US3815865A - Thermoplastic shielded glass bottle with highly roughened surface - Google Patents

Thermoplastic shielded glass bottle with highly roughened surface Download PDF

Info

Publication number
US3815865A
US3815865A US24506872A US3815865A US 3815865 A US3815865 A US 3815865A US 24506872 A US24506872 A US 24506872A US 3815865 A US3815865 A US 3815865A
Authority
US
United States
Prior art keywords
envelope
thickness
outer envelope
mean
exterior surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
E Campagna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIAMOND THATCHER Inc
Original Assignee
Dart Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16210371 priority Critical patent/US3825141A/en
Priority to US23241272 priority patent/US3825142A/en
Application filed by Dart Industries Inc filed Critical Dart Industries Inc
Priority to US24506872 priority patent/US3815865A/en
Priority to AU44003/72A priority patent/AU475003B2/en
Priority to IT2676672A priority patent/IT962638B/en
Priority to NL7209568A priority patent/NL7209568A/xx
Priority to JP6950472A priority patent/JPS5248876B2/ja
Priority to DE2234212A priority patent/DE2234212A1/en
Priority to FR7225240A priority patent/FR2145630B1/fr
Priority to GB3264272A priority patent/GB1396012A/en
Priority to BE786196A priority patent/BE786196A/en
Priority to CA146,976A priority patent/CA983416A/en
Priority to SE915672A priority patent/SE378238B/xx
Application granted granted Critical
Publication of US3815865A publication Critical patent/US3815865A/en
Assigned to THATCHER GLASS CORPORATION, A CORP. OF DE. reassignment THATCHER GLASS CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DART INDUSTRIES INC.
Assigned to DIAMOND THATCHER INC. reassignment DIAMOND THATCHER INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: THATCHER GLASS CORPORATION A DE CORP
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0807Coatings
    • B65D23/0814Coatings characterised by the composition of the material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S215/00Bottles and jars
    • Y10S215/06Resin-coated bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • Y10T428/1321Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers

