US3798076A - METHOD FOR PRODUCING Al-KILLED DEEP DRAWING COLD ROLLED STEEL PLATE BY CONTINUOUS ANNEALING - Google Patents
METHOD FOR PRODUCING Al-KILLED DEEP DRAWING COLD ROLLED STEEL PLATE BY CONTINUOUS ANNEALING Download PDFInfo
- Publication number
- US3798076A US3798076A US00248242A US3798076DA US3798076A US 3798076 A US3798076 A US 3798076A US 00248242 A US00248242 A US 00248242A US 3798076D A US3798076D A US 3798076DA US 3798076 A US3798076 A US 3798076A
- Authority
- US
- United States
- Prior art keywords
- rolled steel
- percent
- cold rolled
- continuous annealing
- killed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
Definitions
- ABSTRACT Stallard Attorney, Agent, or FirmWenderoth, Lind & Ponack
- the present invention relates to a method for producing cold rolled steel plate or sheet having excellent deep-drawability.
- Cold rolled steel sheets have been widely used in various applications such as in the automobile industries, and for electric applications, office utensils, etc.
- the aluminum-killed cold rolled steel sheets have been conventionally produced without exception by recrystallization annealing with gradual heating of cold rolled steel sheet in a coil form in a box annealing furnace.
- recrystallization annealing with gradual heating of cold rolled steel sheet in a coil form in a box annealing furnace.
- continuous annealing process which is a short-time annealing process with an accelerated heating and cooling rate because such process will sacrify desirous properties of aluminum-killed steel sheets.
- the box annealing method has such defects that production per unit time is small and the production cost is increased because of the very low heating and cooling rate of the coil.
- Hot rolled steel sheets used as the starting materials in the present invention may be produced by ordinary production processes, including ingot-making and breaking down from molten steel prepared in electric furnaces, convertors, etc. or from molten steel further treated by vacuum degassing; slab-making by continuous casting, hot rolling and then acid pickling.
- hot rolled steel plates produced as above it is found that the steel composition which show excellent deep-drawability by continuous annealing must be different from the composition of the conventional aluminum-killed hot rolled steel plates.
- the steel composition is: less than 0.015 percent of carbon, 0.05
- the range of the above composition is determined from the production conditions of the hot rolled steel sheet and the deep-drawability after the continuous annealing.
- Carbon is effective and necessary for giving appropriate strength to the cold rolled steel, but too high a content of carbon lowers deep-drawability due to dissolution of over-saturated carbon into the matrix during the continuous annealing where accelerated heating and cooling is done, and forms lump cementite due to the coagulation of precipitates taking place during the cooling step after the hot rolling in the production of hot rolled steel plates.
- This cementite is finely devided by the cold rolling and locally dispersed, which causes various defects such as lowering of deep-drawability. Therefore, for improvement of deep-drawability it is desired that the carbon content be as low as possible, and the upper limit of the carbon content range is set at 0.015 percent with consideration to other properties and production cost.
- decarburization annealing of hot rolled steel sheets as well as decarburization of molten steel may be conducted.
- Manganese is effective to prevent hot embrittlement due to sulphur when it is contained in an amount more than 0.05 percent. However, too high a manganese content increases strength and lowers deep-drawability. Therefore, the upper limit of manganese is set at 0.5 percent.
- the range of soluble aluminum of 0.13 to 0.33 percent has been determined from the results of experiments on the present invention. This range has been selected so as to assure an value similar to or more than that obtained by box annealing conventional aluminum-killed cold rolled steel sheets, and particularly the range of 0.18 to 0.30 percent is desired. When an aluminum-killed cold rolled steel sheet containing such a soluble aluminum content is continuously annealed, deep-drawability is improved.
- This improvement may be attributed to the assumption that the acceralated heating and cooling rate as effected in continuous annealing is favourable for AlN present in the steel to form-a coagulated structure favourable to deep-drawing during the restoration and recrystallization period. Soluble aluminum contents excessively out of this range are considered to cause problems unfavourable to the coagulated structure or the Al precipitates, thus lowering deep-drawability. It is desirable that unavoidable impurities such as P and S be maintained as low as possible due to their adverse effect of lowering deep-drawability.
