US3817077A - Disposable scalpel handle and method of manufacture thereof - Google Patents

Disposable scalpel handle and method of manufacture thereof Download PDF

Info

Publication number
US3817077A
US3817077A US00306322A US30632272A US3817077A US 3817077 A US3817077 A US 3817077A US 00306322 A US00306322 A US 00306322A US 30632272 A US30632272 A US 30632272A US 3817077 A US3817077 A US 3817077A
Authority
US
United States
Prior art keywords
rod
scalpel
scalpel handle
process defined
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00306322A
Inventor
C Cummings
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acme United Corp
Original Assignee
Acme United Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acme United Corp filed Critical Acme United Corp
Priority to US00306322A priority Critical patent/US3817077A/en
Priority to US373513A priority patent/US3877147A/en
Priority to US372992A priority patent/US3872708A/en
Priority to CA184,575A priority patent/CA988286A/en
Priority to IT53457/73A priority patent/IT1002510B/en
Priority to FR7339247A priority patent/FR2206143A1/fr
Priority to JP48124591A priority patent/JPS4978383A/ja
Priority to GB5225873A priority patent/GB1428006A/en
Priority to DE2356852A priority patent/DE2356852A1/en
Application granted granted Critical
Publication of US3817077A publication Critical patent/US3817077A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • A61B17/3211Surgical scalpels, knives; Accessories therefor
    • A61B17/3213Surgical scalpels, knives; Accessories therefor with detachable blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K11/00Making cutlery wares; Making garden tools or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K5/00Making tools or tool parts, e.g. pliers
    • B21K5/18Making tools or tool parts, e.g. pliers handles or parts therefor

