US3814088A - Orthopedic boot - Google Patents

Orthopedic boot Download PDF

Info

Publication number
US3814088A
US3814088A US00217217A US21721772A US3814088A US 3814088 A US3814088 A US 3814088A US 00217217 A US00217217 A US 00217217A US 21721772 A US21721772 A US 21721772A US 3814088 A US3814088 A US 3814088A
Authority
US
United States
Prior art keywords
boot
sole
splints
foot
sole plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00217217A
Inventor
E Raymond
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00217217A priority Critical patent/US3814088A/en
Application granted granted Critical
Publication of US3814088A publication Critical patent/US3814088A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F5/0104Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations without articulation
    • A61F5/0111Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations without articulation for the feet or ankles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements

Definitions

  • ABSTRACT A snugly fitting orthopedic boot having a rigid sole wherein the sole plate is part of a unitary frame along with side splints for the leg extending upwardly from the sole plate.
  • the junction of each side splint with the sole plate is sufficiently long to render the side splints substantially inflexible in the longitudinal direction of the soleiplate, and the entire frame is encased in a generally.
  • conventional leather boot structure which is preferably provided with an open toe construction and lacing means extendingfrom toe to top of the boot to provide a very snug fit.
  • the internal frame is rigid enough to immobilize the foot and permit walking and bearing weight on an injured foot or ankle without any significant articulating motion of any joint of the foot or ankle.
  • FIGS BACKGROUND OF THE INVENTION 1.
  • This invention is concerned with an orthopedic device for immobilizing the skeletal joints of the human foot and thereby permit a patient convalescing from a foot or ankle injury to walk without any danger of further injury to the foot or of hindering its healing.
  • Prior Art A number of devices have been proposed for enabling a-person with an injured foot or leg to walk during the period of .convalescence by securing one or more. joints of the injured memberagainst any motion of the bones relative to one another.
  • Walking leg casts are being used to a considerable extent for the purpose. These are typically plaster casts completely surrounding the lower leg, and often practically the'entire leg; and they usually have a rubber heel or'sometimes a metal stirrup extending from the lower extremity of the plaster for contact with the ground and supporting, in conjunction with the entire cast, the weight of the patient while walking. Although these casts provide excellent protection for the wearer, they are not only very conspicuous but also cumbersome by reason of their size and weightirnoreover they are often rather uncomfortable.
  • the long narrow rods, tubes and slotted bars employed as side splints may be expected to provide rather low resistance to flexure in the longitudinal direction of the foot, and consequently relatively little protection of the ankle, etc. joints,- for theamount of weight involved in such apparatus.
  • the present invention relates to an orthopedic boot which effectually immobilizes allskeletal joints of an injured foot or ankle and permits the patient to walk and bear weight on the leg, ankle and foot which carry the patients weight without pain and without further injury.
  • the novel combination of features involves a rigid sole which includes a sole plate that constitutes part of a unitary frame that is provided with a stiff splint extending upwardly from each side of the sole plate, a
  • Still otheraspects of the invention relate to one or more of such features as the side splints shaped to at least approximately fit the leg of the wearer and also to increase the rigidity of said frame; an internal frame wherein the side splints are integral with the sole plate; a frame wherein the length of the junction between each side splint and the sole plate is more than about 20 percent (and preferably over percent) of the length of the sole; lacing means extending from the toe of the boot to its top for insuring a snug fit that will prevent motion of the jointsiboots of the below-the-kneetype; the inclusion of arch supports for adjusting or improving the fit; side splints which preferably extend upwardsubstantially the entire height of the boot, and another element for enhancing the rigidity of the internal frame in the form of a U-shaped counter surrounding the heel and affixed both to the sole plate and the side splints.
  • FIG. 1 is a front elevation of oneembodiment of an orthopedic boot according to the present invention shown on the leg-of the wearer;
  • FIG. 2 is a corresponding side elevation
  • FIG. 3 is a vertical sectional view of another embodimerit of the boot taken on a plane corresponding to the line 3-3 of FIG.'2;
  • FIG. 4 is a fragmentary horizontal section of the side of the boottaken on the line 4-4 of FIG. 3;
  • boot upper section affixed to both the sole and splints
  • FIG. 5 is a fragmentary vertical section of the lower part of the boot taken on the plane of the line 5-5 of FIG. 3.
  • pads of cotton fiber, foam rubber, various synthetic resin foams of the flexible type, felt or cotton batting may be used to adjust the boot to the leg and foot of the wearer.
  • padding in that manner can greatly assist fitting the boot on various patients having different foot and leg sizes. Such padding may also ease the discomfort of a sore or tender foot or leg.
  • the toe of the boot may be of the closed type, particularly where the boot is likely to be worn out of doors during inclement weather.
  • the open toe boot with the full length lacing of FIG. 1 is preferred in order to provide a better fit than is obtainable with a closed toe boot, especially in the case of a universal boot. It is often important to obtain the closest possible lit of the boot to the contours of the leg and foot of the patient in order. to'preventany articulating motion within the various joints of the wearer.
  • the fit of the boot may also be improved in some instances by installing an arch insert 14 within the boot in the approximate location shown in dotted lines in FIG. 2.
  • an arch insert may vary in size and location according to the patients requirements, and it may be secured in the proper location on the inner sole of the boot by means of a temporary adhesive of the pressure sensitive type which retains its tackiness in order to facilitate removal of the arch support in fitting the boot to another patient.
  • Another method of fittin g a universal size boot to feet or legs of different proportions involves the use of a double-walled sock or sleeve of rubber or other suitable elastomer which may be inflated by a suitable fluid under pressure, such as compressed air, to fill the space between the leg and foot of the wearer and interior of the boot.
  • a sock may be divided into a plurality of separate compartments which are inflated separately.
  • an inflated sock is employed it is generally advisable for the patient to wear a sock of absorbent material to avoiddiscomfortfrom perspiration.
  • The, foot and ankle joints are immobilized while walking in this boot by means of a unitary frame which is composed of three parts or sections in the form of a sole plate 15 and two upwardly extending side splints 16 which are affixed to both plate 15 and the leg section 11 of the boot as described hereinafter.
  • this frame may be made of relatively thin material, for instance, 1/32 inch or even somewhat thinner sheet metal in some cases, it produces surprising rigidity in a well laced boot by reason of its disposition and configuration within the boot structure. It will be observed in FIGS.
  • the sole plate extends for'substantially the full length of the sole structure 10, that splints l6 desirably extend to thetop of the boot, and that the junctions l7 of the lower ends of side splints 16 with plate 15 extend over a substantial proportion of the length of the sole, desirably from the heel to about the ball of the foot as in FIG. 2.
  • This structural combination of long junctions 17 between long splints and a long sole plate provides for a very high degree of resistance against flexing of the boot and the enclosed joints ina vertical plane oriented with the length of the foot, that is, in the longitudinal direction of the sole plate. That also is the important direction for immobilizingthe skeletal joints involved because most of the normal articulating motion in the ankle and other joints of the foot takes place in a vertical plane disposed along the length of the foot.
  • suitable lengths for the junctions 17 may be based upon the length of the sole of the boot, for greater rigidity is re quired in an orthopedic boot having a 15-inch long sole and worn by a man weighing 200 pounds than in a 7- inch boot on a small child.
  • the length of each junction or crease l7 exceeds about 20 percent of the length of the boot sole, but a length of at least about 50 percent on that basis and a minimum of about 2 inches is preferable for most-of suchprotective boots, and junction lengths above about 75 percent of the sole length are better still; long junctions are particularly preferred.
  • the rigidity of the boot structure is also improved by relatively long side splints 16, and these desirably extend for at least 40 percent of the distance above the ankle joint toward the knee joint, and prefer-;
  • the structural rigidity imparted by the internal frame member may be increased by the additional rigidity imparted by form-' ing the side splints 16 into curves which approximate the contours (see FIG. 4) of the wearers leg.