- a hot rolled steel sheet of the above composition is cold rolled at a reduction rate of more than 30 percent and subjected to recrystallization annealing in a continuous annealing furnace.
- the heat cycle namely the heating and cooling rate, and the soaking time in the annealing treatment and so on are not specifically limited.
- the method of the present invention has a remarkable advantage in that an aluminum-killed cold rolled steel sheet having better deep-drawability than that of the conventional aluminum-killed cold steel sheet produced by box annealing can be produced in a large amount at low production cost.
- Table 1 shows chemical compositions of hot rolled steel sheets produced from vacuum degassed molten steel prepared in a convertor by ingot-making, breaking-down and hot rolling.
- the hot rolled steel plates were cold rolled at a reduction rate of 70 percent to oband as compared with M steel and N steel which were produced by box annealing.
- a method of producing an aluminum-killed cold rolled steel sheet for deep drawing comprising: cold rolling a hot rolled steel plate containing not more than 0.015 percent of carbon, 0.05 to 0.50 percent of manganese, 0.13 to 0.33 percent of soluble aluminum, with the balance being iron and unavoidable impurities, and continuously annealing the thus cold rolled steel sheet.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP46027179A JPS516610B1 (enrdf_load_stackoverflow) | 1971-04-27 | 1971-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3798076A true US3798076A (en) | 1974-03-19 |
Family
ID=12213833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00248242A Expired - Lifetime US3798076A (en) | 1971-04-27 | 1972-04-27 | METHOD FOR PRODUCING Al-KILLED DEEP DRAWING COLD ROLLED STEEL PLATE BY CONTINUOUS ANNEALING |
Country Status (2)
Country | Link |
---|---|
US (1) | US3798076A (enrdf_load_stackoverflow) |
JP (1) | JPS516610B1 (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3920487A (en) * | 1972-09-26 | 1975-11-18 | Nippon Steel Corp | Press forming cold rolled steel sheet and a producing method thereof |
US3988173A (en) * | 1972-04-03 | 1976-10-26 | Nippon Steel Corporation | Cold rolled steel sheet having excellent workability and method thereof |
US3988174A (en) * | 1972-04-03 | 1976-10-26 | Nippon Steel Corporation | Hot rolled steel sheet having excellent workability and method thereof |
US4113523A (en) * | 1973-07-25 | 1978-09-12 | Nippon Kokan Kabushiki Kaisha | Process of making high tension cold-reduced al-killed steel excellent in accelerated aging property |
US5123971A (en) * | 1989-10-02 | 1992-06-23 | Armco Steel Company, L.P. | Cold reduced non-aging deep drawing steel and method for producing |
EP0510249A3 (en) * | 1991-04-23 | 1993-09-08 | Armco Steel Company Lp | Cold reduced non-aging deep drawing steel and method for producing |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5297731U (enrdf_load_stackoverflow) * | 1976-01-21 | 1977-07-22 | ||
JPH0589753U (ja) * | 1992-05-20 | 1993-12-07 | 株式会社ユーシン | トランクロック装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3248270A (en) * | 1961-07-18 | 1966-04-26 | Bethlehem Steel Corp | Method of producing deep drawing steel |
US3522110A (en) * | 1966-02-17 | 1970-07-28 | Nippon Steel Corp | Process for the production of coldrolled steel sheets having excellent press workability |
US3615925A (en) * | 1967-02-21 | 1971-10-26 | Nat Res Dev | Heat-treatment of steels |
US3666569A (en) * | 1969-06-18 | 1972-05-30 | Republic Steel Corp | Production of deep drawing steel |
US3668016A (en) * | 1968-03-02 | 1972-06-06 | Nippon Steel Corp | Process for producing cold-rolled steel plate high in the cold-formability |
-
1971
- 1971-04-27 JP JP46027179A patent/JPS516610B1/ja active Pending
-
1972