Definitions

  • ABSTRACT A container comprising an inner glass receptacle and a closely adhering exterior protective sheath substantially covering said receptacle.
  • the exterior protective sheath is comprised of a shape-retaining, preferably thermoplastic resin adapted to restrain and retain glass fragments should the glass receptacle be broken.
  • the sheath is further provided with a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent.
  • a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent.
  • glassware is readily susceptible to breakage during handling and use. Further, the consequences of such breakage may be significantly aggravated if the contained product is carbonated or the container thereof is otherwise internally pressurized. Therefore, it has long been an objective of glassware manufacturers and users to minimize the haza rds of breakage by treating the exterior surface in numerous ways and by even adding protective overcoatings of various sorts thereto.
  • These prior art approaches have, in fact, improved glassware standards and quality quite significantly since such have tended to effectively reduce the quantity of surface scratches and flaws in the ware and, of course, this reduction in the points of stress concentration enable the ware to retain its characteristic strength.
  • Such prior art treatments have included metal oxide, and combinations of thin film polyethylene coatings which provide good scratch and abrasion resistance to glassware thereby decreasing the surface flaws spoken of and likewise reducing the likelihood of breakage.
  • protective coatings having substantial thicknesses have been known for use on glass products. These, however, have been applicable only to specialized containers, for example, those employed in aerosol spray-type applications. Increased costs, production inefficiencies in capably coating ware in the quantities required, providing a coating of the quality capable of restraining and retaining glass upon fragmentation under pressure, and employment of such ware in conventional filling and handling equipment have theretofore been thought to make impossible the fruitful addition to the market of composite glass, plastic-protected ware.
  • shape-retaining, flexible resin which is not only able to restrain and retain fragments of the glass receptacle if the receptacle breaks out but also substantially alters the optical properties of the bottle.
  • the noted surface deviation creates voidlike areas that provide for increased shock protection while employing a minimum of resin material. Such re sult is obtained due to an increase in thickness adjacent the void-like areas which will bear the brunt of any physical abuse to which the container is subjected. Similarly, substantial portions of the coating are of a reduced thickness thus providing a material saving and creating the noted voids into which portions of the protruding material may flow upon impact.
  • the effective thickness of the resin sheath is that of the protruding areas and the necessity of providing a uniform overall coating thickness which would employ substantially more resin is avoided.
  • the protrusions and void-like areas of the outer envelope or sheath deviate from the mean sheath thickness by about between 50 and 120 percent. This, in effect, further defines the respective dimensions of the protrusions and void therebetween.
  • the novel plastic or resin covering or sheath also restrains and retains fragments of the glass receptacle should such receptacle be broken even when the container is pressurized to conditions approximating pounds per square inch. This effect is produced in accordance withthe invention, by providing the plastic covering or sheath of a flexible,'resilient resin which will stretch and expand rather than itself fragment in the event of receptacle failure.
  • FIG. 1 is a front elevational view of a container of the preferred embodiment
  • FIG. 2 is a partial cross-sectional view of the container shown in FIG. 1 along line 22 thereof illustrating the invention.
  • FIG. 3 is a series of curves showing the percentage of light transmission at various wave lengths for uncoated glass and glass coated with plastic in accordance with the invention.
  • container 10 as shown in FIGS. 1 and 2 comprises an inner glass receptacle or envelope l2 and an exterior outer sheath or envelope l4 comprised of a flexible shaperetaining resin contiguously covering a majority of the exterior surface 16 of receptacle l2.
  • Sheath 14 is provided on its outer exposed surface 18 with a plurality of randomly positioned outwardly extending shock and light absorbing and reflecting protrusions 20. These are separated by depressions or void-like areas 22 which are believed to permit maximum deflection and expansion of protrusions 20 in a direction parallel to surface 16 upon receipt of excessive impacts. Accordingly, this maximized deflection is believed to increase the shock absorbing characteristics of sheath l4 and in addition,
  • ASA B46.l 1962 Another indication of the quality of surface may be established by standard roughness tests (ASA B46.l 1962), for example. Using the techniques described in such standard and with a Type Q.C. Profilometer and Mototrace, it is preferred that a surface roughness value of between about 125 and 750 be measurable on bottles of this invention. Such being the case, one can also expect that the deviations from mean values as are established herein will be maintained, i.e., different measurement techniques of equivalent surface textures.
  • the protrusion/void distribution is random but it is expected that there will be about between 100 and 2,000 points of maximum and minimum outer envelope thickness per square inch of surface. It is, however, preferred that the distribution of same be retained in the range of between about 250 and 750 such points.
  • inner glass receptacle or envelope 12 has a wall thickness (Gx) of from about 0.03 to about 0.12 inches and the outer envelope 14 has a thickness of from about 0.004 to about 0.18 inches.
  • This outer envelope preferably also is formed so that specific dimensional qualities are maintained. For example, it is considered appropriate to provide a mean envelope thickness value (Px) of about between 0.008 and 0.015 inches, the preferred range being between about 0.010 and 0.015 inches.
  • Px mean envelope thickness value
  • the protrusions and voids have maximum and minimum values above and below this base value on the order of 80 to 120 percent and approximately 50 to 95 percent respectively. In other terms, it is found that the preferred mean deviation above and below the mean thickness value .varies by at least per cent.
  • sheath 14 may be any flexible and resilient resin which will stretch and expand rather than crack or fragment if inner receptacle 12 should break whether or not it is under internal pressure.
  • Thermosetting resins such as flexible crosslinked urethane rubbers or others may be used; however, thermoplastic resins are preferred since they can be formed into coatings and films more easily and react in the manner above described and as is important in carrying out the invention.
  • Thermoplastic polymers of butadicne, acrylates, ethylene, propylene, styrene, vinyl, chloride, vinyl acetate, cellulose acetate, cellulose butyrate and cellulose propionate may be used.
  • fluoroplastics, methyl pentenes, polyamides, phenoxy resin, polycarbonates, polyamides, polyphenylene oxides and polysulfone may be used.
  • the preferred plastics are inexpensive, have a relatively high tear strength, have high impact resistance, easilyform a contiguous film or coating and are flexible.
  • the preferred plastics are polyethylene, acrylonitrile-butadiene-styrene copolymers and impact polystyrene.
  • thermoplastic material as a powder, optionally by an electrostatic spraying method, onto the hot external surface of the inner receptacle;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

A container comprising an inner glass receptacle and a closely adhering exterior protective sheath substantially covering said receptacle. The exterior protective sheath is comprised of a shape-retaining, preferably thermoplastic resin adapted to restrain and retain glass fragments should the glass receptacle be broken. The sheath is further provided with a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent. Such surface characteristics in addition to their functional effects also produce interesting and attractive optical characteristics and substantially reduce the light transmittance thereof.