  • Boots of this invention are somewhat less rigid in the transverse direction, that isin a plane perpendicular to the longitudinal direction of the sole, than they are in the longitudinal direction; but walking does not impose stresses in the transverse direction as large asthose encountered in the longitudinal direction. Also, a small or moderate amount of flexibility in the transverse'direction prior to lacing theboot is'helpful in enabling the side splints to fit closely to the contours of the wearers leg asthe boot is being laced. In addition, the embodiment of the boot with a rigid heel counter as illustrated in F IG. 3 and'describedhereinafter affords greater protection against transverse flexure.
  • the side splints 16 are desirably encased in the sides of the boot uppers between the exterior layer 18 of leather or other flexible boot material and the lining 19 of the boot, since it is generally preferable to keep the mate-,
  • the boot exterior 18 is desirably made of a relatively stiff leather or leather substitute, such as various synthetic resin materials, including poromeric materials, and optionally reinforced with textile or glass fibers; such material should be sufficiently flexible or contoured to provide a good fit when properly laced. Also, one may use a relatively limp leg covering material, such'as the rubber or rubberized cloth uppers of galoshes, particularly when relatively stiff side splints are used.
  • The'innerlini'ng l9v is .generally arelatively flexible and ,limp material, and it may be fabricated from leather of one of the aforesaid substitutes in a conventional manner.
  • The. lining 19 may also be fabricated from a flexible plastic foam or foam rubber when the limb of the wearer is still sore or tender as the result of injury.
  • the side splints 16 are affixed to the upper or leg covering portions of the boot in order to provide the rigidity in the internal unitary frame that immobilizes the ankle foot joints, and this involved firmly securing those splints, and particularly their upper ends, to the side walls of the leg of the-boot.
  • This. maybe accomplished by cementing the side splints to either of the outer leather layer 18 or the liner 19 or both using a conventional synthetic resin adhesive; also the side splints may be attached to the boot wall by a series of rivets commencing near the top of the splints and continuing downwards, preferably at relative closely spaced intervals of about 1 inch or less, or both-rivets and adhesive may be employed as an extra precaution.
  • the internal supporting frame consists of a flat sole plate 15 and two sides splints l6 which extend upwardly from each side of the sole plate, and these side splints are not joined in the back of the heel.
  • splints that are curved in both horizontal cross section as shown in FIG. 4 and in vertical cross section in order to provide better fitting of the boot as well as the improved rigidity mentioned earlier.
  • FIG. 3 Another embodiment of theinvention is illustrated in FIG. 3, wherein a stiff and solid counter 20, which is U- shaped in horizontal cross section, extends completely around the heel of the boot instead of being split at the rear in the usual fashion.
  • This heel counter extends above the inner sole 21 for a short distance, as for instance about l.5 to 4 or more inches; above that point the rear edges of the two splints 16 project separately upward on each side of the boot from the counter 20.
  • This counter is unitary, and preferably formed integrally, with the other frame members, namely splints l6 and sole plate 15.
  • the internal frame structure may be constructed of a variety of materials and it may be fabricated by a number of different methods.
  • the finished frame with its upstanding side splints should be as rigid as possible, for only a minor degree of transverse flexure is necessary in the said splints in fitting the boot; as by lacing.
  • thinness and lightness of the frame are desirable in promoting the comfort and convenience of the wearer. A good balance between these somewhat contradictory qualities can be obtained by a suitable choice of materials and construction of the frame.
  • the configuration of the frame member also plays a very important part in obtaining desired rigidity.
  • the material of the frame members l5, l6, and 20 should be as stiff as possible; but it is often desirable, as in the case of sheet metals, to use material which may be bent into curves to fit the leg or creased at right angles as in the junction of the sole plate and said splints. In other cases, it is possible to use materials which cannot be creased or even bent but which may be shaped by casting or various types of molding.
  • sheet metals as exemplified by ordinary and stainless steels and especially the light metals, such as magnesium, titanium and aluminum or their alloys, preferably metals of relatively stiff characteristics. Sheet metal may be cut and shaped with the conventional tools, and other metals may be formed into the final shape of the entire frame or any of its several parts by forging by hand or machine, or by casting in the case of the light metals.
  • suitable materials include, flat and molded plywood, and a great variety of plastic materials containing the usual fillers and reinforcing agents and especially the laminates of paper, synthetic and natural fabrics including cotton, nylon and hemp, etc. and glass fibers in woven or mat form impregnated with any of a variety of resins that produce a stiff product, including, inter alia, unsaturated polyester, melamineformaldehyde, urea-formaldehyde, phenolformaldehyde, epoxy, polystyrene and other rigid thermoplastic resins.
  • the selected resin in either the filled or unfilled state, with or without fiber reinforcement may be formed at an appropriate room or elevated temperature by known methods, including casting, hand lay-up, vacuum forming or matched die molding techniques.
  • the internal frame member is a unitary structure comprising sole plate 15 and side splints l6 and optionally counter 20), and it is preferably, but not necessarily, an integral structure with the splints and sole plate being constructed from a single piece of material.
  • metal side splints into the desired contours and then weld or rivet those splints to a sole plate of the same or a different metal which may have upturned flanges at the side to facilitate joining the three pieces.
  • the sole plate 15 may constitute the entire sole of the boot, but it is generally preferable for maximum comfort to employ a composite sole structure 10 wherein this plate is securely attached to one or more layers of other materials which may include an inner sole of leather or the like and an outer sole of rubber or leather or equivalent material. Also, the sole plate may be attached to another layer of stiffening material (e.g., cemented to a layer of plywood or a plastic laminate) in the sole of a boot that has a relatively thin sheet metal sole plate. In any event, the sole plate member 15 of the unitary frame is all or part of the sole structure, and it contributes stiffness to that structure.
  • a composite sole 10 of the wedge type inclined downwardly towards the front is depicted in F IG. 5 with a sole plate 15 molded or laminated in the interior thereof.
  • This multilayer sole structure is made up of an outer sole 22 of leather, a sole plate 15 which is part of the protective. frame of this invention, a cushioning layer of fairly firm sponge rubber or foamed plastic 23 and a leather or cloth inner sole 21.
  • the boots of this invention may also be made in full thigh length with the side splints and laced leg of the boot extending almost to the hip for the purpose of immobilizing the knee joint as well as the lower joints, it is believed that the major utility of the present invention is concerned with below-the-knee boots that are designed to immobilize foot and ankle joints.
  • the boots of this invention may be relatively inconspicuous, especially when most of the boot is covered by a leg of a pair of trousers or slacks; more importantly these boots are of moderate size and relatively light weight while still providing a surprising degree of structural rigidity that immobilizes all the joints of the foot and ankle against articulating motion within the joint while the patient is walking.
  • An orthopedic boot of the ambulatory type to permit walking without any substantial articulating motion of any joints of the foot comprising a rigid sole structure, a boot upper section assembly of substantially knee length secured to said sole structure, means associated with said upper section assembly for adjusting the boot to the leg of a wearer, and a unitary frame member positioned to said sole structure and said upper section, said frame member including a rigid sole plate secured to and extending for substantially the entire length of said sole structure, and a rigid side splint secured to and extending upwardly from each side edge of said sole plate, the jointure line of each of said side splints to said sole plate extending for a longitudinal length of at least about percent of the length of said sole structure, each of said side splints being encased in said upper section assembly and extending upwardly to substantially the top of the upper section assembly, and at least a substantial portion of the upper section of said side splints being curved to generally fit the contours of the leg of the wearer.
  • a boot according to claim 1 in which said means for adjusting said boot comprises lacing means extending from substantially the toe of said boot to the top thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

