US3813819A - Hide treating machines - Google Patents

Hide treating machines Download PDF

Info

Publication number
US3813819A
US3813819A US00149536A US14953671A US3813819A US 3813819 A US3813819 A US 3813819A US 00149536 A US00149536 A US 00149536A US 14953671 A US14953671 A US 14953671A US 3813819 A US3813819 A US 3813819A
Authority
US
United States
Prior art keywords
cylinder
hide
rolls
supporting
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00149536A
Inventor
W Kokoras
J Kokoras
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00149536A priority Critical patent/US3813819A/en
Priority to IT25114/72A priority patent/IT956044B/en
Priority to AU42987/72A priority patent/AU464429B2/en
Priority to CA143,825A priority patent/CA963283A/en
Priority to GB2570072A priority patent/GB1393029A/en
Priority to FR727219881A priority patent/FR2141738B1/fr
Priority to DE2227169A priority patent/DE2227169A1/en
Priority to US468894A priority patent/US3913278A/en
Application granted granted Critical
Publication of US3813819A publication Critical patent/US3813819A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/005Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding skins or similar sheets
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14BMECHANICAL TREATMENT OR PROCESSING OF SKINS, HIDES OR LEATHER IN GENERAL; PELT-SHEARING MACHINES; INTESTINE-SPLITTING MACHINES
    • C14B1/00Manufacture of leather; Machines or devices therefor
    • C14B1/02Fleshing, unhairing, samming, stretching-out, setting-out, shaving, splitting, or skiving skins, hides, or leather
    • C14B1/04Fleshing, unhairing, samming, stretching-out, setting-out, shaving, splitting, or skiving skins, hides, or leather using slicking, scraping, or smoothing-out cylinders or blades fixed on supports, e.g. cylinders, in a plane substantially at right angles to the working surface
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14BMECHANICAL TREATMENT OR PROCESSING OF SKINS, HIDES OR LEATHER IN GENERAL; PELT-SHEARING MACHINES; INTESTINE-SPLITTING MACHINES
    • C14B2700/00Mechanical treatment or processing of skins, hides or leather in general; Pelt-shearing machines; Making driving belts; Machines for splitting intestines
    • C14B2700/01Machines or devices for treating skins, hides or leather in general, e.g. fleshing, unhairing, samming, stretching-out, setting-out
    • C14B2700/016Machines or devices for treating skins, hides or leather in general, e.g. fleshing, unhairing, samming, stretching-out, setting-out using slicking, scraping, or smoothing-out cylinders