Definitions

  • ABSTRACT A disposable scalpel handle adaptable for use by either right handed or left handed surgeons is produced in a single press swaging operation, in which'there is no leftover material or flash which has to be removed. Since the disposable scalpel handle produced is perfectly symmetrical about its central axis, a blade can be mounted to either side of the blade holding portion of the scalpel, thereby providing a scalpel adaptable for use by either right handed or left handed surgeons.
  • Another object of this invention is to provide a surgical scalpel handle of the above character which is all metal, and is capable of being manufactured in a single press swaging operation that eliminates leftover metal or flash.
  • Another object of this invention is to provide a surgical scalpel handle of the above character which weighs substantially the same as expensive, nickel-silver scalpel handles.
  • Another object of this invention is to provide a surgical scalpel handle of the above character to which all surgical blades can be quickly and easily secured.
  • a further object of this invention is to provide a surgical scalpel handle of the above character to which the surgical blade can be secured to either side of the scalpel.
  • Another object of this invention is to provide a surgical scalpel handle of the above character which is inexpensive to manufacture.
  • the surgical scalpel handle of this invention comprises a one piece unit which is completely symmetrical about its central axis, thereby allowing any surgical blade to be secured to a blade mounting portion on either side thereof. Consequently, the scalpel handle can have blades mounted thereon for use by either right handed or left handed surgeons.
  • a major aspect of this unique scalpel handle is its method of manufacture. Initially, an elongated cylindrical rod such as used for the axles of toy trucks having specially contoured ends is employed. One end of the cylindrical rod is inserted into a rotary swaging machine which forms and stretches that end of the rod in a single operation into a smaller diameter cylindrical portion and a conical portion interconnecting the smaller diameter cylindrical portion with the larger diameter cylindrical rod. This operation also automatically establishes the final length of the scalpel handle.
  • the manufacture of the scalpel handle is then substantially completed by a single press swaging operation.
  • the rotary swaged rod is merely placed in a press dye and in a single press operation, the rod is formed into the desired scalpelhandle.
  • the dye incorporates grooves which provide the scalpel handle body with a non-slip gripping surface.
  • the smaller diameter cylindrical portion which is formed in the rotary swaging operation is formed into the blade mounting portion by the press swaging operation. Since this mounting arm is flat on both sides and completely symmetrical about its central axis, the surgical blade can be mounted to either side of the mounting arm by piercing the necessary holes therein.
  • the larger diameter cylindrical rod forms the scalpel handle portion, while the conical interconnecting portion between the smaller diameter cylindrical portion and the larger diameter cylindrical rod forms the interconnecting zone between the mounting portion and the handle portion.
  • the specially contoured end of the larger diameter cylindrical rod provides the palm end of the scalpel handle with a smooth rounded end, without leaving any flash.
  • the resulting scalpel is manufactured in a single press swaging operation without any flash resulting from the swaging operation.
  • the elimination of flash is a great advantage for ease of manufacture and cost reduction, since there is no leftover flash material which needs to be removed in a separate, costly operation. Consequently, as soon as the press swaging operation is completed and mounting holes are pierced in the blade mounting portion, the scalpel handle is ready to have the blade mounted thereto.
  • a further advantage of this scalpel and method of manufacture is the high quality product that results.
  • the scalpel produced after the press swaging operation also comprises a uniform cross-section incorporating the same quantity of material as in the cylindrical rod, but in a different shape.
  • the strength and rigidity of the scalpel produced is assured. Consequently, the quality of the scalpel handle of this invention far surpasses plastic scalpel handles and molded type scalpel handles in which air pockets or similar imperfections may be unknowingly incorporated into the final product due to imperfections and the molding operation.
  • the invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
  • FIG. I is a plan view of a cylindrical rod with specially contoured ends prior to insertion in a rotary swaging machine
  • FIG. 2 is a plan view of the cylindrical rod of FIG. I, after being withdrawn from the rotary swaging machine;
  • FIG. 3 is a cross-sectional, side elevation view of the scalpel handle of this invention in a press swaging dye
  • FIG. 4 is a top plan view of the scalpel handle of this invention in a press swaging dye taken along line 44 of FIG. 3;
  • FIG. 5 is a cross-sectional side elevation view of a portion of the scalpel handle of this invention taken along line 55 of FIG. 4;
  • FIG. 6 is a top plan view of the scalpel handle of this invention.
  • FIG. 7 is a front end view of the scalpel handle of this invention taken along line 77 of FIG. 6;
  • FIG. 8 is a cross-sectional side elevation view of a portion of the scalpel handle of this invention in the press swaging dye taken along line 88 of FIG. 3.
  • DETAILED DESCRIPTION Scalpel handle 20 of this invention incorporates a blade mounting portion 22, a handle portion 24, and an intermediate portion 26 which interconnects mounting portion 22 with handle portion 24.
  • scalpel handle 20 is completely symmetrical about its central axis.
  • a surgical blade 28 shown in phantom in FIG. 6 can be mounted to either side of blade mounting portion 22. This allows scalpel handle 20 to have ablade mounted thereto which can be used by either right handled or left handed surgeons.
  • FIGS. 1, 1A and 2-4 One of the major advantages of scalpel handle 20 is found in its unique four-step manufacturing process. This process can best be understood by referring to FIGS. 1, 1A and 2-4.
  • a cylindrical rod 30, such as is used as the axle in toy trucks, is shown after the ends 32 and 34 have been specially contoured.
  • Rod 30 preferably comprises an overall length of 4 3/16 inches and a diameter of 0.218 inches. Preferably, the overall length is maintained within 0.010 inches of the preferred length and the diameter is maintained within 0.005 inches of the preferred diameter.
  • specially contoured ends 32 and 34 are not perfectly spherical and, instead, comprise two distinct portions 31 and 33 having different radaii.
  • Portions 31, which include the tips of ends 32 and 34 comprise a radius equal to one-half the diameter of rod 30. In the preferred embodiment, this radius is about 0.109 inches.
  • the remaining portions 33 of ends 32 and 34 comprise between one-half and two-thirds the diameter of rod 30, with a radius of 0.125 inches in the preferred embodiment. Therefore, the first step in the manufacturing process of scalpel handle 20 is to contour both ends 32 and 34 of rod 30 into the desired blended, double radius ends.