A snugly fitting orthopedic boot having a rigid sole wherein the sole plate is part of a unitary frame along with side splints for the leg extending upwardly from the sole plate. The junction of each side splint with the sole plate is sufficiently long to render the side splints substantially inflexible in the longitudinal direction of the sole plate, and the entire frame is encased in a generally conventional leather boot structure which is preferably provided with an open toe construction and lacing means extending from toe to top of the boot to provide a very snug fit. When the boot is properly laced, the internal frame is rigid enough to immobilize the foot and permit walking and bearing weight on an injured foot or ankle without any significant articulating motion of any joint of the foot or ankle.

Description

United States Patent [19] Raymond 3,814,088 June 4, 1974 ORTHOPEDIC BOOT [76] lnventor: Edward A. Raymond, 180 E. l-lartsdale Ave., Hartsdale, NY.
[22] Filed: Jan. 12, 1972 [21 Appl. No.: 217,217
[52] U.S. Cl. 128/87 R, 128/80 H [51]. Int. Cl. H, A6lf 5/04 [58] Field of Search; 128/89, 87, 80, 84; 36/25 F, 2.5 N, 2.5 G, 2.5 R, 33,168
[5 6] References Cited UNITED STATES PATENTS 487,492 12/1892 Pugsley 36/25v N 1,216,579 2/1971 Lemieux 36/2.5 G 1,517,603 12/1924 Vallery 36/2.5 N 1,587,562 6/1926 Swanson 36/25 N 1,717,432 6/1929 Bottimj 36/25 F 2,696,208 l2/l954 Falls 128/84 R 3,661,151 5/1972 Schoenbrun l28/87TR Primary Examiner-Richard A. Gaudet Assistant Examiner-J. Yasko [57] ABSTRACT A snugly fitting orthopedic boot having a rigid sole wherein the sole plate is part of a unitary frame along with side splints for the leg extending upwardly from the sole plate. The junction of each side splint with the sole plate is sufficiently long to render the side splints substantially inflexible in the longitudinal direction of the soleiplate, and the entire frame is encased in a generally. conventional leather boot structure which is preferably provided with an open toe construction and lacing means extendingfrom toe to top of the boot to provide a very snug fit. When the boot is properly laced, the internal frame is rigid enough to immobilize the foot and permit walking and bearing weight on an injured foot or ankle without any significant articulating motion of any joint of the foot or ankle.
4 Claims, 5 Drawing Figures PATENTEDJM 4:914
Q'I l/Il FIGS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention is concerned with an orthopedic device for immobilizing the skeletal joints of the human foot and thereby permit a patient convalescing from a foot or ankle injury to walk without any danger of further injury to the foot or of hindering its healing.
2. Prior Art A number of devices have been proposed for enabling a-person with an injured foot or leg to walk during the period of .convalescence by securing one or more. joints of the injured memberagainst any motion of the bones relative to one another. Walking leg casts are being used to a considerable extent for the purpose. These are typically plaster casts completely surrounding the lower leg, and often practically the'entire leg; and they usually have a rubber heel or'sometimes a metal stirrup extending from the lower extremity of the plaster for contact with the ground and supporting, in conjunction with the entire cast, the weight of the patient while walking. Although these casts provide excellent protection for the wearer, they are not only very conspicuous but also cumbersome by reason of their size and weightirnoreover they are often rather uncomfortable.
Some of the proposals for improving the comfort or ease of walking of a patient iria leg cast did not eliminate the plaster cast with its bulk and weight but merely added attachments to the cast as exemplified by US. Pat. Nos. 2,278,626 and 3,085,569. Other devices provided adjustable leg splints in the form of rods or bars which wereadjustable to hip length as illustrated by U.S. Pat. Nos. 874,446 and l ,226,0l3. These devices seem to have been intended chiefly or wholly for use in cases of leg or knee injuries rather than an injured foot, because there do not appear to have been any specific provisions for immobilizing the joints of the foot, particularly the ankle joint, of an ambulatory patient. Moreover, the long narrow rods, tubes and slotted bars employed as side splints may be expected to provide rather low resistance to flexure in the longitudinal direction of the foot, and consequently relatively little protection of the ankle, etc. joints,- for theamount of weight involved in such apparatus. There was no disclosure of any convenient means for attaching the splints along the leg of the wearer, for Pat. No. 1,226,013 describes a cumbersome, and doubtless rather uncomfortable, array of many overlapping bands and straps for such purposes as exertingtraction on the injured limb and of keeping weight off of the injured member while walking.
SUMMARY OF THE INVENTION The present invention relates to an orthopedic boot which effectually immobilizes allskeletal joints of an injured foot or ankle and permits the patient to walk and bear weight on the leg, ankle and foot which carry the patients weight without pain and without further injury. The novel combination of features involves a rigid sole which includes a sole plate that constitutes part of a unitary frame that is provided with a stiff splint extending upwardly from each side of the sole plate, a
2 gitudinal direction of the foot or sole and means for titting and fastening the boot to the ,wearers leg.
Still otheraspects of the invention relate to one or more of such features as the side splints shaped to at least approximately fit the leg of the wearer and also to increase the rigidity of said frame; an internal frame wherein the side splints are integral with the sole plate; a frame wherein the length of the junction between each side splint and the sole plate is more than about 20 percent (and preferably over percent) of the length of the sole; lacing means extending from the toe of the boot to its top for insuring a snug fit that will prevent motion of the jointsiboots of the below-the-kneetype; the inclusion of arch supports for adjusting or improving the fit; side splints which preferably extend upwardsubstantially the entire height of the boot, and another element for enhancing the rigidity of the internal frame in the form of a U-shaped counter surrounding the heel and affixed both to the sole plate and the side splints.
DESCRIPTION or THE-DRAWINGS In the accompanying drawings:
FIG. 1 is a front elevation of oneembodiment of an orthopedic boot according to the present invention shown on the leg-of the wearer; I
FIG. 2 is a corresponding side elevation;
FIG. 3 is a vertical sectional view of another embodimerit of the boot taken on a plane corresponding to the line 3-3 of FIG.'2;
FIG. 4 is a fragmentary horizontal section of the side of the boottaken on the line 4-4 of FIG. 3; and
boot upper section affixed to both the sole and splints,
said side splints being substantially inflexible in thelon- FIG. 5 is a fragmentary vertical section of the lower part of the boot taken on the plane of the line 5-5 of FIG. 3. I
Q DESCRIPTION OF SPECIFIC EMBODIMENTS eyelets 13in order that one may either lace up or remove the boot quicker, or using straps and buckles,
snap hooks or zippers; but lacing is generally preferable in providing a snugger fit. Moreover, pads of cotton fiber, foam rubber, various synthetic resin foams of the flexible type, felt or cotton batting may be used to adjust the boot to the leg and foot of the wearer. In the case of a universal or one size boot, padding in that manner can greatly assist fitting the boot on various patients having different foot and leg sizes. Such padding may also ease the discomfort of a sore or tender foot or leg.
The toe of the boot may be of the closed type, particularly where the boot is likely to be worn out of doors during inclement weather. However, in many cases, the open toe boot with the full length lacing of FIG. 1 is preferred in order to provide a better fit than is obtainable with a closed toe boot, especially in the case of a universal boot. It is often important to obtain the closest possible lit of the boot to the contours of the leg and foot of the patient in order. to'preventany articulating motion within the various joints of the wearer.