Definitions

  • the invention is directed to a machine for operating Primary Examiner-Donald G. Kelly Attorney, Agent, or Firm-Maurice R. Boiteau upon wet hides with a helically ribbed abrasive cylinder.
  • The'hide is presented to the cylinder on two supporting rolls which are maintained in spaced relationship with the cylinder so that a band of the hide be- Ave.; William N. Kokoras, 44 Linden Rd., both of Peabody, Mass. 01960 June 3, 1971 Appl. N0.: 149,536
  • the present invention relates generally to improvements in machines for treating hides and more particularly though not exclusively to machines for automatically performing on the hides an operation called wet wheeling.”
  • hides or skins (the terms are used interchangeably) of goats and sheep which are to be made into suede are first fleshed,'that is, operated upon by a machine including a rotary knife for removing fatty tissue from the flesh side of the hide.
  • the fleshing process is inadequate for removing all of the fatty tissue from the hide.
  • conventional practice includes the step of wet wheeling which is accomplished by abrading the flesh side of the hide on a large rotating cylinder while manually applying localized pressure to the hide. This wet wheeling process not only removes fatty tissue but is also the first step in the development of the napped surface which is characteristic of suede.
  • the wet wheeling operation is tedious and time consuming when performed manually and also produces irregularities in the suede which are frequently not discovered until the processing is completed. The result is that substantial quantities of the product must be downgraded because of the defects stemming from incomplete tissue removal.
  • the conventional wet wheeling method is a tiresome and time consuming operation which in addition, results in a product lacking in uniformity and frequently having such defects that it must be sold at a lesser price.
  • Another general object is to enhance bothoperator productivity in wet wheeling and to improve the quality and uniformity of the product.
  • a further object is to abrade uniformly the flesh side of hides to be made into suede leather as a first step in the production of the typical suede nap, and to do so without the danger of burning or otherwise damaging the skin in contact with the abrading implement or tool.
  • a machine including an abrasive cylinder and .work supporting rolls.
  • the abrasive cylinder is formed with a herringbone pattern of ribs which spread the hide laterally during the abrading process. Stops are provided to position the work supporting rolls a distance from the cylinder greater than the thickest skin to be processed. Under these conditions, the hide cannot be pinched against the cylinder by the supporting rolls but rather, a band of hide between the lines of centers of the cylinder and each of the support rolls, is held firmly in contact with the cylinder by the frictional engagement of the lower roll with the hide.
  • the two support rolls are coupled to rotate together but the lower roll rotates at a slightly slower speed than the upper roll.
  • the cylinder in operation is subjected to a severe combination of forces since it is both revolved at high speed and axially reciprocated in order to eliminate the possibility of scratching the surface of the hide.
  • the cylinder is formed with deep grooves which define helical ribs diverging in opposite directions from the center of the cylinder to spread the hide laterally as the outer surface of the ribs performs the abrading operation.
  • the cylinder is cast and balanced as a unitary abrasive body on a shaft having a plurality. of equally spaced keys to maintain balance and to prevent loosening of the body on the shaft.
  • the abrasive body is internally reinforced to resist centrifugal forces.
  • An epoxy resin in which a finely divided natural abrasive is embedded provides'the necessary bond to resist the severe forces to which the cylinder is subjected and also to guard against rapid erosion so that the cylinder is assured of a long life by withstanding extended periods of use between dressings.
  • FIG. 1 is a view in perspective taken from the right front of a machine according to the invention.
  • FIG. 2 is a view similar to FIG. 1 but with parts at the front of the machine removed to show more clearly the interior construction of the machine;
  • FIG. 3 is a fragmentary detail view showing the mounting of an abrasive cylinderforming a part of the machine together with a device for dressing the work contacting surface of the cylinder to renew it;
  • FIG. 4 is a view in perspective and on an enlarged scale of. the cylinder dressing device also depicted in FIG. 3;
  • FIG. 5 is a view in right end elevation of the machine of FIGS. 1 and 2;
  • FIG. 6 is a largely schematic view depicting the presentation of a work piece to the abrasive cylinder
  • FIG. 7 is a fragmentary detail view on an enlarged scale and in cross-section showing the interior construction of the abrasive cylinder
  • FIG. 8 is a view on a still further enlarged scale showing the outline of a rib forming a part of the abrasive cylinder and in exaggerated proportions the components of the abrasive portion of the cylinder.
  • the illustrative machine includes a frame comprising base rails 10 upon which are erected vertical side frame members 12 and 14 extending in parallel relationship at the ends of a horizontal front stretcher 16.
  • a horizontal front stretcher 16 As also seen in FIGS. 3 and 5, there are provided vertical standards 20 and 22 rising from the upper rear end portions of the side members 12 and 14 respectively.
  • the standards 20 and 22 serve to support bearings for anabrasive cylinder indicated generally at 24 and rotatably supported in pillow blocks 26 and 28 affixed respectively to the standards 20 and 22.
  • the cylinder 24 is formed with reduced shaft diameters 32 and 34 which fit and extend respectively beyond the pillow blocks 26 and 28.
  • the cylinder 24 is rotated through a multiple groove pulley 36 fitted to the right end of the reduced shaft diameter 34 and engaged by a plurality of Vee-belts 38.
  • it is also axially reciprocated a distance of approximately one-quarter inch, the rotation being at a speed of approximately 2,600 rpm and the reciprocation at the rate of approximately 260 cps by a mechanism which will hereafter be described in detail.
  • the exterior surface of the cylinder 24 consists of helical ribs 44 defined by grooves 46.
  • the direction of the helix is right hand to the left of an imaginary radial plane bisecting the cylinder 24 and left hand to the right of the plane so that a hide 42, as shown in FIG. 6 is biased from the center toward the ends of the cylinder by the action of the helical ribs.
  • the ribs 44 which are six in number as shown in FIG. 4, are thicker at their base than at their periphery. This thickening is calculated to provide the same amount of abrading surface contacting the hide during each revolution of the cylinder as the cylinder becomes smaller from repeated dressings for renewing the surface as will hereinafter be seen. Since the abrading action remains constant regardless of the cylinder diameter there is no necessity to adjust the speed of the roll in order to maintain the abrading action of the cylinder as the size of the cylinder decreases.
  • the cylinder 24 is integrally cast of a mixture including abrasive grains preferably natural Turkish emery of 100 mesh size exaggeratedly shown at 48 in FIG. 8 retained in an epoxy resin matrix 50.
  • the abrasive body consisting of the abrasive grains and epoxy matrix is east around an enlarged shaft diameter 52 which is provided with four keys 54 to prevent relative rotation of the abrasive body with the shaft.
  • a reinforcing cage 56 comprising longitudinal rods and closed rings which fit over the keys 54 and are thereby centered.
  • the belts 38 which drive the pulley 36 are in turn driven by a motor 62.
  • the longitudinal reciprocation of the roll 64 is imparted to it by mechanism including a sleeve 64 journalled on the reduced shaft diameter 32.
  • a pair of spaced-apart straps or ears 66 which embrace and are pivotally connected to an actuating bar 68 disposed in a generally parallel relationship with the axis of the cylinder 24.
  • the bar 68 is longitudinally reciprocated to impart a like motion to the cylinder 24 by means of a shaft 70 which includes an eccentric fitting the interior of the enlarged right end portion of the bar 68.
  • the shaft 70 is rotated at the appropriate speed through its own motor reducer combination 72.
  • the arrangement for imparting the reciprocating motion to the cylinder 24 provides optimum flexibility in that, whenever it is desirable to rotate the cylinder without reciprocation, this is accomplished by merely de-energizing the gear motor 72 while energizing the motor 62 to impart rotation only for purposes of dressing the cylinder, for example.
