US3812675A - Hydraulic flow control valve assemblies - Google Patents

Hydraulic flow control valve assemblies Download PDF

Info

Publication number
US3812675A
US3812675A US00257786A US25778672A US3812675A US 3812675 A US3812675 A US 3812675A US 00257786 A US00257786 A US 00257786A US 25778672 A US25778672 A US 25778672A US 3812675 A US3812675 A US 3812675A
Authority
US
United States
Prior art keywords
valve
pressure
outlet passage
passage
inlet passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00257786A
Other languages
English (en)
Inventor
R Cochrane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Girling Ltd
Original Assignee
Girling Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Girling Ltd filed Critical Girling Ltd
Application granted granted Critical
Publication of US3812675A publication Critical patent/US3812675A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/027Installations or systems with accumulators having accumulator charging devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2562Dividing and recombining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface

Definitions

  • ABSTRACT In an hydraulic flow control valve assembly a valve is normally urged into a closed position by a return spring, and movement of the valve into an open position in opposition to the force in the return spring is effected by a differential piston working in a stepped bore. The end of the piston which is of smaller area acts on the second valve, and the end of greater area is exposed to the pressure in an inlet passage. The differential piston is operative to open the valve when the force applied to the piston by the pressure in a first outlet passage overcomes at least the force of the return spring.
  • This invention relates to improvements in hydraulic flow control valve assemblies of the kind comprising a housing having an inlet passage for connection to a source of hydraulic fluid under pressure, a first outlet passage for connection to pressure storage means, a first normally closed one-way valve for controlling communication between the inlet passage and the first outlet passage, the first one-way valve being adapted to open when the pressure in the'inlet passage exceeds a first predetermined value and being adapted to close when that pressure exceeds a second predetermined value'greater than the first, a second outlet passage for connection to pressure operable means, and a second normally closed valve for controlling communication between the inlet passage and the second outlet passage and adapted to open when the pressure in the second outlet passage attains at least said second predetermined value.
  • the second valve in an hydraulic flow control valve of the kind set forth the second valve is normally urged into its closed position by a return spring, and movement of the second valve into an open position in opposition to the force in the return spring is effected by a differential piston working in a stepped bore of which the end of smaller area acts on the second valve and the end of greater area-is exposed to the pressure in the inlet passage, the differential piston FIG. 1 is a longitudinal section through an hydraulic flow control valve on the line l-l of FIG.'2; and
  • FIG. 2 is a section on the line 2-2 of FIG. 1.
  • a housing 1 is provided with a longitudinal stepped bore comprising an inner portion 2 of smallest diameter, a intermediate portion 3 of greater diameter, and an outer portion 4 of greatest diameter.
  • a radial inlet passage 5 communicates with the outer bore portion 4, and a passage 6 in the housing parallel with the stepped bore leads from the radial passage 5 to a chamber 7 of enlarged diameter which is connected to the bore portion 2 through a radial passage 8.
  • the bore portion 2 is also connected to a first radial outlet passage 9.
  • the housing 1 is also provided with a further longitudinal bore 10 which defines a second outlet'passage communicating at its innermost end with being operative to open the second valve when the force applied to the differential piston by the pressure in the first outlet passage overcomes at least the force of the return spring.
  • the differential piston When pressure is present in the second outlet passage, that pressure acts on the end of the differential piston which is of smaller area.
  • the differential piston is operative to'open the second valve only when the force applied to it by the pressure in the first outlet passage is sufficient to overcome the combined force of the return spring and the force applied thereto from the pressure in the second outlet passage.
  • the differential piston moves in a direction to open the second valve the inlet passage is placed in communication with the second outlet passage.
  • the pressure operable means is adapted to be actuated by a supply of hydraulic fluid under pressure from source of hydraulic fluid under pressure.
  • the hydraulic flow control valve assembly may be incorporated into a vehicle hydraulic braking system in which fluid under pressure for operating the braking system is stored in an hydraulic accumulator connected to the first outlet passage.
  • a reservoir for supplying hydraulic fluid to the source of hydraulic fluid, conveniently a high pressure pump, is connected to the second outlet passage, and a connection for a power steering line of the vehicle is interposed between the second outlet passage and the reservoir.
  • the valve 11 comprises an annular valve seating 12 housed in a counterbored recess 13 at an adjacent end of the passage 6, and a valve member 14 for engagement with the seating 12 and guided for movement relative to the seating within a guide 15 provided with a plurality of radial outlet ports 16.
  • the valve 17 comprises an annular valve seating member 18 having an axially extending flange 19 which carries a radial seal 20 for sealing engagement with the wall of the bore portion 4.
  • the free end of the flange 19 is clamped against a shoulder 21 at a step in the change in diameter between the bore portions 3 and 4 by means of a sleeve nut 22 screwed into the open end of the bore portion 4.