Description

United States Patent 1 Campagna 1 June 11, 1974 1 1 THERMOPLASTIC SHIELDED GLASS BOTTLE WITH HIGHLY ROUGHENED [58] Field of Search..... 215/1 R, l C, 12 R, DIG. 6; 1l7/17.5, 18, 33.3, 37 R, 41; 161/2, 116, 119, 124, 164, 117; 65/60; 313/110, 116, 117; 356/108, 109; 350/164, 165; 431/94 [56] References Cited UNITED STATES PATENTS 596,304 12/1897 Paquette 215/12 R 2,946,911 7/1960 Malinowski et a1 313/116 3,006,780 10/1961 Shaffer 2l5/D1G. 6 3,067,352 12/1962 Vodicka et a1. 313/116 3,178,049 4/1965 Cottet 215/1 C 3,200,280 8/1965 Thau et a1 [17/41 Primary Examiner-Wi1liam 1. Price Assistant Examiner-Stephen Marcus [5 7 ABSTRACT A container comprising an inner glass receptacle and a closely adhering exterior protective sheath substantially covering said receptacle. The exterior protective sheath is comprised of a shape-retaining, preferably thermoplastic resin adapted to restrain and retain glass fragments should the glass receptacle be broken. The sheath is further provided with a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent. Such surface characteristics in addition to their functional effects also produce interesting and attractive optical characteristics and substantially reduce the light transmittance thereof.
6 Claims, 3 Drawing Figures THERMOPLASTIC SHIELDED GLASS BOTTLE WITH HIGHLY ROUGHENED SURFACE This invention concerns protectively sheathed glassware containers and, more particularly, concerns glass receptacles which are so protected by an outer plastic envelope that substantially covers the exterior surface thereof.
As is well known in the trade, glassware is readily susceptible to breakage during handling and use. Further, the consequences of such breakage may be significantly aggravated if the contained product is carbonated or the container thereof is otherwise internally pressurized. Therefore, it has long been an objective of glassware manufacturers and users to minimize the haza rds of breakage by treating the exterior surface in numerous ways and by even adding protective overcoatings of various sorts thereto. These prior art approaches have, in fact, improved glassware standards and quality quite significantly since such have tended to effectively reduce the quantity of surface scratches and flaws in the ware and, of course, this reduction in the points of stress concentration enable the ware to retain its characteristic strength.
Such prior art treatments, for example, have included metal oxide, and combinations of thin film polyethylene coatings which provide good scratch and abrasion resistance to glassware thereby decreasing the surface flaws spoken of and likewise reducing the likelihood of breakage. Similarly, protective coatings having substantial thicknesses have been known for use on glass products. These, however, have been applicable only to specialized containers, for example, those employed in aerosol spray-type applications. Increased costs, production inefficiencies in capably coating ware in the quantities required, providing a coating of the quality capable of restraining and retaining glass upon fragmentation under pressure, and employment of such ware in conventional filling and handling equipment have theretofore been thought to make impossible the fruitful addition to the market of composite glass, plastic-protected ware.
Specific problems presented and overcome by this invention have been to provide the ware with a protective sheath or outer envelope'of a sufficient thickness and resilience to adequately restrain and retain the glass receptacle portion of a pressurized container against fragmentation. To economically accomplish this end, the volume of coating material must be minimized, yet the effective thickness thereof must be maximized to render the needed protection. Similarly, a consistently uniform, proper and good adhesion should be maintained between the glass receptacle portion and sheath portion of the container to provide the proper restraining effects. This diametrically opposed proposition, i.e., minimum material yet maximum protection, is satisfied by the novel construction of this invention.
shape-retaining, flexible resin which is not only able to restrain and retain fragments of the glass receptacle if the receptacle breaks out but also substantially alters the optical properties of the bottle.
extremely roughened sheath surface wherein there is at least a 20 percent deviation in thickness from its mean thickness. Such roughening, in particular, substantially reduces the light transmittance through the bottle. Thus, instead of exhibiting typical high transmittance, (values above 40 percent) bottles coated in accordance herewith restrict the transmitted light to below 20 percent.
Of course, the noted surface deviation creates voidlike areas that provide for increased shock protection while employing a minimum of resin material. Such re sult is obtained due to an increase in thickness adjacent the void-like areas which will bear the brunt of any physical abuse to which the container is subjected. Similarly, substantial portions of the coating are of a reduced thickness thus providing a material saving and creating the noted voids into which portions of the protruding material may flow upon impact. Thus, the effective thickness of the resin sheath is that of the protruding areas and the necessity of providing a uniform overall coating thickness which would employ substantially more resin is avoided.
To produce these desirable end results, it is preferred that the protrusions and void-like areas of the outer envelope or sheath deviate from the mean sheath thickness by about between 50 and 120 percent. This, in effect, further defines the respective dimensions of the protrusions and void therebetween. The novel plastic or resin covering or sheath also restrains and retains fragments of the glass receptacle should such receptacle be broken even when the container is pressurized to conditions approximating pounds per square inch. This effect is produced in accordance withthe invention, by providing the plastic covering or sheath of a flexible,'resilient resin which will stretch and expand rather than itself fragment in the event of receptacle failure. Such expansion of the covering before its own failure enables glass fragments to be restrained until the pressure within the receptacle escapes through initially formed, relatively small openings or fissures which may appear in the covering or sheath as it fails or until the pressure is otherwise relieved.
" FIG. 1 is a front elevational view of a container of the preferred embodiment;
FIG. 2 is a partial cross-sectional view of the container shown in FIG. 1 along line 22 thereof illustrating the invention; and
FIG. 3 is a series of curves showing the percentage of light transmission at various wave lengths for uncoated glass and glass coated with plastic in accordance with the invention.