  • a dressing mechanism including supporting plates 78 and 80 affixed respectively upon the side frame members 12 and 14. Parallel guide rods 82 extend between the plates 78 and 80 to which they are secured and a traverse screw 84 is disposed between the guide rods.
  • a saddle 86 is guided on the rods 82 and includes a nut which engages a screw 84 for advancing the saddle along the length of the cylinder 24.
  • a slide 88 mounted on the saddle 86 has the diamond bit 76 secured to its forward end and is adjustable toward and away from the axis of the cylinder 24 by means of a screw 90 which is then locked in position by a locknut 92.
  • the screw 84 is turned by means of a removable crank 94 for traversing the diamond bit 76 along the length of the cylinder 24.
  • the diamond bit 76 is preferably in the form of a metal matrix in which a multiplicity of diamond chips are embedded. Alternatively, dressing may be accomplished using a single diamond but the interrupted nature of the cut would, in all probability, be injurious to such a single diamond.
  • the hide 42 is drawn into contact with the cylinder 24 and forwardly out of the machine by means of a continuously driven feed roll 98 which has a renewable friction producing covering.
  • the feed roll 98 is supported on spring pressed pivoted bars 100 one at each end bearing a pillow block 102 in which the roll 98 is journalled.
  • the shaft of the roll 98 carries a sprocket 104 engaged by a roller chain 106 also passing over a drive sprocket 108 and maintained in taut condition by .an idler sprocket 110.
  • the sprocket 108 is mounted on the shaft of and driven by an electric motor 112.
  • the feed roll 98 is urged downwardly by a pair of springs 113, one bearing down on each of the supporting bars 100.
  • Each spring 113 is guided around a threaded rod 114 secured to a post 115 fixedly upstanding from each of the side frame members 12 and 14.
  • the downward motion of the bars 100 is limited by a pair of stop nuts 116 and the spring 113 is compressed by a nut 117 to regulate the amount of force 7 applied to the roll 98.
  • the hide 42 is presented to the cylinder 24 by means of upper and lower support rolls 118 and 120 each journalled at each end in pillow blocks 122 supported at the left end on an arm 124 and at the right end .on an arm 126.
  • the rolls 118 and 120 are coupled to rotate together, sprockets 128 and 130 being mounted at each end of each of the rolls 118 and 120 respectively.
  • a roller-chain 132 engages each pair of sprockets 128 and 130 and the number of teeth in the sprockets is such that the roll 120 rotates 10 percent more slowly than the roll 118.
  • the rolls 118 and 120 are advanced to the hide-presenting position depicted in FIG.
  • the rolls 118 and 120 are spaced from the cylinder 24 a distance slightly greater than the thickness of the thickest hide 42 to be processed.
  • the hide 42 is pinched between the upper support roll 118 and the constantly rotating roll 98.
  • the support rolls 118 and 120 and the cylinder 24 rotate in a counter-clockwise direction as seen from the right end of the machine, the support rolls being driven by the engagement of the feed roll 98 with the hide 42.
  • Each hide 42 is passed twice through the machine, the hide being turned side for side or after the first pass.
  • a first edge is arranged on the roll 118 so that when the rolls 118 and 120 are advanced to the hide-presenting position, the edge will lie just slightly to the left of the line of centers of the feed roll 98 and the support roll 118 as seen in FIG. 6.
  • the hide is then drawn upwardly and outwardly away from the cylinder 24 while the abrading action takes place in an abrading zone defined on the cylinder 24 between an imaginary line interconnecting the center of the cylinder 24 with a roll 118 and another interconnecting the center of the cylinder with the center of the roll 120.
  • the hide is placed under tension in the abrading zone by the cylinder 120 which rotates more slowly than the cylinder 118 thereby applying a drag to the hide.
  • the supporting rolls 118 and 120 are moved to the loading position depicted in dash lines in FIG. 6 and the first edge is reversed being placed below the roll 120 before the hide is again presented to the cylinder 24.
  • the arms 124 and 126 are pivoted as shown at 134 in FIG. 1, each on an inverted V-support 136 fixedly upstanding from the rails 10.
  • An arm 138 forms a lever with the arm 124 and similarly an arm 140 forms a lever with the arm 126 for moving the rolls 118 and 120 in and out of the hidepresenting position.
  • the mechanism for this purpose includes an air cylinder 142 having a piston rod 144 upon which is mounted a piston (not shown) which divdes the interior of the cylinder into upper and lower chambers as the cylinder is seen in FIG. 1.
  • Mechanism for coupling the piston rod 144 to the arms 138 and 140 includes a shaft 145 journalled in the frame and having an actuating arm 146 keyed to it and pivotally connected to the rod 144, as seen in FIGS. 1 and 5.
  • the piston rod 144 is extended outwardly from the solid line to the dash line position as seen in FIG. 5, the lever 126, 140 is pivoted in a clockwise direction bringing the support rolls 118 and 120 to their hide-presenting position. As this happens, the rod 148 slides in the sleeve 152 and the spring 154 is further compressed as the arm 126 reaches a stop.
  • the lever 124, 138 is similarly coupled to an arm 162 secured to the left end of the shaft 145.
  • the position of the rolls 118 and 120 is determined by stops on the arms 124 and 126 engaging abutments such as that shown at 164 in FIGS. 2 and 5.
  • the stop is in the form of a screw 166 adjustable in a threaded opening in the arm 124, 126 and locked in position by a check nut 168.
  • Air is admitted to the upper chamber of the cylinder 142 to cause the rod 144 to extend outwardly by means of a valve operated through connections including a pedal 172.
  • Connected to the valve 182 are a supply line 184 and lines 186 and 188 connected to the upper and lower chambers of the cylinder 142 respectively.
  • the spool of thevalve 182 is pulled outwardly thereby connecting the supply line 184 to the upper chamber of the cylinder 142 through the line 186 thereby rocking the arms 124 and 126 to bring the rolls 118 and to their hide-presenting position.
  • the pedal 172 is returned to the counter clockwise extreme of its travel, the spool of the valve 182 is pushed inwardly, connecting the supply line 184 to the lower chamber of the cylinder 182 through the when the motor 62is energized to drive the cylinder 24.
  • the function of the solenoid valve 200 is to purge the supply line 184 of compressed air to prevent motion of the arms 124 and 126 after the motors 62 and 112 have been de-energized.
  • Between the solenoid valves 198 and 200 and the supply line 184 are a filter 202, a pressure control valve 204 and an oiler 206.
  • a hide treating machine comprising a base, an abrasive cylinder rotatable in the base, means for imparting a rotary motion to the cylinder, a first and a second hide supporting roll spaced from each other, mounting means for supporting the rolls for movement toward and away from the cylinder, stopping means for arresting the motion of the rolls in spaced relationship with the cylinder for supporting the hide under tension between the rolls in an abrading zone where the hide is in working engagement with the cylinder, a feed roll rotatably supported in the frame and pressed toward the first supporting roll to pinch the hide at a single location and means for driving the feed roll for drawing the hide through the abrading zone.
  • a machine according to claim 1 further comprising means for coupling the supporting rolls for rotary motion in the same direction.
  • a machine according to claim 2 further characterized in that the first supporting roll is above the second and the coupling means causes the first roll to rotate faster than the second roll to maintain tension upon the hide passing through the abrading zone.
  • a machine according to claim 2 further characterized in that thefeed roll driving means causes the feed roll to rotate continuously and that rotary motion is imparted to the supporting rolls solely through the pinch of the feed roll upon the hide against the first supporting roll.
  • a machine according to claim 1 further characterized in that the mounting means for the supporting rolls comprises a pair of arms pivoted on the base and having upper ends upon which the supporting rolls are rotatably supported.
  • a machine according to claim 5 further comprising yielding means for drawing the supporting rolls toward the cylinder.
  • a machine according to claim 1 further comprising means for reciprocating the cylinder in the direction of its axis at a speed which is slow relatively to its rotary speed.