  • the inner free end of the sleeve nut 22 is provided with at least a pair of radial openings 23 through which theinlet passage 5 communicates with theinterior of the sleeve nut 22.
  • a valve member 24 comprising a ball for engagement with a seating 25 surrounding a central opening in the seating member 18 is. located in a recess 27 in the inner endof a push-rod 28. Normally the'ball 24 is urged into engagement with the seating 25 by a helical spring 29
  • An annular plate 31 is clamped against a shoulder 32 at a step at the change in diameter between the bore portions 2 and 3 by means of an axially extending radially apertured sleeve 33 which engages between the seating member 18 and an annular seal 34 engaging with the plate 31.
  • the end of the differential piston 36 which is of greater diameter is exposed to hydraulic pressure in the radial passage 8.
  • the portion of the differential piston 36 is of smaller diameter projects through the plate 31 and the seal 34 and is adapted to engage at its free end with theball 24 to move the ball 24 away from its seating 25 when the pressure to which the end of the piston 36 of greater diameter is exposed is sufficient to apply to the piston 36 a force greater than that applied thereto in the opposite closing direction comprising the force in the spring 29 and a force from the pressure in the outlet passage 10 acting on the portion of the differential piston which is of smaller diameter and which engages with the ball 24.
  • the control valve assembly is adapted to be incorporated in a vehicle power operated hydraulic braking system.
  • the inlet passage 5 is connected to a source of hydraulic fluid under pressure, for example a high pressure pump 37 driven by the prime mover of the vehicle or another motor and the first outlet passage 9 is connected to an hydraulic accumulator 38 which is screwed into the outer end of an enlarged bore continuous with the passage 9.
  • the second outlet passage 10 is connected to a connection for a power steering line of the vehicle interposed between the second outlet passage 10 and a reservoir for fluid.
  • the pressure of fluid in the hydraulic accumulator 38 and in the first outlet passage 9 acts on the end of the differential piston 36 which is of greater diameter and applies to the piston 36 a force greater than that of the helical spring 29 and the pressure in the outlet passage l0 acting on the portion of the piston-36 which is'of smaller diameter;
  • the differential piston 36 moves to the right in FIG. 1 of the drawings towards the end of the stepped bore in which it works, thereby opening the second valve 17.
  • Fluid under pressure from the pump is then supplied'to the second outlet 10 through the seating and the apertures in the sleeve 34 with the result that fluid under pressure is supplied to the power steering line.
  • fluid in the inlet passage 5 actson the end of the differential piston 36 which is of smaller diameter to augment the force already applied to the valve memberr24 in a closing direction from the helical spring 29 and the pressure in the outlet passage 10.
  • the relative diameters of opposite ends of the differential piston 36 are therefore chosen to ensure that, under such conditions, the force applied to the ball 24 by the differential piston 36 is sufficient to hold it out of engagement with its seating 25.
  • a first normally closed one-way valve for controlling communication between said inlet passage and said first outlet passage, said first one-way valve being "adapted to open when pressure in said inlet passage exceeds a first predetermined value and being adapted to close when said pressure exceeds a second predeterminedvalue greater than the first, and a second normally closed valve for controlling communication between said inlet passage and said second outlet passage and adapted to open when pressure in the second outlet passage attains at least said second predetermined value, a spring for urging said second valve into a closed position, and a differential piston working in a stepped bore and having a first end of greater area exposed to pressure in said inlet passage and a second end of smaller area exposed to pressure in said second outlet passage and adapted to open said second valve when the force applied to said differential piston by pressure in said first outlet passage overcomes at least the force of said return spring.
  • An hydraulic system for a vehicle comprising a housing having an inlet passage for connection to a source of hydraulic fluid under pressure, a first outlet passage for connection to pressure storage means, and a second outlet'passage for connection to pressure operable means, a first normally closed one-way valve for controlling communication between said inlet passage and said first outlet passage, said first one-way valve mined value, a spring for urging said second valve into a closed position, and a differential piston working in a stepped bore and having a first end of greater area and exposed to pressure in said inlet passage and a second end of smaller area adapted to open said second valve when the force applied to said differential piston by pressure in said first outlet passage overcomes at least the force of said return spring, wherein a source of highpressure fluid is connected to said inlet passage, an hydraulic accumulator for operating a braking system is connected to said first outlet passage, and power voir from which the source receives fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Safety Valves (AREA)
  • Check Valves (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Multiple-Way Valves (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
US00257786A 1971-06-01 1972-05-30 Hydraulic flow control valve assemblies Expired - Lifetime US3812675A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1823671A GB1382593A (en) 1971-06-01 1971-06-01 Hydraulic flow control vavle assemblies

Publications (1)

Publication Number Publication Date
US3812675A true US3812675A (en) 1974-05-28

Family

ID=10108999

Family Applications (1)

Application Number Title Priority Date Filing Date
US00257786A Expired - Lifetime US3812675A (en) 1971-06-01 1972-05-30 Hydraulic flow control valve assemblies

Country Status (7)