  • specially contoured ends 32 and 34 are extremely important in order to provide a rod which is capable of being press swaged into a scalpel handle without leaving any flash.
  • rod 30 is a low carbon steel rod having a surface finish free from pits and gouges.
  • the rod composition is important since other types of rods tested resulted in cracks at the palm end of the scalpel handle or flash" after the swage pressing operation.
  • the surface finish of the rod is also important to the production of a smooth scalpel handle since the slightest pit or gouge in the rod is amplified during swage pressing producing a poor surface on the scalpel handle.
  • the second manufacturing step is the rotary swaging of one end of the rod.
  • cylindrical rod 30 with specially contoured ends 32 and 34 is shown prior to insertion in a rotary swaging machine 36.
  • end 32 of rod 30 is inserted into swaging machine 36, end 32 of rod 30 is stretched and formed, in a single operation, into a smaller diameter cylindrical portion 38 and an intermediate conical-shaped portion 40, as shown in FIG. 2.
  • Conical portion 40 provides a uniform transition from the smaller diameter cylindrical portion 38 to the larger diameter cylindrical body of rod 30, while the stretching operation establishes the overall length of scalpel handle 20.
  • scalpel handle 20 is substantially completed in a single operation by swage pressing rod 30 between press swaging dyes 42 and 44 into the desired scalpel shape, as shown in FIGS. 3 and 4.
  • Dyes 42 and 44 cooperate to form a cavity 43, which defines the desired top and bottom surface shape of scalpel handle 20 while assuring production of scalpel handle 20 with the desired thickness at the various points thereof. Since the vertical dimension of cavity 43 is carefully controlled to assure the desired scalpel handle thickness and the raw material of rod 30 is free to flow laterally, no flash or leftover material is produced which needs to be trimmed in a separate operation. Furthermore, the use of rod 30 with its specially contoured, double radius ends 32 and 34, assures that scalpel handle 20 will not contain any flash at its terminating ends and instead will be smoothly rounded throughout.
  • Palm end 25 of handle portion 24, best seen in FIGS. 3, 6 and 8, comprises the thinnest portion of scalpel handle 20.
  • the palm end portion of a scalpel handle is used by the surgeons to spread the skin of the patient after an incision has been made. Consequently, it is extremely important, that the palm end portion be substantially fiat, in order to be easily inserted into the incision, while also being smoothly rounded throughout its end, in order to prevent any unwanted cutting or puncturing of the patients tissue surrounding the incision.
  • Smoothly rounded palm end portion 25 is provided in scalpel handle 20 directly from the press swaging operation due to the unique manufacturing process of scalpel handle 20.
  • end 34 assures the palm end 25 will be smoothly rounded directly after the press swaging operation without any burrs or rough areas which have to be removed. Furthermore, the selection of the material and surface finish of rod 30 provides assurance that there will be no cracks, pits or gouges in palm end 25.
  • Scalpel handle 20 The final step in the manufacturing process of scalpel handle 20 is the piercing of eyelet holes 50, shown in FIG. 6, for the easy mounting of a scalpel blade. Scalpel handle is now a completed product ready for the mounting of a surgical blade thereto.
  • scalpels Although the production of scalpels is primarily concernedand referred toin this application, the scope and breadth of this manufacturing process is not limited to scalpels, since this no flash manufacturing process has applicability to many varied and diversed products, such as knife handles, scissors, etc.
  • Scalpel 20 is constructed to be well balanced and comfortable in the hands of the surgeon, while also weighing the same as expensive scalpel handles.
  • a cylindrical rod, with double radius ends, carefully designed press dyes, and a press swaging operation that employs all of the raw material the peripherally surrounding edges of the handle portion 24 are rounded throughout. This is highly advantageous since it provides a smoothly rounded surface for ease of handling.
  • Scalpel 20 also has a non-slip gripping surface 46 which incorporates a plurality of grooves 48 and 49. As best seen in FIG. 5, grooves 48 and 49 are 90 out of phase, thereby having each groove 48 juxtaposed to the ridges between groove 49, and vice versa. As will be more fully described below, this arrangement assures that the raw material will not flow" longitudinally during the pressing operation, which would produce flash.” Another important direct result of the 90 off-set of grooves 48 and 49 is the production of handle portion 24 with a substantially constant cross-sectional area throughout substantially its entire length.
  • scalpel handle 20 is anextremely high quality product. Since scalpel handle 20 is produced in a single press swaging operation from a single rod having two substantiallycylindrical portions with different diameters and also because of dye shape, scalpel handle 20 comprises a substantially constant cross-sectional area throughout those portions formed from the two cylindrical rod portions. Blade mounting portion22 comprises a cross-sectional area which is substantially constant throughout its length, and which is also substantially equal to the cross-sectional area of the smaller diameter cylindrical portion 38 of rod 30. Similarly, the cross-sectional area of handle portion 24 is substantially constant throughout substantially the entire length of handle portion 24, and this cross-sectional area is also substantially equal to the cross-sectional area of the larger diameter cylindrical body of rod 30. A cross-section of palm portion 25 is shown in FIG. 8.
  • both handle portion 24 and blade mounting portion 22 have a uniform crosssectional area throughout the respective lengths and incorporate smooth rounded edges about their entire peripheries without any sharp or inconsistent portions therein.
  • This controlled metal press swaging operation produces a high quality product directly from the dye without requiring removal of flash or leftover material.
  • the elimination of the extra step required in prior art processes for the removal of flash makes this process extremely desirable since the product of this process is produced considerably less expensively than prior art products.
  • the scalpel handle incorporates a non-glare finish. This is desirable in order to prevent glare which may interfere with the surgeon during the operation. Such a nonglare surface is easily provided by tumbling and shot processes wellknown in the art.
  • the resulting scalpel handle has a non-glare finish, as represented in FIG. 6.
  • a process for producing a unitary product from a rod-like raw material comprising the steps of:
  • a process for producing a scalpel handle from a rod-like raw material comprising the steps of:
  • said scalpel handle is produced without undesirable flash material and said offset-mating grooveproducing portions assure control material flow during the pressing step.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Food-Manufacturing Devices (AREA)