Abstract

The invention is directed to a machine for operating upon wet hides with a helically ribbed abrasive cylinder. The hide is presented to the cylinder on two supporting rolls which are maintained in spaced relationship with the cylinder so that a band of the hide between the rolls is maintained in engagement with the cylinder by the tension supplied solely by the friction of the hide with the rolls while the hide is being stretched laterally by the action of the helical ribs of the cylinder.

Description

June 4, 1974 11/1951 2/1952 Stehling... 1/1959 Phi1lips..... 11/1960 Pendergast.... 3/1964 Burt.............. 5/1967 Burch 1/1971 Repetto......,...........................
' 1 ABSTRACT The invention is directed to a machine for operating Primary Examiner-Donald G. Kelly Attorney, Agent, or Firm-Maurice R. Boiteau upon wet hides with a helically ribbed abrasive cylinder. The'hide is presented to the cylinder on two supporting rolls which are maintained in spaced relationship with the cylinder so that a band of the hide be- Ave.; William N. Kokoras, 44 Linden Rd., both of Peabody, Mass. 01960 June 3, 1971 Appl. N0.: 149,536
51/39, 51/206 P, ,69/42 Cl4b 1/06, 1324b 27/00, 824d 7/02 51/39, 78, 206 P; 69/34, 69/42-45, 37, 38; 12/412, 41.3
References Cited UNITED STATES PATENTS v t n e 48. a P S e 4a. a
Int. Cl....... Field of Search..'.........
Q Unite Kokoras et a1.
1 1 HIDE TREATING MACHINES [76] Inventors: John N. Kokoras, 10 Mortinack [22] Filed:
en hon til te kb .Hr. fl w El e a nme.w 6 d1 .le m hh 6 e e ye u a h k .W 91 mw o ndm n ullwwo l D. C a n H r. 1 D as e t h 8 .mm a1 y mSu lb m n wmmm i semm C h 6 7 O t. r. ear. 0 6 .md u mm nd V. enmw W WLRI tco b s 2 78 XXXX /2U29// 4 44 66 .9W9/ 616 n 5 y m w M m n h 3 nt n w ,i es n m m mnfl SWJARLKB 2660 28 13344445 99999999 HHHHHHHH 6427 207 1 11 91l 0209 76 .J m To3745 8 3606055 L PATENTEDJUN 419M SHEET t 0F 5 I iijiin HIDE TREATING MACHINES The present invention relates generally to improvements in machines for treating hides and more particularly though not exclusively to machines for automatically performing on the hides an operation called wet wheeling."
Prior to undergoing the tanning process, hides or skins (the terms are used interchangeably) of goats and sheep which are to be made into suede are first fleshed,'that is, operated upon by a machine including a rotary knife for removing fatty tissue from the flesh side of the hide. The fleshing process is inadequate for removing all of the fatty tissue from the hide. In order to remove the remainder after the fleshing operation, conventional practice includes the step of wet wheeling which is accomplished by abrading the flesh side of the hide on a large rotating cylinder while manually applying localized pressure to the hide. This wet wheeling process not only removes fatty tissue but is also the first step in the development of the napped surface which is characteristic of suede. The wet wheeling operation however, is tedious and time consuming when performed manually and also produces irregularities in the suede which are frequently not discovered until the processing is completed. The result is that substantial quantities of the product must be downgraded because of the defects stemming from incomplete tissue removal. In summary, the conventional wet wheeling method is a tiresome and time consuming operation which in addition, results in a product lacking in uniformity and frequently having such defects that it must be sold at a lesser price.
It is accordingly a general object of the invention to provide a machine for performing a wet wheeling operation in which the abrading of the hide is completely independent of operator control.
Another general object is to enhance bothoperator productivity in wet wheeling and to improve the quality and uniformity of the product.
A further objectis to abrade uniformly the flesh side of hides to be made into suede leather as a first step in the production of the typical suede nap, and to do so without the danger of burning or otherwise damaging the skin in contact with the abrading implement or tool.
' The foregoing objects of the invention are achieved by a machine including an abrasive cylinder and .work supporting rolls. According to a feature of the invention, the abrasive cylinder is formed with a herringbone pattern of ribs which spread the hide laterally during the abrading process. Stops are provided to position the work supporting rolls a distance from the cylinder greater than the thickest skin to be processed. Under these conditions, the hide cannot be pinched against the cylinder by the supporting rolls but rather, a band of hide between the lines of centers of the cylinder and each of the support rolls, is held firmly in contact with the cylinder by the frictional engagement of the lower roll with the hide. In order to assist in applyingtension to the hide being presented to the cylinder, the two support rolls are coupled to rotate together but the lower roll rotates at a slightly slower speed than the upper roll.
Other features of the invention relate to the construction of the cylinder and to the material of which it is made. The cylinder in operation is subjected to a severe combination of forces since it is both revolved at high speed and axially reciprocated in order to eliminate the possibility of scratching the surface of the hide. In addition, the cylinder is formed with deep grooves which define helical ribs diverging in opposite directions from the center of the cylinder to spread the hide laterally as the outer surface of the ribs performs the abrading operation. The cylinder is cast and balanced as a unitary abrasive body on a shaft having a plurality. of equally spaced keys to maintain balance and to prevent loosening of the body on the shaft. In addition, the abrasive body is internally reinforced to resist centrifugal forces. An epoxy resin in which a finely divided natural abrasive is embedded provides'the necessary bond to resist the severe forces to which the cylinder is subjected and also to guard against rapid erosion so that the cylinder is assured of a long life by withstanding extended periods of use between dressings.
The foregoing objects and features together with numerous advantages to be derived from the present invention will be more fully understood from a detailed description of an illustrative embodiment taken in connection with the accompanying drawings in which:
FIG. 1 is a view in perspective taken from the right front of a machine according to the invention; 3
FIG. 2 is a view similar to FIG. 1 but with parts at the front of the machine removed to show more clearly the interior construction of the machine;
FIG. 3 is a fragmentary detail view showing the mounting of an abrasive cylinderforming a part of the machine together with a device for dressing the work contacting surface of the cylinder to renew it;
FIG. 4 is a view in perspective and on an enlarged scale of. the cylinder dressing device also depicted in FIG. 3;
FIG. 5 is a view in right end elevation of the machine of FIGS. 1 and 2;
FIG. 6 is a largely schematic view depicting the presentation of a work piece to the abrasive cylinder;
FIG. 7 is a fragmentary detail view on an enlarged scale and in cross-section showing the interior construction of the abrasive cylinder;