l The fit of the boot may also be improved in some instances by installing an arch insert 14 within the boot in the approximate location shown in dotted lines in FIG. 2. Such an arch insert may vary in size and location according to the patients requirements, and it may be secured in the proper location on the inner sole of the boot by means of a temporary adhesive of the pressure sensitive type which retains its tackiness in order to facilitate removal of the arch support in fitting the boot to another patient.
Another method of fittin g a universal size boot to feet or legs of different proportions involves the use of a double-walled sock or sleeve of rubber or other suitable elastomer which may be inflated by a suitable fluid under pressure, such as compressed air, to fill the space between the leg and foot of the wearer and interior of the boot. Such a sock may be divided into a plurality of separate compartments which are inflated separately. When an inflated sock is employed it is generally advisable for the patient to wear a sock of absorbent material to avoiddiscomfortfrom perspiration. The, foot and ankle joints are immobilized while walking in this boot by means of a unitary frame which is composed of three parts or sections in the form of a sole plate 15 and two upwardly extending side splints 16 which are affixed to both plate 15 and the leg section 11 of the boot as described hereinafter. Although this frame may be made of relatively thin material, for instance, 1/32 inch or even somewhat thinner sheet metal in some cases, it produces surprising rigidity in a well laced boot by reason of its disposition and configuration within the boot structure. It will be observed in FIGS. 2 and 5 that the sole plate extends for'substantially the full length of the sole structure 10, that splints l6 desirably extend to thetop of the boot, and that the junctions l7 of the lower ends of side splints 16 with plate 15 extend over a substantial proportion of the length of the sole, desirably from the heel to about the ball of the foot as in FIG. 2. This structural combination of long junctions 17 between long splints and a long sole plate provides for a very high degree of resistance against flexing of the boot and the enclosed joints ina vertical plane oriented with the length of the foot, that is, in the longitudinal direction of the sole plate. That also is the important direction for immobilizingthe skeletal joints involved because most of the normal articulating motion in the ankle and other joints of the foot takes place in a vertical plane disposed along the length of the foot.
In resisting such longitudinal flexural stresses, suitable lengths for the junctions 17 may be based upon the length of the sole of the boot, for greater rigidity is re quired in an orthopedic boot having a 15-inch long sole and worn by a man weighing 200 pounds than in a 7- inch boot on a small child. Usually, the length of each junction or crease l7 exceeds about 20 percent of the length of the boot sole, but a length of at least about 50 percent on that basis and a minimum of about 2 inches is preferable for most-of suchprotective boots, and junction lengths above about 75 percent of the sole length are better still; long junctions are particularly preferred. The rigidity of the boot structure is also improved by relatively long side splints 16, and these desirably extend for at least 40 percent of the distance above the ankle joint toward the knee joint, and prefer-;
ably to the top of the boot. Moreover, the structural rigidity imparted by the internal frame member may be increased by the additional rigidity imparted by form-' ing the side splints 16 into curves which approximate the contours (see FIG. 4) of the wearers leg.
Boots of this invention are somewhat less rigid in the transverse direction, that isin a plane perpendicular to the longitudinal direction of the sole, than they are in the longitudinal direction; but walking does not impose stresses in the transverse direction as large asthose encountered in the longitudinal direction. Also, a small or moderate amount of flexibility in the transverse'direction prior to lacing theboot is'helpful in enabling the side splints to fit closely to the contours of the wearers leg asthe boot is being laced. In addition, the embodiment of the boot with a rigid heel counter as illustrated in F IG. 3 and'describedhereinafter affords greater protection against transverse flexure.
Upon referring to FIG. 3, it will be observed that the side splints 16 are desirably encased in the sides of the boot uppers between the exterior layer 18 of leather or other flexible boot material and the lining 19 of the boot, since it is generally preferable to keep the mate-,
rial of the stiff side splints out .of contact'with the leg of the wearer. The boot exterior 18 is desirably made of a relatively stiff leather or leather substitute, such as various synthetic resin materials, including poromeric materials, and optionally reinforced with textile or glass fibers; such material should be sufficiently flexible or contoured to provide a good fit when properly laced. Also, one may use a relatively limp leg covering material, such'as the rubber or rubberized cloth uppers of galoshes, particularly when relatively stiff side splints are used. a
The'innerlini'ng l9v is .generally arelatively flexible and ,limp material, and it may be fabricated from leather of one of the aforesaid substitutes in a conventional manner. The. lining 19 may also be fabricated from a flexible plastic foam or foam rubber when the limb of the wearer is still sore or tender as the result of injury.
The side splints 16 are affixed to the upper or leg covering portions of the boot in order to provide the rigidity in the internal unitary frame that immobilizes the ankle foot joints, and this involved firmly securing those splints, and particularly their upper ends, to the side walls of the leg of the-boot. This. maybe accomplished by cementing the side splints to either of the outer leather layer 18 or the liner 19 or both using a conventional synthetic resin adhesive; also the side splints may be attached to the boot wall by a series of rivets commencing near the top of the splints and continuing downwards, preferably at relative closely spaced intervals of about 1 inch or less, or both-rivets and adhesive may be employed as an extra precaution.
In the embodiment of FIGS. 1, and 2, the internal supporting frame consists of a flat sole plate 15 and two sides splints l6 which extend upwardly from each side of the sole plate, and these side splints are not joined in the back of the heel. Although it is possible to employ-flat side splints with appropriate padding inside the boot, it is preferable to use splints that are curved in both horizontal cross section as shown in FIG. 4 and in vertical cross section in order to provide better fitting of the boot as well as the improved rigidity mentioned earlier.
Another embodiment of theinvention is illustrated in FIG. 3, wherein a stiff and solid counter 20, which is U- shaped in horizontal cross section, extends completely around the heel of the boot instead of being split at the rear in the usual fashion. This heel counter extends above the inner sole 21 for a short distance, as for instance about l.5 to 4 or more inches; above that point the rear edges of the two splints 16 project separately upward on each side of the boot from the counter 20. This counter is unitary, and preferably formed integrally, with the other frame members, namely splints l6 and sole plate 15. The fabrication of an internal supporting frame of this type is somewhat more complicated, but it has the desired effect of providing an even more rigid boot structure for protecting the foot against any flexing in the longitudinal and transverse directions relative to the sole; and the improvement is particularly marked in respect to the latter, for instance, in protecting against both inversion and eversion of the ankle joint.