In the preferred embodiment of the invention, container 10 as shown in FIGS. 1 and 2 comprises an inner glass receptacle or envelope l2 and an exterior outer sheath or envelope l4 comprised of a flexible shaperetaining resin contiguously covering a majority of the exterior surface 16 of receptacle l2. Sheath 14 is provided on its outer exposed surface 18 with a plurality of randomly positioned outwardly extending shock and light absorbing and reflecting protrusions 20. These are separated by depressions or void-like areas 22 which are believed to permit maximum deflection and expansion of protrusions 20 in a direction parallel to surface 16 upon receipt of excessive impacts. Accordingly, this maximized deflection is believed to increase the shock absorbing characteristics of sheath l4 and in addition,
reduces the amount of material needed for an effective Similarly, the roughening of surface 18 reduces the percentage of light transmitted through the bottle in accordance with the showing of FIG. 3. Thus, it can be seen that when an unpigmented resin is employed for the outer sheath I4 and a flint glass inner envelope is coated therewith a maximum of about percent light transmission will be expected at an 800 millimicron wave length. The transmission values are also substantially lower in the lower wave lengths of the visible spectrum and are, of course, even more suppressed when colored glass or resins are used. Likewise, it should be appreciated that light transmission will also vary with varying glass thicknesses and that the standard curves illustrated are based upon about an 0.080 ins. thickness.
Another indication of the quality of surface may be established by standard roughness tests (ASA B46.l 1962), for example. Using the techniques described in such standard and with a Type Q.C. Profilometer and Mototrace, it is preferred that a surface roughness value of between about 125 and 750 be measurable on bottles of this invention. Such being the case, one can also expect that the deviations from mean values as are established herein will be maintained, i.e., different measurement techniques of equivalent surface textures.
As was also set forth above, the protrusion/void distribution is random but it is expected that there will be about between 100 and 2,000 points of maximum and minimum outer envelope thickness per square inch of surface. It is, however, preferred that the distribution of same be retained in the range of between about 250 and 750 such points.
In the preferred embodiment, inner glass receptacle or envelope 12 has a wall thickness (Gx) of from about 0.03 to about 0.12 inches and the outer envelope 14 has a thickness of from about 0.004 to about 0.18 inches. This outer envelope preferably also is formed so that specific dimensional qualities are maintained. For example, it is considered appropriate to provide a mean envelope thickness value (Px) of about between 0.008 and 0.015 inches, the preferred range being between about 0.010 and 0.015 inches. Similarly, it is preferred that the protrusions and voids have maximum and minimum values above and below this base value on the order of 80 to 120 percent and approximately 50 to 95 percent respectively. In other terms, it is found that the preferred mean deviation above and below the mean thickness value .varies by at least per cent.
PREFERRED SHEATH OUTER SURFACE CHARACTERISTICS Px Sheath Pxl Mean Devia- Max. Max. Mean Thicktion above and Elevation Deflection ncss (in.) below Px above Px below Px 0.008 to The material of construction of sheath 14 may be any flexible and resilient resin which will stretch and expand rather than crack or fragment if inner receptacle 12 should break whether or not it is under internal pressure. Thermosetting resins such as flexible crosslinked urethane rubbers or others may be used; however, thermoplastic resins are preferred since they can be formed into coatings and films more easily and react in the manner above described and as is important in carrying out the invention.
Thermoplastic polymers of butadicne, acrylates, ethylene, propylene, styrene, vinyl, chloride, vinyl acetate, cellulose acetate, cellulose butyrate and cellulose propionate may be used. In addition, fluoroplastics, methyl pentenes, polyamides, phenoxy resin, polycarbonates, polyamides, polyphenylene oxides and polysulfone may be used.
The preferred plastics are inexpensive, have a relatively high tear strength, have high impact resistance, easilyform a contiguous film or coating and are flexible. Of those above mentioned, the preferred plastics are polyethylene, acrylonitrile-butadiene-styrene copolymers and impact polystyrene.
It is, of course, appreciated that a suitable means of application of the coating material or sheath 14 to inner glass receptacle 12 is a necessity and as examples it is suggested that any of the following may be employed depending upon the manufactures desired.
a. By spraying the thermoplastic material as a powder, optionally by an electrostatic spraying method, onto the hot external surface of the inner receptacle;
b. By dipping the inner receptacle, maintained at an appropriate-temperature, into a fluidized bed of the plastic material in powder form;
c. By dipping the inner receptacle, if desired while hot, into a molten bath of the plastic material or into a solution or a dispersion of such material, or
d. By any other material or providing a sleeve type coating to an inner glass receptacle known inthe art.
I claim:
l. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said outer envelope being further characterized in exhibiting an pproximate mean thickness of between about 0.010 inches and 0.015 inches, the maximum thickness being between about 0.008 inches and 0.015 inches in excess of the mean value and the minimum thickness being between about 0.005 inches and 0.009 inches less than the'mean value.
2. A composite bottle according to claim 1 wherein points of maximum and minimum outer envelope thicknesses are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
3. A composite bottle adapted for use in the retention of pressurized fluid media and exhibiting a highly roughened exterior surface and comprising a pressurizable inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding said glass envelope and extending over substantially the entirety thereof, said outer envelope having a mean sidewall thickness of about between 0.010 and 0.015 inches, the exterior surface of said outer envelope being further characterized in that it exhibits a mean deviation both above and below the mean envelope thickness of at least about 20 per cent.
4. A composite bottle according to claim 3 wherein points of maximum and minimum outer envelope thickness are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
5. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said outer envelope being further characterized in exhibiting an approximate mean thickness of between about 0.0l0 inches and 0.015 inches, the maximum thickness being beabout 5 and 20 percent respectively.