FIG. 8 is a view on a still further enlarged scale showing the outline of a rib forming a part of the abrasive cylinder and in exaggerated proportions the components of the abrasive portion of the cylinder.
Turning now to the drawings particularly FIGS. 1 and 2, it will be seen that the illustrative machine includes a frame comprising base rails 10 upon which are erected vertical side frame members 12 and 14 extending in parallel relationship at the ends of a horizontal front stretcher 16. As also seen in FIGS. 3 and 5, there are provided vertical standards 20 and 22 rising from the upper rear end portions of the side members 12 and 14 respectively. The standards 20 and 22 serve to support bearings for anabrasive cylinder indicated generally at 24 and rotatably supported in pillow blocks 26 and 28 affixed respectively to the standards 20 and 22.
The cylinder 24 is formed with reduced shaft diameters 32 and 34 which fit and extend respectively beyond the pillow blocks 26 and 28. The cylinder 24 is rotated through a multiple groove pulley 36 fitted to the right end of the reduced shaft diameter 34 and engaged by a plurality of Vee-belts 38. In addition to the rotation of the cylinder 24, it is also axially reciprocated a distance of approximately one-quarter inch, the rotation being at a speed of approximately 2,600 rpm and the reciprocation at the rate of approximately 260 cps by a mechanism which will hereafter be described in detail.
The exterior surface of the cylinder 24 consists of helical ribs 44 defined by grooves 46. The direction of the helix is right hand to the left of an imaginary radial plane bisecting the cylinder 24 and left hand to the right of the plane so that a hide 42, as shown in FIG. 6 is biased from the center toward the ends of the cylinder by the action of the helical ribs. It will also be seen that the ribs 44, which are six in number as shown in FIG. 4, are thicker at their base than at their periphery. This thickening is calculated to provide the same amount of abrading surface contacting the hide during each revolution of the cylinder as the cylinder becomes smaller from repeated dressings for renewing the surface as will hereinafter be seen. Since the abrading action remains constant regardless of the cylinder diameter there is no necessity to adjust the speed of the roll in order to maintain the abrading action of the cylinder as the size of the cylinder decreases.
The cylinder 24 is integrally cast of a mixture including abrasive grains preferably natural Turkish emery of 100 mesh size exaggeratedly shown at 48 in FIG. 8 retained in an epoxy resin matrix 50. The abrasive body consisting of the abrasive grains and epoxy matrix is east around an enlarged shaft diameter 52 which is provided with four keys 54 to prevent relative rotation of the abrasive body with the shaft. In order to reinforce the cylinder 24 against explosion from centrifugal forces, there is embedded in the body a reinforcing cage 56 comprising longitudinal rods and closed rings which fit over the keys 54 and are thereby centered.
The belts 38 which drive the pulley 36 are in turn driven by a motor 62. The longitudinal reciprocation of the roll 64 is imparted to it by mechanism including a sleeve 64 journalled on the reduced shaft diameter 32. There are depending from the sleeve 64 a pair of spaced-apart straps or ears 66 which embrace and are pivotally connected to an actuating bar 68 disposed in a generally parallel relationship with the axis of the cylinder 24. The bar 68 is longitudinally reciprocated to impart a like motion to the cylinder 24 by means of a shaft 70 which includes an eccentric fitting the interior of the enlarged right end portion of the bar 68. The shaft 70 is rotated at the appropriate speed through its own motor reducer combination 72. The arrangement for imparting the reciprocating motion to the cylinder 24 provides optimum flexibility in that, whenever it is desirable to rotate the cylinder without reciprocation, this is accomplished by merely de-energizing the gear motor 72 while energizing the motor 62 to impart rotation only for purposes of dressing the cylinder, for example.
During extended periods of use, the central portion of the cylinder 24 becomes eroded and the leading edge of the ribs 44 become rounded. When the effectiveness of the cylinder 24 is thus reduced, it is restored by dressing it with a diamond bit 76 which is traversed along the length of the cylinder while the cylinder is being rotated at its normal speed but preferably without being reciprocated. For this purpose, there is provided a dressing mechanism including supporting plates 78 and 80 affixed respectively upon the side frame members 12 and 14. Parallel guide rods 82 extend between the plates 78 and 80 to which they are secured and a traverse screw 84 is disposed between the guide rods. A saddle 86 is guided on the rods 82 and includes a nut which engages a screw 84 for advancing the saddle along the length of the cylinder 24. A slide 88 mounted on the saddle 86 has the diamond bit 76 secured to its forward end and is adjustable toward and away from the axis of the cylinder 24 by means of a screw 90 which is then locked in position by a locknut 92. The screw 84 is turned by means of a removable crank 94 for traversing the diamond bit 76 along the length of the cylinder 24. The diamond bit 76 is preferably in the form of a metal matrix in which a multiplicity of diamond chips are embedded. Alternatively, dressing may be accomplished using a single diamond but the interrupted nature of the cut would, in all probability, be injurious to such a single diamond.
As seen generally from FIG. 6, the hide 42 is drawn into contact with the cylinder 24 and forwardly out of the machine by means of a continuously driven feed roll 98 which has a renewable friction producing covering. The feed roll 98 is supported on spring pressed pivoted bars 100 one at each end bearing a pillow block 102 in which the roll 98 is journalled. At its right end, the shaft of the roll 98 carries a sprocket 104 engaged by a roller chain 106 also passing over a drive sprocket 108 and maintained in taut condition by .an idler sprocket 110. The sprocket 108 is mounted on the shaft of and driven by an electric motor 112.
The feed roll 98 is urged downwardly by a pair of springs 113, one bearing down on each of the supporting bars 100. Each spring 113 is guided around a threaded rod 114 secured to a post 115 fixedly upstanding from each of the side frame members 12 and 14. The downward motion of the bars 100 is limited by a pair of stop nuts 116 and the spring 113 is compressed by a nut 117 to regulate the amount of force 7 applied to the roll 98.