The internal frame structure may be constructed of a variety of materials and it may be fabricated by a number of different methods. The finished frame with its upstanding side splints should be as rigid as possible, for only a minor degree of transverse flexure is necessary in the said splints in fitting the boot; as by lacing. On the other hand, thinness and lightness of the frame are desirable in promoting the comfort and convenience of the wearer. A good balance between these somewhat contradictory qualities can be obtained by a suitable choice of materials and construction of the frame. The configuration of the frame member also plays a very important part in obtaining desired rigidity.
The material of the frame members l5, l6, and 20 should be as stiff as possible; but it is often desirable, as in the case of sheet metals, to use material which may be bent into curves to fit the leg or creased at right angles as in the junction of the sole plate and said splints. In other cases, it is possible to use materials which cannot be creased or even bent but which may be shaped by casting or various types of molding. Among the many materials which may be employed are sheet metals, as exemplified by ordinary and stainless steels and especially the light metals, such as magnesium, titanium and aluminum or their alloys, preferably metals of relatively stiff characteristics. Sheet metal may be cut and shaped with the conventional tools, and other metals may be formed into the final shape of the entire frame or any of its several parts by forging by hand or machine, or by casting in the case of the light metals.
Other suitable materials include, flat and molded plywood, and a great variety of plastic materials containing the usual fillers and reinforcing agents and especially the laminates of paper, synthetic and natural fabrics including cotton, nylon and hemp, etc. and glass fibers in woven or mat form impregnated with any of a variety of resins that produce a stiff product, including, inter alia, unsaturated polyester, melamineformaldehyde, urea-formaldehyde, phenolformaldehyde, epoxy, polystyrene and other rigid thermoplastic resins. According to known properties of the resin, the selected resin in either the filled or unfilled state, with or without fiber reinforcement, may be formed at an appropriate room or elevated temperature by known methods, including casting, hand lay-up, vacuum forming or matched die molding techniques.
To provide the necessary structural rigidity, the internal frame member is a unitary structure comprising sole plate 15 and side splints l6 and optionally counter 20), and it is preferably, but not necessarily, an integral structure with the splints and sole plate being constructed from a single piece of material. There are advantages, particularly in obtaining maximum rigidity for any given weight, in providing an integral frame; and that may be accomplished by either forming the frame from sheet metal by die cutting and stamping operations, bending side pieces (splints) upwards at right angles from a central section (sole plate), or one may mold the entire frame by hand lay-up laminating of glass cloth or mat with an epoxy or a styrenated polyester resin at room temperature on a very simple, or even crude, mold .or form. However, it is only necessary that the frame members be securely affixed to one another in order to procure the necessary rigidity. Thus, one can form metal side splints into the desired contours and then weld or rivet those splints to a sole plate of the same or a different metal which may have upturned flanges at the side to facilitate joining the three pieces. Similarly, one may join laminated plastic splints to a flat wooden sole plate by means of wood screws, desirably in conjunction with a suitable synthetic resin adhesive.
The sole plate 15 may constitute the entire sole of the boot, but it is generally preferable for maximum comfort to employ a composite sole structure 10 wherein this plate is securely attached to one or more layers of other materials which may include an inner sole of leather or the like and an outer sole of rubber or leather or equivalent material. Also, the sole plate may be attached to another layer of stiffening material (e.g., cemented to a layer of plywood or a plastic laminate) in the sole of a boot that has a relatively thin sheet metal sole plate. In any event, the sole plate member 15 of the unitary frame is all or part of the sole structure, and it contributes stiffness to that structure.
A composite sole 10 of the wedge type inclined downwardly towards the front is depicted in F IG. 5 with a sole plate 15 molded or laminated in the interior thereof. This multilayer sole structure is made up of an outer sole 22 of leather, a sole plate 15 which is part of the protective. frame of this invention, a cushioning layer of fairly firm sponge rubber or foamed plastic 23 and a leather or cloth inner sole 21.
Although the boots of this invention may also be made in full thigh length with the side splints and laced leg of the boot extending almost to the hip for the purpose of immobilizing the knee joint as well as the lower joints, it is believed that the major utility of the present invention is concerned with below-the-knee boots that are designed to immobilize foot and ankle joints.
From the foregoing description, it is apparent that the boots of this invention may be relatively inconspicuous, especially when most of the boot is covered by a leg of a pair of trousers or slacks; more importantly these boots are of moderate size and relatively light weight while still providing a surprising degree of structural rigidity that immobilizes all the joints of the foot and ankle against articulating motion within the joint while the patient is walking.
While the present articles have been described in considerable detail in respect of a few embodiments of this invention for the purpose of providing a complete and detailed disclosure, it will be apparent to those skilled in the art that these articles may be modified in many ways within the purview of this invention. Accordingly this invention should not be construed as limited in any particulars except as may be set forth in the appended claims or required by the prior art.
I claim: 7
1. An orthopedic boot of the ambulatory type to permit walking without any substantial articulating motion of any joints of the foot comprising a rigid sole structure, a boot upper section assembly of substantially knee length secured to said sole structure, means associated with said upper section assembly for adjusting the boot to the leg of a wearer, and a unitary frame member positioned to said sole structure and said upper section, said frame member including a rigid sole plate secured to and extending for substantially the entire length of said sole structure, and a rigid side splint secured to and extending upwardly from each side edge of said sole plate, the jointure line of each of said side splints to said sole plate extending for a longitudinal length of at least about percent of the length of said sole structure, each of said side splints being encased in said upper section assembly and extending upwardly to substantially the top of the upper section assembly, and at least a substantial portion of the upper section of said side splints being curved to generally fit the contours of the leg of the wearer.
2. A boot according to claim 1 in which said means for adjusting said boot comprises lacing means extending from substantially the toe of said boot to the top thereof. I
3. A boot according to claim 1 in which an arch support is located on the inner sole of the wearer to adjust the boot to the foot of the wearer.
4. A boot according to claim 1 in which said unitary frame member includes an undivided counter surrounding the heel of the boot and is affixed to said plate, and to the rear edges of said side splints of said frame member extending upwardly from said counter. k

