Technical Co., Ltd. | Self cleaning liquid circulator |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2373463C2 (ru) * | 2007-11-26 | 2009-11-20 | Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" | Устройство для захолаживания топлива |
| RU2750678C1 (ru) * | 2020-10-30 | 2021-07-01 | Общество с ограниченной ответственностью "Научно-исследовательский институт технологий органической, неорганической химии и биотехнологий" | Спирально-пластинчатый теплообменник |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2462329A (en) * | 1945-01-12 | 1949-02-22 | Harry G Mojonnier | Evaporator having refrigerant recirculation means |
| GB848099A (en) * | 1957-05-30 | 1960-09-14 | Walter Philip Williams | Heat exchange apparatus |
| US3086372A (en) * | 1960-02-19 | 1963-04-23 | Alco Products Inc | Heat exchange means for space vehicles |
-
1972
- 1972-09-25 AT AT824372A patent/AT339636B/de not_active IP Right Cessation
- 1972-10-10 NL NL7213695A patent/NL7213695A/xx not_active Application Discontinuation
- 1972-11-17 FR FR7240868A patent/FR2160867B1/fr not_active Expired
- 1972-11-24 IT IT54259/72A patent/IT985520B/it active
- 1972-11-24 GB GB5434572A patent/GB1382727A/en not_active Expired
- 1972-11-27 US US00309807A patent/US3820598A/en not_active Expired - Lifetime
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2396261A1 (fr) * | 1977-06-28 | 1979-01-26 | Westinghouse Electric Corp | Perfectionnements aux echangeurs de chaleur |
| US4266600A (en) * | 1977-06-28 | 1981-05-12 | Westinghouse Electric Corp. | Heat exchanger with double walled tubes |
| US4346758A (en) * | 1979-04-03 | 1982-08-31 | Borsig Gmbh | Heat exchanger for cooling slag-containing gases from coal gasification |
| AT378602B (de) * | 1982-06-17 | 1985-09-10 | Oemv Ag | Einrichtung zur befestigung und abdichtung des bodens von waermetauschern |
| US4589473A (en) * | 1984-03-30 | 1986-05-20 | Borsig Gmbh | Process and heat exchanger for cooling gases |
| US4848449A (en) * | 1987-05-12 | 1989-07-18 | Borsig Gmbh | Heat exchanger, especially for cooling cracked gas |
| US4989668A (en) * | 1988-12-12 | 1991-02-05 | Toshin Technical Co., Ltd. | Liquid heating or cooling circulator |
| US5046410A (en) * | 1988-12-12 | 1991-09-10 | Toshin Technical Co., Ltd. | Self cleaning liquid circulator |
Also Published As
| Publication number | Publication date |
|---|---|
| DE2158716A1 (de) | 1973-05-30 |
| GB1382727A (en) | 1975-02-05 |
| AT339636B (de) | 1977-10-25 |
| IT985520B (it) | 1974-12-10 |
| DE2158716B2 (de) | 1976-11-04 |
| ATA824372A (de) | 1977-02-15 |
| FR2160867B1 (enExample) | 1977-08-05 |
| FR2160867A1 (enExample) | 1973-07-06 |
| NL7213695A (enExample) | 1973-05-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3696636A (en) | Method and apparatus for cooling liquids | |
| US3820598A (en) | Apparatus for cooling liquids | |
| US3537513A (en) | Three-fluid heat exchanger | |
| JP2928645B2 (ja) | 熱交換器ならびに空気収集および濃縮システム | |
| US2950778A (en) | Process and apparatus for the separation of mixtures in the gaseous state | |
| CA1244402A (en) | Heat exchanger and process for cooling gases | |
| US3033534A (en) | Toroidal heat exchangers | |
| CN113252251B (zh) | 一种降低高温下大型真空室本底漏率装置 | |
| US3085626A (en) | Heat transfer apparatus | |
| US3316961A (en) | Heat exchanger for the transfer of sensible heat and heat of condensation from a gasto a heat-absorbing fluid | |
| US2744813A (en) | Catalytic furnace | |
| CZ371596A3 (en) | Apparatus for cooling hot gas | |
| US2519845A (en) | Fluid cooling apparatus | |
| CN112924489A (zh) | 一种低温危险液体事故泄漏射流实验装置 | |
| CN209131215U (zh) | 一种液氮汽化冷量再利用装置 | |
| GB699339A (en) | Cold regenerators or accumulators for transferring heat between gases | |
| US3672179A (en) | Gas liquifaction | |
| US3065061A (en) | Oxidation apparatus | |
| CN204034309U (zh) | 用于热解装置的冷却器组件及具有其的热解装置 | |
| CN212834019U (zh) | 一种原子层沉积镀膜设备的化学源导入系统 | |
| CN210595964U (zh) | 一种ng冷气发生装置 | |
| RU2159659C1 (ru) | Сублимационный аппарат | |
| US3269135A (en) | Multi-stage heat exchange apparatus and method | |
| US3960519A (en) | Method and system for generating a dehydrated inert gas stream | |
| US2372991A (en) | Apparatus for heating fluids |