As seen in FIG. 6, the hide 42 is presented to the cylinder 24 by means of upper and lower support rolls 118 and 120 each journalled at each end in pillow blocks 122 supported at the left end on an arm 124 and at the right end .on an arm 126. The rolls 118 and 120 are coupled to rotate together, sprockets 128 and 130 being mounted at each end of each of the rolls 118 and 120 respectively. A roller-chain 132 engages each pair of sprockets 128 and 130 and the number of teeth in the sprockets is such that the roll 120 rotates 10 percent more slowly than the roll 118. In operation the rolls 118 and 120 are advanced to the hide-presenting position depicted in FIG. 6 in which the rolls 118 and 120 are spaced from the cylinder 24 a distance slightly greater than the thickness of the thickest hide 42 to be processed. In advancing the rolls 118 and 120 from the dash line position to the full line position depicted in FIG. 6, the hide 42 is pinched between the upper support roll 118 and the constantly rotating roll 98. As seen from FIG. 6, the support rolls 118 and 120 and the cylinder 24 rotate in a counter-clockwise direction as seen from the right end of the machine, the support rolls being driven by the engagement of the feed roll 98 with the hide 42. Each hide 42 is passed twice through the machine, the hide being turned side for side or after the first pass. A first edge is arranged on the roll 118 so that when the rolls 118 and 120 are advanced to the hide-presenting position, the edge will lie just slightly to the left of the line of centers of the feed roll 98 and the support roll 118 as seen in FIG. 6. The hide is then drawn upwardly and outwardly away from the cylinder 24 while the abrading action takes place in an abrading zone defined on the cylinder 24 between an imaginary line interconnecting the center of the cylinder 24 with a roll 118 and another interconnecting the center of the cylinder with the center of the roll 120. The hide is placed under tension in the abrading zone by the cylinder 120 which rotates more slowly than the cylinder 118 thereby applying a drag to the hide. After the first pass through the abrading zone, the supporting rolls 118 and 120 are moved to the loading position depicted in dash lines in FIG. 6 and the first edge is reversed being placed below the roll 120 before the hide is again presented to the cylinder 24.
For advancing the rolls 1 18 and 120 toward the cylinder 24 and for retracting the rolls to the loading position, the arms 124 and 126 are pivoted as shown at 134 in FIG. 1, each on an inverted V-support 136 fixedly upstanding from the rails 10.
An arm 138 forms a lever with the arm 124 and similarly an arm 140 forms a lever with the arm 126 for moving the rolls 118 and 120 in and out of the hidepresenting position. The mechanism for this purpose includes an air cylinder 142 having a piston rod 144 upon which is mounted a piston (not shown) which divdes the interior of the cylinder into upper and lower chambers as the cylinder is seen in FIG. 1. Mechanism for coupling the piston rod 144 to the arms 138 and 140 includes a shaft 145 journalled in the frame and having an actuating arm 146 keyed to it and pivotally connected to the rod 144, as seen in FIGS. 1 and 5. Also secured to the shaft 145 is another arm 147 which is pivotally connected to a threaded rod 148 forming a part of a lost motion connection with a sleeve 152 pivoted at 156 to the arm 140. There is compressed between a nut on the rod 148 and a shoulder of the sleeve 152 a heavy spring 154. When the piston rod 144 is extended outwardly from the solid line to the dash line position as seen in FIG. 5, the lever 126, 140 is pivoted in a clockwise direction bringing the support rolls 118 and 120 to their hide-presenting position. As this happens, the rod 148 slides in the sleeve 152 and the spring 154 is further compressed as the arm 126 reaches a stop. The lever 124, 138 is similarly coupled to an arm 162 secured to the left end of the shaft 145. The position of the rolls 118 and 120 is determined by stops on the arms 124 and 126 engaging abutments such as that shown at 164 in FIGS. 2 and 5. The stop is in the form of a screw 166 adjustable in a threaded opening in the arm 124, 126 and locked in position by a check nut 168.
Air is admitted to the upper chamber of the cylinder 142 to cause the rod 144 to extend outwardly by means of a valve operated through connections including a pedal 172. A rock shaft 174 on the end of which the pedal 172 is fixedly supported, is journalled in bearing blocks 176 secured to the machine frame. There is secured to the other end of the rock shaft 174 a short arm 178 pivotally connected to a link rod 180 for operating a valve 182 by being coupled to the valve spool. Connected to the valve 182 are a supply line 184 and lines 186 and 188 connected to the upper and lower chambers of the cylinder 142 respectively. When the pedal 172 is depressed, that is, rotated in a clockwise direction as seen in FIG. 5, the spool of thevalve 182 is pulled outwardly thereby connecting the supply line 184 to the upper chamber of the cylinder 142 through the line 186 thereby rocking the arms 124 and 126 to bring the rolls 118 and to their hide-presenting position. When the pedal 172 is returned to the counter clockwise extreme of its travel, the spool of the valve 182 is pushed inwardly, connecting the supply line 184 to the lower chamber of the cylinder 182 through the when the motor 62is energized to drive the cylinder 24. The function of the solenoid valve 200 is to purge the supply line 184 of compressed air to prevent motion of the arms 124 and 126 after the motors 62 and 112 have been de-energized. Between the solenoid valves 198 and 200 and the supply line 184 are a filter 202, a pressure control valve 204 and an oiler 206.
Having thus disclosed our invention, what we claim as new and desire to secure by Letters Patent of the United States is:
1. A hide treating machine comprising a base, an abrasive cylinder rotatable in the base, means for imparting a rotary motion to the cylinder, a first and a second hide supporting roll spaced from each other, mounting means for supporting the rolls for movement toward and away from the cylinder, stopping means for arresting the motion of the rolls in spaced relationship with the cylinder for supporting the hide under tension between the rolls in an abrading zone where the hide is in working engagement with the cylinder, a feed roll rotatably supported in the frame and pressed toward the first supporting roll to pinch the hide at a single location and means for driving the feed roll for drawing the hide through the abrading zone.
2. A machine according to claim 1 further comprising means for coupling the supporting rolls for rotary motion in the same direction.
3. A machine according to claim 2 further characterized in that the first supporting roll is above the second and the coupling means causes the first roll to rotate faster than the second roll to maintain tension upon the hide passing through the abrading zone. h
4. A machine according to claim 2 further characterized in that thefeed roll driving means causes the feed roll to rotate continuously and that rotary motion is imparted to the supporting rolls solely through the pinch of the feed roll upon the hide against the first supporting roll.
5. A machine according to claim 1 further characterized in that the mounting means for the supporting rolls comprises a pair of arms pivoted on the base and having upper ends upon which the supporting rolls are rotatably supported.
6. A machine according to claim 5 further comprising yielding means for drawing the supporting rolls toward the cylinder.
7. A machine according to claim 1 further comprising means for reciprocating the cylinder in the direction of its axis at a speed which is slow relatively to its rotary speed.