Claims (4)

1. An orthopedic boot of the ambulatory type to permit walking without any substantial articulating motion of any joints of the foot comprising a rigid sole structure, a boot upper section assembly of substantially knee length secured to said sole structure, means associated with said upper section assembly for adjusting the boot to the leg of a wearer, and a unitary frame member positioned to said sole structure and said upper section, said frame member including a rigid sole plate secured to and extending for substantially the entire length of said sole structure, and a rigid side splint secured to and extending upwardly from each side edge of said sole plate, the jointure line of each of said side splints to said sole plate extending for a longitudinal length of at least about 75 percent of the length of said sole structure, each of said side splints being encased in said upper section assembly and extending upwardly to substantially the top of the upper section assembly, and at least a substantial portion of the upper section of said side splints being curved to generally fit the contours of the leg of the wearer.
2. A boot according to claim 1 in which said means for adjusting said boot comprises lacing means extending from substantially the toe of said boot to the top thereof.
3. A boot according to claim 1 in which an arch support is located on the inner sole of the wearer to adjust the boot to the foot of the wearer.
4. A boot accordIng to claim 1 in which said unitary frame member includes an undivided counter surrounding the heel of the boot and is affixed to said plate, and to the rear edges of said side splints of said frame member extending upwardly from said counter.
US00217217A 1972-01-12 1972-01-12 Orthopedic boot Expired - Lifetime US3814088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00217217A US3814088A (en) 1972-01-12 1972-01-12 Orthopedic boot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00217217A US3814088A (en) 1972-01-12 1972-01-12 Orthopedic boot

Publications (1)

Publication Number Publication Date
US3814088A true US3814088A (en) 1974-06-04

Family

ID=22810138

Family Applications (1)

Application Number Title Priority Date Filing Date
US00217217A Expired - Lifetime US3814088A (en) 1972-01-12 1972-01-12 Orthopedic boot

Country Status (1)