Claims (5)

  1. 2. A composite bottle according to claim 1 wherein points of maximum and minimum outer envelope thicknesses are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
  2. 3. A composite bottle adapted for use in the retention of pressurized fluid media and exhibiting a highly roughened exterior surface and comprising a pressurizable inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding said glass envelope and extending over substantially the entirety thereof, said outer envelope having a mean sidewall thickness of about between 0.010 and 0.015 inches, the exterior surface of said outer envelope being further characterized in that it exhibits a mean deviation both above and below the mean envelope thickness of at least about 20 per cent.
  3. 4. A composite bottle according to claim 3 wherein points of maximum and minimum outer envelope thickness are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
  4. 5. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said outer envelope being further characterized in exhibiting an approximate mean thickness of between about 0.010 inches and 0.015 inches, tHe maximum thickness being between about 80 and 120 percent in excess of the mean value and the minimum thickness being between about 50 and 95 percent less than the mean value.
  5. 6. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope of thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said bottle being further characterized in that the percentage of transmitted visible light in the range of 500 and 800 millimimicrons, varies between about 5 and 20 percent respectively.
US24506872 1971-07-13 1972-04-18 Thermoplastic shielded glass bottle with highly roughened surface Expired - Lifetime US3815865A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US16210371 US3825141A (en) 1971-07-13 1971-07-13 Covered glass bottle or the like
US23241272 US3825142A (en) 1971-07-13 1972-03-07 Thermoplastic shielded glass bottle
US24506872 US3815865A (en) 1971-07-13 1972-04-18 Thermoplastic shielded glass bottle with highly roughened surface
AU44003/72A AU475003B2 (en) 1971-07-13 1972-06-28 Thermoplastic shielding glass bottle
IT2676672A IT962638B (en) 1971-07-13 1972-07-07 GLASS BOTTLE SHIELDED WITH THERMOPLASTIC MATERIAL
NL7209568A NL7209568A (en) 1971-07-13 1972-07-10
JP6950472A JPS5248876B2 (en) 1971-07-13 1972-07-11
FR7225240A FR2145630B1 (en) 1971-07-13 1972-07-12
DE2234212A DE2234212A1 (en) 1971-07-13 1972-07-12 BOTTLE PROTECTED AGAINST BREAKAGE
GB3264272A GB1396012A (en) 1971-07-13 1972-07-12 Thermoplastic shielded glass container
BE786196A BE786196A (en) 1971-07-13 1972-07-12 BOTTLES PROTECTED BY A THERMOPLASTIC MATERIAL COATING
CA146,976A CA983416A (en) 1971-07-13 1972-07-12 Thermoplastic shielded glass bottle
SE915672A SE378238B (en) 1971-07-13 1972-07-12