Abstract

A disposable scalpel handle adaptable for use by either right handed or left handed surgeons is produced in a single press swaging operation, in which there is no leftover material or ''''flash'''' which has to be removed. Since the disposable scalpel handle produced is perfectly symmetrical about its central axis, a blade can be mounted to either side of the blade holding portion of the scalpel, thereby providing a scalpel adaptable for use by either right handed or left handed surgeons.

Description

United States Patent 119-] [111 3,817,077 Cummings June 18, 1974 [5 1 DISPOSABLE SCALPEL HANDLE AND 1,533,971 4/1925 Castracane 128/305 METHOD OF MANUFACTURE THEREOF 3,199,171 8/1965 Hellmann et a]. 72/53 3,314,277 4/1967 Hopkins et a1 72/375 Inventor: Clinton M. Cummings, Southbury,
Conn.
Assignee: Acme United Corporation,
Bridgeport, Conn.
Filed: Nov. 14, 1972 Appl. No: 306,322
US. Cl 72/376, 72/377, 128/305 Int. Cl B2lk 11/02 Field of Search 72/375, 376, 377;
Primary ExaminerLowell A. Larson Attorney, Agent, or Firm-Mattem, Ware and Davis 5 7] ABSTRACT A disposable scalpel handle adaptable for use by either right handed or left handed surgeons is produced in a single press swaging operation, in which'there is no leftover material or flash which has to be removed. Since the disposable scalpel handle produced is perfectly symmetrical about its central axis, a blade can be mounted to either side of the blade holding portion of the scalpel, thereby providing a scalpel adaptable for use by either right handed or left handed surgeons.
12 Claims, 9 Drawing Figures DISPOSABLE SCALPEL HANDLE AND METHOD OF MANUFACTURE THEREOF BACKGROUND OF THE INVENTION Most prior art scalpel handles are manufactured with blade holding arms that require the blade to be inserted by bending and snapping the blade in place. As a result, the scalpel handle can only have a blade mounted on one side, and different scalpel handles have to be manufactured for right handed and left handed surgeons. Furthermore, these prior art scalpel handles require somewhat complicated manufacturing processes and are relatively expensive.
In order to reduce the cost of scalpel handles and the need for repeated sterilization, some manufacturers make disposable scalpel handles using plastics. Although the unit cost of each scalpel handle is substantially reduced, the disposable plastic scalpel handles have a tendency to flex more than a metal scalpel handle, and also because of their low weight, are less appealing to many surgeons.
lnan attempt to manufacture metal scalpel handles at a reasonable cost, some scalpel handles are being manufactured by a press swaging operation. However, all of these press swaging operations suffer from the common problem of flash or leftover material which has to be removed in a separate operation. This additional step is costly, and results in a higher unit cost for the final product.
It is the principal object of this invention to provide a surgical scalpel handle adaptable for use by both right handed and left handed surgeons.
Another object of this invention is to provide a surgical scalpel handle of the above character which is all metal, and is capable of being manufactured in a single press swaging operation that eliminates leftover metal or flash.
Another object of this invention is to provide a surgical scalpel handle of the above character which weighs substantially the same as expensive, nickel-silver scalpel handles.
Another object of this invention is to provide a surgical scalpel handle of the above character to which all surgical blades can be quickly and easily secured.
A further object of this invention is to provide a surgical scalpel handle of the above character to which the surgical blade can be secured to either side of the scalpel.
Another object of this invention is to provide a surgical scalpel handle of the above character which is inexpensive to manufacture.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
SUMMARY OF THE INVENTION The surgical scalpel handle of this invention comprises a one piece unit which is completely symmetrical about its central axis, thereby allowing any surgical blade to be secured to a blade mounting portion on either side thereof. Consequently, the scalpel handle can have blades mounted thereon for use by either right handed or left handed surgeons.
A major aspect of this unique scalpel handle is its method of manufacture. Initially, an elongated cylindrical rod such as used for the axles of toy trucks having specially contoured ends is employed. One end of the cylindrical rod is inserted into a rotary swaging machine which forms and stretches that end of the rod in a single operation into a smaller diameter cylindrical portion and a conical portion interconnecting the smaller diameter cylindrical portion with the larger diameter cylindrical rod. This operation also automatically establishes the final length of the scalpel handle.
The manufacture of the scalpel handle is then substantially completed by a single press swaging operation. In this step, the rotary swaged rod is merely placed in a press dye and in a single press operation, the rod is formed into the desired scalpelhandle. Preferably, the dye incorporates grooves which provide the scalpel handle body with a non-slip gripping surface. The smaller diameter cylindrical portion which is formed in the rotary swaging operation is formed into the blade mounting portion by the press swaging operation. Since this mounting arm is flat on both sides and completely symmetrical about its central axis, the surgical blade can be mounted to either side of the mounting arm by piercing the necessary holes therein.
The larger diameter cylindrical rod forms the scalpel handle portion, while the conical interconnecting portion between the smaller diameter cylindrical portion and the larger diameter cylindrical rod forms the interconnecting zone between the mounting portion and the handle portion. The specially contoured end of the larger diameter cylindrical rod provides the palm end of the scalpel handle with a smooth rounded end, without leaving any flash.
Since the press dye is designed to accommodate all of the material in the cylindrical rod, the resulting scalpel is manufactured in a single press swaging operation without any flash resulting from the swaging operation. The elimination of flash" is a great advantage for ease of manufacture and cost reduction, since there is no leftover flash material which needs to be removed in a separate, costly operation. Consequently, as soon as the press swaging operation is completed and mounting holes are pierced in the blade mounting portion, the scalpel handle is ready to have the blade mounted thereto.