Country Link
US (1) US3814088A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4378793A (en) * 1981-05-26 1983-04-05 Kenneth D. Driver Removable ankle brace
US4454871A (en) * 1980-09-29 1984-06-19 Med-Con, Inc. Ankle-foot orthosis
US4572169A (en) * 1984-04-03 1986-02-25 Kenneth D. Driver Removable lower leg brace
US4638794A (en) * 1984-02-23 1987-01-27 Gunter Grisar Joint cuff
US4774936A (en) * 1985-01-23 1988-10-04 Meola Antonietta M Stabilizing prosthesis device particularly for use by paraplegic patients
US4915097A (en) * 1987-05-19 1990-04-10 Victor L. West Joint support device of sheepskin to inhibit movement
US4998537A (en) * 1988-07-27 1991-03-12 Deutsche Sporflex Gmbh Support for the ankle joint area
US5121756A (en) * 1989-10-10 1992-06-16 Hartwell Medical Corporation Vacuum immobilizer support
US5154185A (en) * 1990-11-14 1992-10-13 Hartwell Medical Corporation Air evacuable support
US5367789A (en) * 1991-09-20 1994-11-29 Lamed, Inc. Protective medical boot and orthotic splint
US5799659A (en) * 1995-01-05 1998-09-01 Stano; William S. Ankle foot orthosis night splint with orthowedge
US6464659B1 (en) * 2001-06-18 2002-10-15 Anatomical Concepts, Inc. Pressure relief insert for therapeutic foot enclosures
US6726645B1 (en) * 1999-09-27 2004-04-27 Locke Davis Dynamic response ankle-foot orthosis
US20090287127A1 (en) * 2008-05-15 2009-11-19 Irving Hu Circumferential walker
USD634852S1 (en) 2009-09-22 2011-03-22 Ossur Hf Sole for orthopedic device
USD643537S1 (en) 2009-09-22 2011-08-16 Ossur Hf Pump for an orthopedic device
US8512269B1 (en) 2010-03-09 2013-08-20 William Scott Stano Molded ankle-foot orthoses and methods of construction
USD729393S1 (en) 2014-03-27 2015-05-12 Ossur Hf Outsole for an orthopedic device
USD742017S1 (en) 2014-03-27 2015-10-27 Ossur Hf Shell for an orthopedic device
USD744111S1 (en) 2014-03-27 2015-11-24 Ossur Hf Orthopedic device
US9248042B2 (en) 2012-09-12 2016-02-02 Yessenia Lopez Dorsal foot splint
US9492305B2 (en) 2013-03-15 2016-11-15 Ortho Systems Orthopedic walking boot with heel cushion
US9510965B2 (en) 2014-07-01 2016-12-06 Ortho Systems Adjustable walking apparatus
US9668907B2 (en) 2013-09-25 2017-06-06 Ossur Iceland Ehf Orthopedic device
US9744065B2 (en) 2013-09-25 2017-08-29 Ossur Hf Orthopedic device
US20170273832A1 (en) * 2016-03-25 2017-09-28 Moutaa BenMaamer Compression Stocking with an Adjustable Pressure Arrangement
US9839549B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
US9839548B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
US10039664B2 (en) 2013-03-15 2018-08-07 Ortho Systems Overmolding for an orthopedic walking boot
US10058143B2 (en) 2013-12-12 2018-08-28 Ossur Hf Outsole for orthopedic device
USD846130S1 (en) 2018-01-31 2019-04-16 Ortho Systems Knee brace
US10391211B2 (en) 2015-01-26 2019-08-27 Ossur Iceland Ehf Negative pressure wound therapy orthopedic device
US10449078B2 (en) 2013-03-15 2019-10-22 Ovation Medical Modular system for an orthopedic walking boot
US10806633B2 (en) 2014-08-27 2020-10-20 Ehob, Inc. Fiber filled therapeutic cushioning boot
US10863791B2 (en) 2011-04-07 2020-12-15 Ovation Medical Removable leg walker
US10939723B2 (en) 2013-09-18 2021-03-09 Ossur Hf Insole for an orthopedic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487492A (en) * 1892-12-06 Ankle-supporter
US1216579A (en) * 1916-10-26 1917-02-20 Joseph Lemieux Boot or shoe.
US1517603A (en) * 1923-07-10 1924-12-02 Vallery Frank Ankle support for boots and shoes
US1587562A (en) * 1924-08-05 1926-06-08 John E Swanson Shoe having an ankle stiffener
US1717432A (en) * 1928-07-12 1929-06-18 Michael Brite Ankle and arch support for children's shoes
US2696208A (en) * 1952-02-04 1954-12-07 Falls Herbert Pitman Surgical traction boot
US3661151A (en) * 1970-02-06 1972-05-09 Psl Ind Inc Surgical shoe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US487492A (en) * 1892-12-06 Ankle-supporter
US1216579A (en) * 1916-10-26 1917-02-20 Joseph Lemieux Boot or shoe.
US1517603A (en) * 1923-07-10 1924-12-02 Vallery Frank Ankle support for boots and shoes
US1587562A (en) * 1924-08-05 1926-06-08 John E Swanson Shoe having an ankle stiffener
US1717432A (en) * 1928-07-12 1929-06-18 Michael Brite Ankle and arch support for children's shoes
US2696208A (en) * 1952-02-04 1954-12-07 Falls Herbert Pitman Surgical traction boot
US3661151A (en) * 1970-02-06 1972-05-09 Psl Ind Inc Surgical shoe