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16210371 US3825141A (en) 1971-07-13 1971-07-13 Covered glass bottle or the like
US23241272 US3825142A (en) 1971-07-13 1972-03-07 Thermoplastic shielded glass bottle
US24506872 US3815865A (en) 1971-07-13 1972-04-18 Thermoplastic shielded glass bottle with highly roughened surface

Publications (1)

Publication Number Publication Date
US3815865A true US3815865A (en) 1974-06-11

Family

ID=27388723

Family Applications (3)

Application Number Title Priority Date Filing Date
US16210371 Expired - Lifetime US3825141A (en) 1971-07-13 1971-07-13 Covered glass bottle or the like
US23241272 Expired - Lifetime US3825142A (en) 1971-07-13 1972-03-07 Thermoplastic shielded glass bottle
US24506872 Expired - Lifetime US3815865A (en) 1971-07-13 1972-04-18 Thermoplastic shielded glass bottle with highly roughened surface

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16210371 Expired - Lifetime US3825141A (en) 1971-07-13 1971-07-13 Covered glass bottle or the like
US23241272 Expired - Lifetime US3825142A (en) 1971-07-13 1972-03-07 Thermoplastic shielded glass bottle

Country Status (11)

Country Link
US (3) US3825141A (en)
JP (1) JPS5248876B2 (en)
AU (1) AU475003B2 (en)
BE (1) BE786196A (en)
CA (1) CA983416A (en)
DE (1) DE2234212A1 (en)
FR (1) FR2145630B1 (en)
GB (1) GB1396012A (en)
IT (1) IT962638B (en)
NL (1) NL7209568A (en)
SE (1) SE378238B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860906A (en) * 1987-09-14 1989-08-29 Bloomfield Industries, Inc. Glass container with safety coating