A further advantage of this scalpel and method of manufacture is the high quality product that results. By using a cylindrical rod which comprises a uniform diameter and cross-section throughout its entire length and finish and by using properly designed press dyes, the scalpel produced after the press swaging operation also comprises a uniform cross-section incorporating the same quantity of material as in the cylindrical rod, but in a different shape. As a result, the strength and rigidity of the scalpel produced is assured. Consequently, the quality of the scalpel handle of this invention far surpasses plastic scalpel handles and molded type scalpel handles in which air pockets or similar imperfections may be unknowingly incorporated into the final product due to imperfections and the molding operation.
The invention accordingly comprises the several steps and the relation of one or more of such steps with respect to each of the others, and the article possessing the features, properties, and the relation of elements, which are exemplified in the following detailed disclosure, and the scope of the invention will be indicated in the claims.
THE DRAWINGS For a thorough understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connnection with the accompanying drawings, in which FIG. I is a plan view of a cylindrical rod with specially contoured ends prior to insertion in a rotary swaging machine;
FIG. 2 is a plan view of the cylindrical rod of FIG. I, after being withdrawn from the rotary swaging machine;
FIG. 3 is a cross-sectional, side elevation view of the scalpel handle of this invention in a press swaging dye;
FIG. 4 is a top plan view of the scalpel handle of this invention in a press swaging dye taken along line 44 of FIG. 3;
FIG. 5 is a cross-sectional side elevation view of a portion of the scalpel handle of this invention taken along line 55 of FIG. 4;
FIG. 6 is a top plan view of the scalpel handle of this invention;
FIG. 7 is a front end view of the scalpel handle of this invention taken along line 77 of FIG. 6; and
FIG. 8 is a cross-sectional side elevation view of a portion of the scalpel handle of this invention in the press swaging dye taken along line 88 of FIG. 3.
DETAILED DESCRIPTION Scalpel handle 20 of this invention, best seen in FIG. 6, incorporates a blade mounting portion 22, a handle portion 24, and an intermediate portion 26 which interconnects mounting portion 22 with handle portion 24. By referring to FIGS. 6 and 7, it can be seen that scalpel handle 20 is completely symmetrical about its central axis. As a result, a surgical blade 28, shown in phantom in FIG. 6, can be mounted to either side of blade mounting portion 22. This allows scalpel handle 20 to have ablade mounted thereto which can be used by either right handled or left handed surgeons.
One of the major advantages of scalpel handle 20 is found in its unique four-step manufacturing process. This process can best be understood by referring to FIGS. 1, 1A and 2-4. In FIG. 1A, a cylindrical rod 30, such as is used as the axle in toy trucks, is shown after the ends 32 and 34 have been specially contoured. Rod 30 preferably comprises an overall length of 4 3/16 inches and a diameter of 0.218 inches. Preferably, the overall length is maintained within 0.010 inches of the preferred length and the diameter is maintained within 0.005 inches of the preferred diameter.
Preferably, specially contoured ends 32 and 34 are not perfectly spherical and, instead, comprise two distinct portions 31 and 33 having different radaii. Portions 31, which include the tips of ends 32 and 34, comprise a radius equal to one-half the diameter of rod 30. In the preferred embodiment, this radius is about 0.109 inches. The remaining portions 33 of ends 32 and 34 comprise between one-half and two-thirds the diameter of rod 30, with a radius of 0.125 inches in the preferred embodiment. Therefore, the first step in the manufacturing process of scalpel handle 20 is to contour both ends 32 and 34 of rod 30 into the desired blended, double radius ends. As will be more fully described below, specially contoured ends 32 and 34 are extremely important in order to provide a rod which is capable of being press swaged into a scalpel handle without leaving any flash.
Preferably, rod 30 is a low carbon steel rod having a surface finish free from pits and gouges. The rod composition is important since other types of rods tested resulted in cracks at the palm end of the scalpel handle or flash" after the swage pressing operation. The surface finish of the rod is also important to the production of a smooth scalpel handle since the slightest pit or gouge in the rod is amplified during swage pressing producing a poor surface on the scalpel handle.
The second manufacturing step is the rotary swaging of one end of the rod. In FIG. 1 cylindrical rod 30 with specially contoured ends 32 and 34 is shown prior to insertion in a rotary swaging machine 36. When end 32 of rod 30 is inserted into swaging machine 36, end 32 of rod 30 is stretched and formed, in a single operation, into a smaller diameter cylindrical portion 38 and an intermediate conical-shaped portion 40, as shown in FIG. 2. Conical portion 40 provides a uniform transition from the smaller diameter cylindrical portion 38 to the larger diameter cylindrical body of rod 30, while the stretching operation establishes the overall length of scalpel handle 20.
In the third manufacturing step, scalpel handle 20 is substantially completed in a single operation by swage pressing rod 30 between press swaging dyes 42 and 44 into the desired scalpel shape, as shown in FIGS. 3 and 4. Dyes 42 and 44 cooperate to form a cavity 43, which defines the desired top and bottom surface shape of scalpel handle 20 while assuring production of scalpel handle 20 with the desired thickness at the various points thereof. Since the vertical dimension of cavity 43 is carefully controlled to assure the desired scalpel handle thickness and the raw material of rod 30 is free to flow laterally, no flash or leftover material is produced which needs to be trimmed in a separate operation. Furthermore, the use of rod 30 with its specially contoured, double radius ends 32 and 34, assures that scalpel handle 20 will not contain any flash at its terminating ends and instead will be smoothly rounded throughout.
Palm end 25 of handle portion 24, best seen in FIGS. 3, 6 and 8, comprises the thinnest portion of scalpel handle 20. The palm end portion of a scalpel handle is used by the surgeons to spread the skin of the patient after an incision has been made. Consequently, it is extremely important, that the palm end portion be substantially fiat, in order to be easily inserted into the incision, while also being smoothly rounded throughout its end, in order to prevent any unwanted cutting or puncturing of the patients tissue surrounding the incision. Smoothly rounded palm end portion 25 is provided in scalpel handle 20 directly from the press swaging operation due to the unique manufacturing process of scalpel handle 20. The special contouring of end 34, described above, assures the palm end 25 will be smoothly rounded directly after the press swaging operation without any burrs or rough areas which have to be removed. Furthermore, the selection of the material and surface finish of rod 30 provides assurance that there will be no cracks, pits or gouges in palm end 25.