- 1972-04-27 US US00248242A patent/US3798076A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3248270A (en) * | 1961-07-18 | 1966-04-26 | Bethlehem Steel Corp | Method of producing deep drawing steel |
US3522110A (en) * | 1966-02-17 | 1970-07-28 | Nippon Steel Corp | Process for the production of coldrolled steel sheets having excellent press workability |
US3615925A (en) * | 1967-02-21 | 1971-10-26 | Nat Res Dev | Heat-treatment of steels |
US3668016A (en) * | 1968-03-02 | 1972-06-06 | Nippon Steel Corp | Process for producing cold-rolled steel plate high in the cold-formability |
US3666569A (en) * | 1969-06-18 | 1972-05-30 | Republic Steel Corp | Production of deep drawing steel |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3988173A (en) * | 1972-04-03 | 1976-10-26 | Nippon Steel Corporation | Cold rolled steel sheet having excellent workability and method thereof |
US3988174A (en) * | 1972-04-03 | 1976-10-26 | Nippon Steel Corporation | Hot rolled steel sheet having excellent workability and method thereof |
US3920487A (en) * | 1972-09-26 | 1975-11-18 | Nippon Steel Corp | Press forming cold rolled steel sheet and a producing method thereof |
US4113523A (en) * | 1973-07-25 | 1978-09-12 | Nippon Kokan Kabushiki Kaisha | Process of making high tension cold-reduced al-killed steel excellent in accelerated aging property |
US5123971A (en) * | 1989-10-02 | 1992-06-23 | Armco Steel Company, L.P. | Cold reduced non-aging deep drawing steel and method for producing |
EP0510249A3 (en) * | 1991-04-23 | 1993-09-08 | Armco Steel Company Lp | Cold reduced non-aging deep drawing steel and method for producing |
Also Published As
Publication number | Publication date |
---|---|
JPS516610B1 (enrdf_load_stackoverflow) | 1976-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3102831A (en) | Production of columbium containing steels | |
US4576656A (en) | Method of producing cold rolled steel sheets for deep drawing | |
US3865645A (en) | Cold-rolled steel sheet for press-forming | |
US4040873A (en) | Method of making low yield point cold-reduced steel sheet by continuous annealing process | |
US4576658A (en) | Method for manufacturing grain-oriented silicon steel sheet | |
US3761324A (en) | Columbium treated low carbon steel | |
US3798076A (en) | METHOD FOR PRODUCING Al-KILLED DEEP DRAWING COLD ROLLED STEEL PLATE BY CONTINUOUS ANNEALING | |
NO141723B (no) | Fremgangsmaate for fremstilling av krystallorientert magnetplate | |
US3933537A (en) | Method for producing electrical steel sheets having a very high magnetic induction | |
GB2060696A (en) | Method for making shadow masks | |
US3264144A (en) | Method of producing a rolled steel product | |
EP0075803B1 (en) | Process for producing cold rolled steel sheets having excellent press formability and ageing behaviour | |
JPS58151426A (ja) | 面内異方性の小さい缶用極薄鋼板の製造方法 | |
US3920487A (en) | Press forming cold rolled steel sheet and a producing method thereof | |
US3959029A (en) | Process of making cold reduced Al-stabilized steel having high drawability | |
JP3008003B2 (ja) | 磁気特性の優れた一方向性電磁鋼板の製造方法 | |
CA1142068A (en) | Process for producing high strength cold rolled steel sheet having excellent paintability, weldability and workability | |
US5108522A (en) | Method of making non-oriented electrical steel sheets having excellent magnetic properties under low magnetic field | |
US3335036A (en) | Deep drawing steel sheet and method for producing the same | |
JPS63100134A (ja) | 厚物超深絞り用冷延鋼板の製造方法 | |
US4066474A (en) | Method of making high strength cold reduced steel by continuous annealing process | |
JP3422852B2 (ja) | 缶用鋼板の製造方法 | |
JPS641531B2 (enrdf_load_stackoverflow) | ||
US3227587A (en) | Method of annealing magnesia coated silicon-iron alloys in a vacuum | |
KR0135001B1 (ko) | 소부경화형 연질 표면처리 열연코일의 제조방법 |