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454871A (en) * 1980-09-29 1984-06-19 Med-Con, Inc. Ankle-foot orthosis
US4378793A (en) * 1981-05-26 1983-04-05 Kenneth D. Driver Removable ankle brace
US4638794A (en) * 1984-02-23 1987-01-27 Gunter Grisar Joint cuff
US4572169A (en) * 1984-04-03 1986-02-25 Kenneth D. Driver Removable lower leg brace
US4774936A (en) * 1985-01-23 1988-10-04 Meola Antonietta M Stabilizing prosthesis device particularly for use by paraplegic patients
US4915097A (en) * 1987-05-19 1990-04-10 Victor L. West Joint support device of sheepskin to inhibit movement
US4998537A (en) * 1988-07-27 1991-03-12 Deutsche Sporflex Gmbh Support for the ankle joint area
US5121756A (en) * 1989-10-10 1992-06-16 Hartwell Medical Corporation Vacuum immobilizer support
US5154185A (en) * 1990-11-14 1992-10-13 Hartwell Medical Corporation Air evacuable support
US5367789A (en) * 1991-09-20 1994-11-29 Lamed, Inc. Protective medical boot and orthotic splint
US5799659A (en) * 1995-01-05 1998-09-01 Stano; William S. Ankle foot orthosis night splint with orthowedge
US6726645B1 (en) * 1999-09-27 2004-04-27 Locke Davis Dynamic response ankle-foot orthosis
US6464659B1 (en) * 2001-06-18 2002-10-15 Anatomical Concepts, Inc. Pressure relief insert for therapeutic foot enclosures
US9468553B2 (en) 2008-05-15 2016-10-18 Ossur Hf Circumferential walker
US20090287127A1 (en) * 2008-05-15 2009-11-19 Irving Hu Circumferential walker
US10064749B2 (en) 2008-05-15 2018-09-04 Ossur Hf Circumferential walker
US9492301B2 (en) 2008-05-15 2016-11-15 Ossur Hf Circumferential walker
US8002724B2 (en) 2008-05-15 2011-08-23 Ossur Hf Circumferential walker
US8506510B2 (en) 2008-05-15 2013-08-13 Ossur Hf Circumferential walker
US20100234782A1 (en) * 2008-05-15 2010-09-16 Irving Hu Circumferential walker
US9333106B2 (en) 2008-05-15 2016-05-10 Ossur Hf Circumferential walker
US9220621B2 (en) 2008-05-15 2015-12-29 Ossur Hf Circumferential walker
USD643537S1 (en) 2009-09-22 2011-08-16 Ossur Hf Pump for an orthopedic device
USD634852S1 (en) 2009-09-22 2011-03-22 Ossur Hf Sole for orthopedic device
US8512269B1 (en) 2010-03-09 2013-08-20 William Scott Stano Molded ankle-foot orthoses and methods of construction
US10863791B2 (en) 2011-04-07 2020-12-15 Ovation Medical Removable leg walker
US9248042B2 (en) 2012-09-12 2016-02-02 Yessenia Lopez Dorsal foot splint
US10449078B2 (en) 2013-03-15 2019-10-22 Ovation Medical Modular system for an orthopedic walking boot
US9492305B2 (en) 2013-03-15 2016-11-15 Ortho Systems Orthopedic walking boot with heel cushion
US10085871B2 (en) 2013-03-15 2018-10-02 Ovation Systems Overmolding for an orthopedic walking boot
US10039664B2 (en) 2013-03-15 2018-08-07 Ortho Systems Overmolding for an orthopedic walking boot
US10939723B2 (en) 2013-09-18 2021-03-09 Ossur Hf Insole for an orthopedic device
US9744065B2 (en) 2013-09-25 2017-08-29 Ossur Hf Orthopedic device
US10993826B2 (en) 2013-09-25 2021-05-04 Ossur Iceland Ehf Orthopedic device
US9668907B2 (en) 2013-09-25 2017-06-06 Ossur Iceland Ehf Orthopedic device
US11969373B2 (en) 2013-09-25 2024-04-30 Ossur Iceland Ehf Orthopedic device
US9839550B2 (en) 2013-09-25 2017-12-12 Ossur Hf Orthopedic device
US9839549B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
US9839548B2 (en) 2013-09-25 2017-12-12 Ossur Iceland Ehf Orthopedic device
US10646368B2 (en) 2013-09-25 2020-05-12 Ossur Hf Orthopedic device
US10058143B2 (en) 2013-12-12 2018-08-28 Ossur Hf Outsole for orthopedic device
USD744111S1 (en) 2014-03-27 2015-11-24 Ossur Hf Orthopedic device
USD772418S1 (en) 2014-03-27 2016-11-22 Ossur Hf Shell for an orthopedic device
USD729393S1 (en) 2014-03-27 2015-05-12 Ossur Hf Outsole for an orthopedic device
USD742017S1 (en) 2014-03-27 2015-10-27 Ossur Hf Shell for an orthopedic device
USD776288S1 (en) 2014-03-27 2017-01-10 Ossur Hf Shell for an orthopedic device
USD776289S1 (en) 2014-03-27 2017-01-10 Ossur Hf Shell for an orthopedic device
US9510965B2 (en) 2014-07-01 2016-12-06 Ortho Systems Adjustable walking apparatus
US10449077B2 (en) 2014-07-01 2019-10-22 Ovation Medical Adjustable walking apparatus
US10806633B2 (en) 2014-08-27 2020-10-20 Ehob, Inc. Fiber filled therapeutic cushioning boot
US11779493B2 (en) 2014-08-27 2023-10-10 Ehob, Inc. Therapeutic cushioning boot
US10391211B2 (en) 2015-01-26 2019-08-27 Ossur Iceland Ehf Negative pressure wound therapy orthopedic device
US20170273832A1 (en) * 2016-03-25 2017-09-28 Moutaa BenMaamer Compression Stocking with an Adjustable Pressure Arrangement
USD846130S1 (en) 2018-01-31 2019-04-16 Ortho Systems Knee brace

Similar Documents

Publication Publication Date Title
US3814088A (en) Orthopedic boot
EP1005297B1 (en) Ankle-foot orthosis
US7128725B2 (en) Ankle brace
US4677767A (en) Shock absorbing surgical shoe
US8465445B2 (en) Ankle and foot orthosis
US4844094A (en) Ankle brace
US5078128A (en) Removable leg walker
US4520581A (en) Custom footbed support and method and apparatus for manufacturing same
CA2182770C (en) Custom-made footwear
EP0955818B1 (en) Orthopedic cast walker boot
US8480604B2 (en) Carbon fiber orthosis and associated method
US5429588A (en) Ankle foot orthoses known as lower leg walkers
EP1753378B1 (en) Ankle brace
US6394971B1 (en) Ankle brace and support and method
US20050022421A1 (en) Ballet pointe shoe
US20060270958A1 (en) Ankle and foot orthosis
US7749423B2 (en) Method of producing an orthotic brace or prosthetic device
US8591446B2 (en) Ortho training device
US20140276314A1 (en) Ankle Foot Orthosis (AFO) and Method of Making the Same
US6022331A (en) Custom-fitted ankle splint
US6517505B1 (en) Pliable orthotic device
US5980474A (en) Custom-fitted ankle splint
US20150011924A1 (en) Carbon fiber orthosis and associated method
EP1227774B1 (en) Ankle/foot orthosis
US20160074199A1 (en) Reinforced lower limb orthotic brace