Claims (7)

1. A hide treating machine comprising a base, an abrasive cylinder rotatable in the base, means for imparting a rotary motion to the cylinder, a first and a second hide supporting roll spaced from each other, mounting means for supporting the rolls for movement toward and away from the cylinder, stopping means for arresting the motion of the rolls in spaced relationship with the cylinder for supporting the hide under tension between the rolls in an abrading zone where the hide is in working engagement with the cylinder, a feed roll rotatably supported in the frame and pressed toward the first supporting roll to pinch the hide at a single location and means for driving the feed roll for drawing the hide through the abrading zone.
2. A machine according to claim 1 further comprising means for coupling the supporting rolls for rotary motion in the same direction.
3. A machine according to claim 2 further characterized in that the first supporting roll is above the second and the coupling means causes the first roll to rotate more slowly than the second roll to maintain tension upon the hide passing through the abrading zone.
4. A machine according to claim 2 further characterized in that the feed roll driving means causes the feed roll to rotate continuously and that rotary motion is imparted to the supporting rolls solely through the pinch of the feed roll upon the hide against the first supporting roll.
5. A machine according to claim 1 further characterized in that the mounting means for the supporting rolls comprises a pair of arms pivoted on the base and having upper ends upon which the supporting rolls are rotatably supported.
6. A machine according to claim 5 further comprising yielding means for drawing the supporting rolls toward the cylinder.
7. A machine according to claim 1 further comprising means for reciprocating the cylinder in the direction of its axis at a speed which is slow relatively to its rotary speed.
US00149536A 1971-06-03 1971-06-03 Hide treating machines Expired - Lifetime US3813819A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US00149536A US3813819A (en) 1971-06-03 1971-06-03 Hide treating machines
IT25114/72A IT956044B (en) 1971-06-03 1972-05-31 IMPROVEMENTS TO THE MACHINES TO TREAT LEATHER
CA143,825A CA963283A (en) 1971-06-03 1972-06-01 Hide treating machines
GB2570072A GB1393029A (en) 1971-06-03 1972-06-01 Abrasive rolls and machines incorporating such rolls
AU42987/72A AU464429B2 (en) 1971-06-03 1972-06-01 Improvements in hide treating machines
FR727219881A FR2141738B1 (en) 1971-06-03 1972-06-02
DE2227169A DE2227169A1 (en) 1971-06-03 1972-06-03 SKIN PROCESSING MACHINE
US468894A US3913278A (en) 1971-06-03 1974-05-10 Abrasive cylinder for hide treating machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00149536A US3813819A (en) 1971-06-03 1971-06-03 Hide treating machines

Publications (1)

Publication Number Publication Date
US3813819A true US3813819A (en) 1974-06-04

Family

ID=22530738

Family Applications (1)

Application Number Title Priority Date Filing Date
US00149536A Expired - Lifetime US3813819A (en) 1971-06-03 1971-06-03 Hide treating machines

Country Status (7)