The final step in the manufacturing process of scalpel handle 20 is the piercing of eyelet holes 50, shown in FIG. 6, for the easy mounting of a scalpel blade. Scalpel handle is now a completed product ready for the mounting of a surgical blade thereto.
Although the production of scalpels is primarily concernedand referred toin this application, the scope and breadth of this manufacturing process is not limited to scalpels, since this no flash manufacturing process has applicability to many varied and diversed products, such as knife handles, scissors, etc.
Scalpel 20 is constructed to be well balanced and comfortable in the hands of the surgeon, while also weighing the same as expensive scalpel handles. By using a cylindrical rod, with double radius ends, carefully designed press dyes, and a press swaging operation that employs all of the raw material, the peripherally surrounding edges of the handle portion 24 are rounded throughout. This is highly advantageous since it provides a smoothly rounded surface for ease of handling.
Scalpel 20 also has a non-slip gripping surface 46 which incorporates a plurality of grooves 48 and 49. As best seen in FIG. 5, grooves 48 and 49 are 90 out of phase, thereby having each groove 48 juxtaposed to the ridges between groove 49, and vice versa. As will be more fully described below, this arrangement assures that the raw material will not flow" longitudinally during the pressing operation, which would produce flash." Another important direct result of the 90 off-set of grooves 48 and 49 is the production of handle portion 24 with a substantially constant cross-sectional area throughout substantially its entire length.
Due to the unique manufacturing process described above, scalpel handle 20 is anextremely high quality product. Since scalpel handle 20 is produced in a single press swaging operation from a single rod having two substantiallycylindrical portions with different diameters and also because of dye shape, scalpel handle 20 comprises a substantially constant cross-sectional area throughout those portions formed from the two cylindrical rod portions. Blade mounting portion22 comprises a cross-sectional area which is substantially constant throughout its length, and which is also substantially equal to the cross-sectional area of the smaller diameter cylindrical portion 38 of rod 30. Similarly, the cross-sectional area of handle portion 24 is substantially constant throughout substantially the entire length of handle portion 24, and this cross-sectional area is also substantially equal to the cross-sectional area of the larger diameter cylindrical body of rod 30. A cross-section of palm portion 25 is shown in FIG. 8.
The maintenance of a constant cross-sectional area in the production of scalpel handle 20 is extremely important for assuring the use of all of the raw material during the press swaging operation without elongation of the material, thereby preventing any flash" from being produced. As a result, both handle portion 24 and blade mounting portion 22 have a uniform crosssectional area throughout the respective lengths and incorporate smooth rounded edges about their entire peripheries without any sharp or inconsistent portions therein. This controlled metal press swaging operation produces a high quality product directly from the dye without requiring removal of flash or leftover material. The elimination of the extra step required in prior art processes for the removal of flash makes this process extremely desirable since the product of this process is produced considerably less expensively than prior art products.
In the preferred embodiment of scalpel handle 20, the scalpel handle incorporates a non-glare finish. This is desirable in order to prevent glare which may interfere with the surgeon during the operation. Such a nonglare surface is easily provided by tumbling and shot processes wellknown in the art. The resulting scalpel handle has a non-glare finish, as represented in FIG. 6.
Although the description above is directed specifically to surgical scalpel handles, manufacturing process described in relation to the scalpel handle can be efficiently employed for the production of any unitarily constructed product. As clearly described above, this process is extremely advantageous since the unitary product can be produced in a single operation without the expensive additional step of flash removal.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained, and since certain changes may be made in carrying out the above method and in the article set forth without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following Claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
Having described my invention, what I claim as new and desire to secure by Letters Patent is:
I. A process for producing a unitary product from a rod-like raw material comprising the steps of:
A. contouring at least one end of said rod-like raw material to comprise two portions having different radaii;
B. positioning in a press dye, said contoured rod-like raw material; and
C. pressing the entire rod-like material into the desired product without the production of undesirable flash material.
2. The process defined in claim 1, wherein the rodlike raw material is substantially cylindrical.
3. The process defined in claim 2, wherein the rod comprises an overall length between 4 and 5 inches.
4. The process defined in claim 2, wherein the rod comprises a diameter between one-eighth and one-half inches.
5. The process defined in claim 1, wherein one of said radaii is equal to one-half of the diameter of the rod.
6. The process defined in claim 1, wherein the second portion comprises a radius greater than one-half of the diameter of the rod, but less than two-thirds of the diameter of the rod.
7. The process defined in claim 2, wherein the rod is further defined as comprising a surface free from pits and gouges.
8. A process for producing a scalpel handle from a rod-like raw material comprising the steps of:
a. positioning said rod-like raw material in a press dye, incorporating groove-producing portions which are positioned in an offset-mating fashion; and
B. pressing the entire rod-like material into a scalpel handle,
whereby said scalpel handle is produced without undesirable flash material and said offset-mating grooveproducing portions assure control material flow during the pressing step.
9. The process defined in claim 8, including the additional step of:
C. stretching and swaging one end of said cylindrical rod in a rotary swaging machine prior to said pressing step, forming said rod end into a smaller diameter cylindrical portion and a substantially conical portion interconnecting said smaller diameter cylindrical portion to said cylindrical rod.
additional step of tumble plating the scalpel.