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327276Y2 (en) * 1973-03-23 1978-07-11
US3912100A (en) * 1973-06-21 1975-10-14 Owens Illinois Inc Coated glass container and method of making same
US4238041A (en) * 1973-12-07 1980-12-09 Bodelind Bo T Glass container with a fixed plastic protective layer
US4086373A (en) * 1975-04-02 1978-04-25 Owens-Illinois, Inc. Protective polymeric coating for glass substrate
US4065589A (en) * 1975-06-09 1977-12-27 Owens-Illinois, Inc. Polymeric coating for protection of glass substrate
US4053076A (en) * 1976-06-03 1977-10-11 The Dexter Corporation Coatings for shatterproofing glass bottles
CA1103103A (en) * 1976-08-04 1981-06-16 Harry W. Blunt Coated bottles
US4140252A (en) * 1976-09-27 1979-02-20 Cory Food Services, Inc. Decanter having set-in-place sealing means
US4256231A (en) * 1976-10-21 1981-03-17 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Container with a synthetic lining impermeable to liquids and method of making
JPS5383361U (en) * 1976-12-09 1978-07-10
US4207356A (en) * 1976-12-09 1980-06-10 The D. L. Auld Company Method for coating glass containers
JPS5852184A (en) * 1981-09-21 1983-03-28 株式会社日立製作所 Method of protecting feed cable of moving body
US4620985A (en) * 1985-03-22 1986-11-04 The D. L. Auld Company Circumferential groove coating method for protecting a glass bottle
US4785950A (en) * 1986-03-12 1988-11-22 Continental Pet Technologies, Inc. Plastic bottle base reinforcement
DE8712608U1 (en) * 1987-09-18 1987-10-29 Weinbrennerei Pabst & Richarz GmbH & Co, 2887 Elsfleth Glass liqueur bottle
US6095787A (en) * 1998-10-19 2000-08-01 The Colonel's, Inc. Method of making a skid-resistant bed liner
GB2357809B (en) * 1999-12-30 2003-09-03 P & M Products Ltd Improvements in and relating to liquid dispensing apparatus
US20030116527A1 (en) * 2001-12-21 2003-06-26 Beaver Ted L. Device and method for preventing skidding of a container
FR2841224B1 (en) * 2002-06-19 2004-08-06 Sleever Int PACKAGING OF OBJECT (S) IN HEAT SHRINKABLE MATERIAL WITH RELIEF PATTERN
US6848733B2 (en) * 2002-11-08 2005-02-01 Durakon Industries, Inc. Co-formed bed liner having enhanced frictional characteristics
US6851391B1 (en) * 2003-07-18 2005-02-08 Paw Wash Llc Apparatus for cleaning an animal's paw
US7116183B2 (en) * 2004-02-05 2006-10-03 Qualcomm Incorporated Temperature compensated voltage controlled oscillator
US7820452B2 (en) * 2004-06-24 2010-10-26 Martin Parkinson Transparent elastomer safety shield
USD633807S1 (en) 2007-02-16 2011-03-08 S.C. Johnson & Son, Inc. Bottle
USD607335S1 (en) 2009-03-13 2010-01-05 S.C. Johnson & Son, Inc. Bottle
US8132683B2 (en) * 2009-05-13 2012-03-13 Evenflo Company, Inc. Protective bottle sling
USD642925S1 (en) 2009-06-17 2011-08-09 S.C. Johnson & Son, Inc. Bottle
USD649467S1 (en) * 2010-05-12 2011-11-29 S. C. Johnson & Son, Inc. Bottle
US20120074091A1 (en) * 2010-09-24 2012-03-29 Himelstein Walter D Safety-coated glass bottle
USD660714S1 (en) 2010-12-06 2012-05-29 S.C. Johnson & Son, Inc. Bottle
USD736089S1 (en) 2012-06-14 2015-08-11 S.C. Johnson & Son, Inc. Bottle
USD736637S1 (en) 2012-06-14 2015-08-18 S.C. Johnson & Son, Inc. Bottle
USD722879S1 (en) 2012-06-14 2015-02-24 S.C. Johnson & Son, Inc. Bottle
US9883759B2 (en) 2014-01-09 2018-02-06 Goverre, Inc. Closeable beverage lid
USD812478S1 (en) * 2014-09-15 2018-03-13 Ball Corporation Metal bottle
USD809390S1 (en) * 2015-01-05 2018-02-06 Ball Corporation Metal bottle
FR3080368B1 (en) * 2018-04-20 2021-04-23 Virbac SHOCK PROTECTION DEVICE SUITABLE TO EQUIP A BOTTLE
US11247813B2 (en) 2018-07-11 2022-02-15 Kao Usa Inc. Container assembly and system and method thereof
USD1008027S1 (en) 2019-05-01 2023-12-19 S. C. Johnson & Son, Inc. Bottle
USD873140S1 (en) * 2019-05-06 2020-01-21 Natura Cosméticos S.A. Flask

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US596304A (en) * 1897-12-28 Bottle-protector
US2946911A (en) * 1957-11-01 1960-07-26 Gen Electric Coated electric lamp
US3006780A (en) * 1959-11-04 1961-10-31 Harry S Shaffer Cellular coating and method of producing the same
US3067352A (en) * 1959-02-05 1962-12-04 Gen Electric Coated electric lamp and method of manufacture
US3178049A (en) * 1963-01-25 1965-04-13 Rhone Poulenc Sa Composite receptacles
US3200280A (en) * 1960-12-13 1965-08-10 Universal Coatings Inc Decorative light source
US3513970A (en) * 1967-11-17 1970-05-26 Robert J Eckholm Jr Container carrier
DE2026909A1 (en) * 1969-06-03 1970-12-10 Aktiebolage_t Platmanufaktur, Malmö (Schweden) Packaging with a hollow body made of glass and process for the manufacture thereof
US3560240A (en) * 1969-09-10 1971-02-02 Enameled Steel & Sign Co Inc Crackling coat process and apparatus
US3589973A (en) * 1966-10-31 1971-06-29 Grace W R & Co Suede type product
US3599362A (en) * 1968-11-13 1971-08-17 Kloeber Fa Hans Drinking glass