Country Link
US (1) US3812675A (enrdf_load_stackoverflow)
JP (1) JPS5241887B1 (enrdf_load_stackoverflow)
DE (1) DE2226610C3 (enrdf_load_stackoverflow)
ES (1) ES403323A1 (enrdf_load_stackoverflow)
FR (1) FR2141142A5 (enrdf_load_stackoverflow)
GB (1) GB1382593A (enrdf_load_stackoverflow)
ZA (1) ZA723407B (enrdf_load_stackoverflow)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2802977A1 (de) * 1977-01-26 1978-07-27 Girling Ltd Hydraulikanlage
DE2748146A1 (de) * 1977-10-27 1979-05-03 Teves Gmbh Alfred Druckabhaengig schaltendes ventil
US4471806A (en) * 1982-06-14 1984-09-18 Strock Dennis J Fuel delivery system having thermal contraction compensation
CN104192200A (zh) * 2014-08-29 2014-12-10 长城汽车股份有限公司 一种转向蓄压器、液压助力转向系统及汽车

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2324059C2 (de) * 1973-05-12 1982-10-28 Alfred Teves Gmbh, 6000 Frankfurt Druckgesteuertes Wegeventil
DE2404519C2 (de) * 1974-01-31 1986-02-20 Robert Bosch Gmbh, 7000 Stuttgart Hydraulische Bremsanlage für ein Zugfahrzeug mit Anhänger
US3968729A (en) * 1974-10-29 1976-07-13 United Technologies Corporation Fluid-operated apparatus exhibiting hysteresis effect
IT1097555B (it) * 1977-07-29 1985-08-31 Fritzmeier Ag Impianto di frenatura idraulico per rimorchi di motrici di treni stradali
JPS5461788A (en) * 1977-10-21 1979-05-18 Mitsubishi Heavy Ind Ltd Cellular structure of container ship
DE3101906A1 (de) * 1981-01-22 1982-09-02 Alfred Teves Gmbh, 6000 Frankfurt Druckbegrenzungsventil-anordnung fuer zwei arbeitskreise

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641106A (en) * 1952-01-03 1953-06-09 Cleveland Automatic Machine Co Electrohydraulic system having a safety shutoff valve for its accumulator
US3049141A (en) * 1959-05-18 1962-08-14 Chrysler Corp Accumulator charging mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2641106A (en) * 1952-01-03 1953-06-09 Cleveland Automatic Machine Co Electrohydraulic system having a safety shutoff valve for its accumulator
US3049141A (en) * 1959-05-18 1962-08-14 Chrysler Corp Accumulator charging mechanism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2802977A1 (de) * 1977-01-26 1978-07-27 Girling Ltd Hydraulikanlage
US4173866A (en) * 1977-01-26 1979-11-13 Girling Limited Hydraulic systems
DE2748146A1 (de) * 1977-10-27 1979-05-03 Teves Gmbh Alfred Druckabhaengig schaltendes ventil
FR2407376A2 (fr) * 1977-10-27 1979-05-25 Teves Gmbh Alfred Soupape sensible a la pression
US4471806A (en) * 1982-06-14 1984-09-18 Strock Dennis J Fuel delivery system having thermal contraction compensation
CN104192200A (zh) * 2014-08-29 2014-12-10 长城汽车股份有限公司 一种转向蓄压器、液压助力转向系统及汽车

Also Published As

Publication number Publication date
DE2226610B2 (de) 1977-12-08
JPS5241887B1 (enrdf_load_stackoverflow) 1977-10-21
GB1382593A (en) 1975-02-05
FR2141142A5 (enrdf_load_stackoverflow) 1973-01-19
ZA723407B (en) 1973-02-28
DE2226610A1 (de) 1973-01-04
ES403323A1 (es) 1975-05-01
AU4258072A (en) 1973-07-26
DE2226610C3 (de) 1978-07-27

Similar Documents

Publication Publication Date Title
US3526089A (en) Reaction means for fluid pressure control valve
US3896845A (en) Accumulator charging and relief valve
US3889467A (en) Accumulator arrangement for a booster brake mechanism
US3719044A (en) Hybrid brake booster control valve
US6203117B1 (en) Compensator assembly in a hydraulic control unit for vehicular brake systems
US3550617A (en) Relief valve with controlled stability and variable setting
US3618690A (en) Damping and air-purging means for relief valve
US3796134A (en) Hydraulic booster brake mechanism
US3885391A (en) Hydraulic braking system
US3638528A (en) Hydraulic boost device with auxiliary fluid supply
US3113432A (en) Method and apparatus for controlling high pressure fluid by low pressure blocking
US3812675A (en) Hydraulic flow control valve assemblies
US3877759A (en) Vehicle anti-skid device
US4708405A (en) Brake pressure generator for a hydraulic brake system for use with motor vehicles
US4963692A (en) Brake control valve
US2472694A (en) Liquid pressure operated controlling system
US3707984A (en) Hydraulic valve with leakage control
US3871717A (en) Hydraulically operated brake pressure modulator
US3633462A (en) Bypass orifice for hydraulic boost device
US4390213A (en) Deceleration-sensitive braking pressure control device
US3852962A (en) Master cylinder partial system displacement modifier
US4217758A (en) Hydraulic brake booster with integral accumulator
US4154059A (en) Hydraulic brake booster with integral accumulator
US3693654A (en) Frictionless pressure seal
US10710563B2 (en) Pump attenuator bypass valve