Country Link
US (1) US3813819A (en)
AU (1) AU464429B2 (en)
CA (1) CA963283A (en)
DE (1) DE2227169A1 (en)
FR (1) FR2141738B1 (en)
GB (1) GB1393029A (en)
IT (1) IT956044B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103331674A (en) * 2013-07-03 2013-10-02 南通万达摩擦材料有限公司 Clutch disc double-sided pneumatic grinder with horizontal adjusting device for automobile
CN104029101A (en) * 2014-06-12 2014-09-10 中磁科技股份有限公司 Device and method for automatically polishing copper rollers
US20140370789A1 (en) * 2013-06-18 2014-12-18 Chengjin Yu Method of removing backing adhesive of carpet and the device thereof
CN107471126A (en) * 2016-06-08 2017-12-15 Kapp 机床有限责任公司 Manufacture method for the dressing tool of grinding tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109108752A (en) * 2018-07-22 2019-01-01 江苏汇联铝业有限公司 A kind of wide cut metal sheet surface grinding apparatus
CN112589665B (en) * 2021-03-02 2021-05-14 新乡职业技术学院 High-efficient grinding device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1029406A (en) * 1911-10-20 1912-06-11 William Henry Staynes Buffing-roll.
US2038621A (en) * 1935-04-09 1936-04-28 Turner Tanning Machinery Co Machine for operating upon hides, skins, and leather
US2063101A (en) * 1936-06-27 1936-12-08 Machinery Dev Company Setting out machine
US2207995A (en) * 1936-11-12 1940-07-16 Tobe Deutschmann Corp Method and means for mechanically treating metal foils
US2264053A (en) * 1939-05-23 1941-11-25 Russell Winn Leather working machine and safety device therefor
US2305879A (en) * 1940-07-30 1942-12-22 Fulton County Machine And Supp Leather working machine
US2451561A (en) * 1946-08-22 1948-10-19 United Shoe Machinery Corp Continuous brushing machine for leather
US2558811A (en) * 1949-07-20 1951-07-03 Levor & Co Inc G Apparatus for facing leather or the like
US2573936A (en) * 1949-02-02 1951-11-06 Armour & Co Leather sanding machine
US2586879A (en) * 1950-05-29 1952-02-26 Chas H Stehling Company Hide and leather working machine
US2867109A (en) * 1957-01-17 1959-01-06 United Shoe Machinery Corp Through-feed machines for treating sheet materials
US2958989A (en) * 1959-01-02 1960-11-08 Pendergast Raymond Francis Spreading and feeding assembly
US3126674A (en) * 1964-03-31 Finishing machine
US3319442A (en) * 1965-02-01 1967-05-16 Wolverine Shoe & Tanning Corp Fleshing machine
US3552157A (en) * 1968-01-27 1971-01-05 Rizzi & Co Spa Luigi Machine for the continuous processing of skins

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126674A (en) * 1964-03-31 Finishing machine
US1029406A (en) * 1911-10-20 1912-06-11 William Henry Staynes Buffing-roll.
US2038621A (en) * 1935-04-09 1936-04-28 Turner Tanning Machinery Co Machine for operating upon hides, skins, and leather
US2063101A (en) * 1936-06-27 1936-12-08 Machinery Dev Company Setting out machine
US2207995A (en) * 1936-11-12 1940-07-16 Tobe Deutschmann Corp Method and means for mechanically treating metal foils
US2264053A (en) * 1939-05-23 1941-11-25 Russell Winn Leather working machine and safety device therefor
US2305879A (en) * 1940-07-30 1942-12-22 Fulton County Machine And Supp Leather working machine
US2451561A (en) * 1946-08-22 1948-10-19 United Shoe Machinery Corp Continuous brushing machine for leather
US2573936A (en) * 1949-02-02 1951-11-06 Armour & Co Leather sanding machine
US2558811A (en) * 1949-07-20 1951-07-03 Levor & Co Inc G Apparatus for facing leather or the like
US2586879A (en) * 1950-05-29 1952-02-26 Chas H Stehling Company Hide and leather working machine
US2867109A (en) * 1957-01-17 1959-01-06 United Shoe Machinery Corp Through-feed machines for treating sheet materials
US2958989A (en) * 1959-01-02 1960-11-08 Pendergast Raymond Francis Spreading and feeding assembly
US3319442A (en) * 1965-02-01 1967-05-16 Wolverine Shoe & Tanning Corp Fleshing machine
US3552157A (en) * 1968-01-27 1971-01-05 Rizzi & Co Spa Luigi Machine for the continuous processing of skins

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140370789A1 (en) * 2013-06-18 2014-12-18 Chengjin Yu Method of removing backing adhesive of carpet and the device thereof
CN103331674A (en) * 2013-07-03 2013-10-02 南通万达摩擦材料有限公司 Clutch disc double-sided pneumatic grinder with horizontal adjusting device for automobile
CN104029101A (en) * 2014-06-12 2014-09-10 中磁科技股份有限公司 Device and method for automatically polishing copper rollers
CN107471126A (en) * 2016-06-08 2017-12-15 Kapp 机床有限责任公司 Manufacture method for the dressing tool of grinding tool
CN107471126B (en) * 2016-06-08 2020-09-22 Kapp 机床有限责任公司 Method for producing dressing tool for grinding tool

Also Published As

Publication number Publication date
FR2141738A1 (en) 1973-01-26
CA963283A (en) 1975-02-25
DE2227169A1 (en) 1973-01-25
AU4298772A (en) 1973-12-06
GB1393029A (en) 1975-05-07
AU464429B2 (en) 1975-08-12
IT956044B (en) 1973-10-10
FR2141738B1 (en) 1973-07-13

Similar Documents

Publication Publication Date Title
US3813819A (en) Hide treating machines
US3913278A (en) Abrasive cylinder for hide treating machines
US2258378A (en) Machine for preparing pneumatic tires for retreading
US1621577A (en) Leather-working machine
US2258037A (en) Machine for treating race rings for bearings
SU511870A3 (en) Drum for mechanical processing of leather and fur
US1562418A (en) Spreading roll for hide-working machines
US3129578A (en) Leather shaving machine
US2158629A (en) Cutting machine for stone or other material
US592952A (en) Hide and skin machinery
US2038621A (en) Machine for operating upon hides, skins, and leather
US2098506A (en) Buffing machine
US1704196A (en) Machine for treating hides, skins, and leather
US2639603A (en) Hide and skin working machine employing rotating rolls
US2860454A (en) Leather sander
US1303840A (en) o donn-ell
US1686768A (en) Machine for treating hides, skins, leather, and other like pieces of material
US889146A (en) Machine for dressing hides, skins, &c.
US3199320A (en) Machines for treating skins
USRE22649E (en) Machine fob treating hides
SU422772A1 (en) MACHINE FOR IRONING HAIR COAT
US2449128A (en) Machine for treating hides, skins, and leather
US931340A (en) Putting-out machine.
US2201994A (en) Staking machine
US1459741A (en) Machine for finishing flanged articles