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US596304A (en) * 1897-12-28 Bottle-protector
US2946911A (en) * 1957-11-01 1960-07-26 Gen Electric Coated electric lamp
US3067352A (en) * 1959-02-05 1962-12-04 Gen Electric Coated electric lamp and method of manufacture
US3006780A (en) * 1959-11-04 1961-10-31 Harry S Shaffer Cellular coating and method of producing the same
US3200280A (en) * 1960-12-13 1965-08-10 Universal Coatings Inc Decorative light source
US3178049A (en) * 1963-01-25 1965-04-13 Rhone Poulenc Sa Composite receptacles
US3589973A (en) * 1966-10-31 1971-06-29 Grace W R & Co Suede type product
US3513970A (en) * 1967-11-17 1970-05-26 Robert J Eckholm Jr Container carrier
US3599362A (en) * 1968-11-13 1971-08-17 Kloeber Fa Hans Drinking glass
DE2026909A1 (en) * 1969-06-03 1970-12-10 Aktiebolage_t Platmanufaktur, Malmö (Schweden) Packaging with a hollow body made of glass and process for the manufacture thereof
US3560240A (en) * 1969-09-10 1971-02-02 Enameled Steel & Sign Co Inc Crackling coat process and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860906A (en) * 1987-09-14 1989-08-29 Bloomfield Industries, Inc. Glass container with safety coating

Also Published As

Publication number Publication date
NL7209568A (en) 1973-01-16
BE786196A (en) 1973-01-12
DE2234212A1 (en) 1973-02-08
JPS4840581A (en) 1973-06-14
US3825142A (en) 1974-07-23
FR2145630A1 (en) 1973-02-23
GB1396012A (en) 1975-05-29
AU4400372A (en) 1974-01-03
CA983416A (en) 1976-02-10
IT962638B (en) 1973-12-31
AU475003B2 (en) 1976-08-12
JPS5248876B2 (en) 1977-12-13
US3825141A (en) 1974-07-23
FR2145630B1 (en) 1974-07-26
SE378238B (en) 1975-08-25

Similar Documents

Publication Publication Date Title
US3815865A (en) Thermoplastic shielded glass bottle with highly roughened surface
US3823032A (en) Glass bottles coated with multiprotective film layers
US3604584A (en) Method for protecting glassware and the article produced thereby
US4552791A (en) Plastic container with decreased gas permeability
US3415673A (en) Coated glass article and process for making same
US4478874A (en) Methods for improving the gas barrier properties of polymeric containers
US5725956A (en) Method and material for protecting glass surfaces
WO1995010487A1 (en) Method of producing an article with a body of glass having protective coatings of polymeric material
US4569869A (en) Saturated polyester bottle-shaped container with hard coating and method of fabricating the same
US4225049A (en) Packaged article covered with special film
US3859117A (en) Coated glass container
US3554787A (en) Glass article having dual scratch and abrasion resistant coating and method for producing same
US3772061A (en) Containers and methods of preparing
US3903339A (en) Glass container coated with plastic containment film and method of making
US3864152A (en) Coated glass bottle
US3362843A (en) Glass aerosol bottles and method for making same
CA1103103A (en) Coated bottles
US4098934A (en) Shatter resistant glass container
US3889030A (en) Method of coating glass article and improved coated glassware product
US3944100A (en) Containment coating composition
US2714570A (en) Cushioned wrapping material
US3775161A (en) Electric lamp envelope having clear protective coating and method of making
US3875763A (en) Method of strengthening glass containers
CA1052640A (en) Coated bottle
EP4073009B1 (en) Glass container with a protective coating of acrylate urethane polymer deposited on an exterior surface of the glass container; method of producing such glass container and use of such glass container

Legal Events

Date Code Title Description
AS Assignment

Owner name: THATCHER GLASS CORPORATION, 7 RIVERSVILLE RD., GRE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DART INDUSTRIES INC.;REEL/FRAME:003960/0808

Effective date: 19820104

AS Assignment

Owner name: DIAMOND THATCHER INC., FIRST AVE., ROYERSFORD, PA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO CONDITIONS RECITED;ASSIGNOR:THATCHER GLASS CORPORATION A DE CORP;REEL/FRAME:004424/0109

Effective date: 19850701