Claims (12)

1. A process for producing a unitary product from a rod-like raw material comprising the steps of: A. contouring at least one end of said rod-like raw material to comprise two portions having different radaii; B. positioning in a press dye, said contoured rod-like raw material; and C. pressing the entire rod-like material into the desired product without the production of undesirable flash material.
2. The process defined in claim 1, wherein the rod-like raw material is substantially cylindrical.
3. The process defined in claim 2, wherein the rod comprises an overall length between 4 and 5 inches.
4. The process defined in claim 2, wherein the rod comprises a diameter between one-eighth and one-half inches.
5. The process defined in claim 1, wherein one of said radaii is equal to one-half of the diameter of the rod.
6. The process defined in claim 1, wherein the second portion comprises a radius greater than one-half of the diameter of the rod, but less than two-thirds of the diameter of the rod.
7. The process defined in claim 2, wherein the rod is further defined as comprising a surface free from pits and gouges.
8. A process for producing a scalpel handle from a rod-like raw material comprising the steps of: a. positioning said rod-like raw material in a press dye, incorporating groove-producing portions which are positioned in an offset-mating fashion; and B. pressing the entire rod-like material into a scalpel handle, whereby said scalpel handle is produced without undesirable flash material and said offset-mating groove-producing portions assure control material flow during the pressing step.
9. The process defined in claim 8, including the additional step of: C. stretching and swaging one end of said cylindrical rod in a rotary swaging machine prior to said pressing step, forming said rod end into a smaller diameter cylindrical portion and a substantially conical portion interconnecting said smaller diameter cylindrical portion to said cylindrical rod.
10. The process defined in claim 9, comprising the additional step of: D. piercing eyelet holes in the blade mounting portion of the scalpel handle, which is formed from the smaller diameter cylindrical portion after the pressing operation.
11. The process defined in claim 8, comprising the additional step of finishing the surface of the scalpel after the pressing operation in a surface finishing apparatus, providing a dull, non-glare finish.
12. The process defined in claim 11, comprising the additional step of tumble plating the scalpel.
US00306322A 1972-11-14 1972-11-14 Disposable scalpel handle and method of manufacture thereof Expired - Lifetime US3817077A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US00306322A US3817077A (en) 1972-11-14 1972-11-14 Disposable scalpel handle and method of manufacture thereof
US373513A US3877147A (en) 1972-11-14 1973-06-25 Disposable scalpel handle
US372992A US3872708A (en) 1972-11-14 1973-06-25 Dies for manufacturing disposable scalpel handle
CA184,575A CA988286A (en) 1972-11-14 1973-10-30 Disposable scalpel handle and method of manufacture thereof
IT53457/73A IT1002510B (en) 1972-11-14 1973-10-31 IMPROVEMENT IN SCALPELS
FR7339247A FR2206143A1 (en) 1972-11-14 1973-11-05
JP48124591A JPS4978383A (en) 1972-11-14 1973-11-07
GB5225873A GB1428006A (en) 1972-11-14 1973-11-09 Disposable scalpel handel and method and die for manufac turing the same
DE2356852A DE2356852A1 (en) 1972-11-14 1973-11-14 SCALPEL HANDLE OR THE SAME AS WELL AS METHOD AND DEVICE FOR ITS MANUFACTURING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00306322A US3817077A (en) 1972-11-14 1972-11-14 Disposable scalpel handle and method of manufacture thereof

Publications (1)

Publication Number Publication Date
US3817077A true US3817077A (en) 1974-06-18

Family

ID=23184771

Family Applications (1)

Application Number Title Priority Date Filing Date
US00306322A Expired - Lifetime US3817077A (en) 1972-11-14 1972-11-14 Disposable scalpel handle and method of manufacture thereof

Country Status (7)

Country Link
US (1) US3817077A (en)
JP (1) JPS4978383A (en)
CA (1) CA988286A (en)
DE (1) DE2356852A1 (en)
FR (1) FR2206143A1 (en)
GB (1) GB1428006A (en)
IT (1) IT1002510B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022035A1 (en) * 1996-11-22 1998-05-28 Philippe Berros Surgery or micro-surgery instrument kit for single use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633886A (en) * 1897-03-23 1899-09-26 Thomas J Mctighe Manufacture of electric-railway rail-bonds.
US1533971A (en) * 1924-08-13 1925-04-14 Castracane Luigi Surgical knife
US3199171A (en) * 1962-08-14 1965-08-10 Zero Manufacturing Co Glass ball peening machine for treating small articles
US3314277A (en) * 1962-02-03 1967-04-18 Raleigh Industries Ltd Cold forming of asymmetric articles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633886A (en) * 1897-03-23 1899-09-26 Thomas J Mctighe Manufacture of electric-railway rail-bonds.
US1533971A (en) * 1924-08-13 1925-04-14 Castracane Luigi Surgical knife
US3314277A (en) * 1962-02-03 1967-04-18 Raleigh Industries Ltd Cold forming of asymmetric articles
US3199171A (en) * 1962-08-14 1965-08-10 Zero Manufacturing Co Glass ball peening machine for treating small articles

Also Published As

Publication number Publication date
CA988286A (en) 1976-05-04
GB1428006A (en) 1976-03-17
JPS4978383A (en) 1974-07-29
IT1002510B (en) 1976-05-20
FR2206143A1 (en) 1974-06-07
DE2356852A1 (en) 1974-05-16

Similar Documents

Publication Publication Date Title
US3877147A (en) Disposable scalpel handle
EP0813841B1 (en) Method for making a surgical suturing needle
US4995879A (en) Intraocular lens with unitary drawn haptics
US4007524A (en) Cast articulated tool
US3817077A (en) Disposable scalpel handle and method of manufacture thereof
US3872708A (en) Dies for manufacturing disposable scalpel handle
DE2506010C2 (en) Device for producing an oriented hollow body from thermoplastic material
DE2705005A1 (en) METHOD AND DEVICE FOR CUTTING POULTRY
JPH09276284A (en) Medical knife
CN210056201U (en) Table type bar cutting pliers
DE896893C (en) Device for machining, especially cylindrical workpieces
CN215306245U (en) Novel double-fold eyelid precise needle holder
US7353683B2 (en) Surgical needle manufacturing process
US3965779A (en) Cast articulated tool
US2428407A (en) Method and apparatus for manufacture of balloons for inflatable catheters
CN215091015U (en) Rapid disposal device for cutting ring
US3880021A (en) Method of making a cast articulated tool
CN109500839A (en) Anti- shave of automobile tire hurts hair shaving device and its method
CN219183490U (en) Integrally formed dumpling making device
JP2002192449A (en) Grinding device for medical suture needle
US2072103A (en) Process of manufacturing coring spoons
CN219516280U (en) Measuring ruler for beauty and plastic
CN209032837U (en) A kind of blood vessel separating knife
KR100997186B1 (en) A manufacturing method of surgical needle
DE48081C (en) Handle attachment to earthen vessels