US3791864A - Method of ornamenting articles by means of magnetically oriented particles - Google Patents
Method of ornamenting articles by means of magnetically oriented particles Download PDFInfo
- Publication number
- US3791864A US3791864A US00196171A US3791864DA US3791864A US 3791864 A US3791864 A US 3791864A US 00196171 A US00196171 A US 00196171A US 3791864D A US3791864D A US 3791864DA US 3791864 A US3791864 A US 3791864A
- Authority
- US
- United States
- Prior art keywords
- particles
- magnetic
- coating
- primer
- magnetically orientable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/20—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by magnetic fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/06—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
- B05D5/061—Special surface effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C1/00—Processes, not specifically provided for elsewhere, for producing decorative surface effects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F13/00—Apparatus or processes for magnetising or demagnetising
- H01F13/003—Methods and devices for magnetising permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/16—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
- H01F7/0231—Magnetic circuits with PM for power or force generation
- H01F7/0247—Orientating, locating, transporting arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/50—Multilayers
- B05D7/52—Two layers
- B05D7/54—No clear coat specified
Definitions
- ABSTRACT A patterned effect can be produced in coatings applied to any surface by employing a preliminary coating which includes a liquid vehicle in which permanent magnet particles are suspended; the coating beingapplied and then hardened, after which the particles are magnetized under the influence of magnetic lines of force arranged in a predetermined pattern, and another coating containing magnetically orientable particles is applied, which particles become oriented by the magnetic field product by the particles first applied.
- the present invention relates to a method for producing a pattern on surfaces by applying a coating thereto, which contains magnetically orientable particles, and creating a pattern in this coating by means of magnetic fields.
- a known method of positioning the crystals in a desired way within the plastic material, for instance parallel to the surface of the object, consists in orienting the crystals by means of an electric or magnetic field.
- the basic idea of this method is derived from the fact that these crystals naturally possess a dipole moment of force, or else that such a moment of force can be induced in them under the effect of a magnetic field. Under the effect of such a field the crystals orient themselves parallel to the lines of flux.
- a known process for manufacturing an abrasive utilizes this method.
- a method for producing transparent plastic materials which can be used to manufacture objects or panels commercially in large amounts.
- polytetrafluorethylene dispersions are used to manufacture decorated transparent plastic materials by admixing preferably lamellate particles withthe plastic material, varying the positions of the particles by means of a magnetic field and subsequently drying the mixture.
- the corresponding arrangement of the magnets, in front or in back of the respective surface to be coated or to be provided with the color patterns, has to be maintained during the whole coating and hardening process, to permit the lines of magnetic flux to act upon the still movable magnetically orientable particles in the coating.
- the magnets are arranged, according to both the known and proposed processes, above the recently coated, but unhardened, layer, there is the danger that the magnetically orientable particles will be drawn out of the coating if the magnetic fields are too strong.
- the known methods are very timeconsuming since the hardening of the coating has to be completed while the magnetic particles disposed therein are fixedly oriented.
- the object of the present invention is therefore to provide a method which permits the application of patterns on surface coatings in any paint shop without requiring magnet arrangements from the outside.
- This object can be accomplished, according to the invention, by applying a primer or other preliminary coating containing permanent magnetic particles to the desired surface, hardening said primer and magnetizing it according to the desired pattern, after which a liquid coating containing magnetically orientable particles can be applied to said primer and be hardened.
- the new method according to the invention offers the advantageous possibility that the untreated objects whose surfaces normally require a primer anyway, can be supplied to the industry, for their subsequent treatment, already provided with this layer of primer. Thus, only the desired finish coating needs to be applied in the usual manner, and the desired pattern automatically appears.
- the new method can further be advantageously applied to thick objects which cannot be magnetically influenced from the opposite side, generally the bottom side, such as for example thick steel plates and brickwork;
- the primer or first coating preferably contains magnetizable permanent magnetic particles with high coercivity and consisting of ferrite of the type MO X6Fe O wherein M can be one or more of the elements Ba, Sr, Ca or Pb.
- the fluid coating containing the magnetically orientable particles can have a composition as disclosed in the German patent application No. P 20 06 848.8.
- a baking or vulcanizing or other form of hardening step can also be used instead of the above mentioned drying step.
- the originally unmagnetized permanent magnetic particles are added to a conventional liquid vehicle, wuch as a primer and the mixture is applied to the surface. Whilst the particles are still movable in the primer which has not yet hardened, or even after the particles are already fixed due to the drying of the primer, the desired magnet arrangement, or a magnetization device having a similar effect, is applied to the surface, either at the front or at the back of it. The particles become magnetized and, as the result of their high coercivity, produce a magnetic field which corresponds to the magnet arrangement.
- the primer consists of a pigmented layer in which the permanent magnetic particles are not visible.
- a plate or object which has been pre-treated in this way can thus be marketed.
- the manufacturer can sell this object together with coatings containing magnetically orientable particles.
- a particular feature of .the invention consists in that the finish coating containing the magnetically orientable particles may either be directly applied to the primer or to further intermediate layers of varnish, plastic, resin or similar materials to said primer, since the lines of magnetic flux will act through these layers.
- the time required for the magnetization can be considerably reduced by this new method, since the magnetization of the primer can be carried out in its dry condition, thus only requiring a fraction of a second. It is also possible to obtain particular patterns by applying the magnet several times, and in different directions, to the primer, without having to take into consideration the hardening time,.since the primer is already hard and dry.
- the whole working cycle becomes more flexible, since the step of applying the primer, of magnetizing it and of applying the coating containing the magnetically orientable particles can be carried out completely independent from each other.
- the product of the first and second steps can be stored in large quantities, in order to be furnished to the second or third step, respectively, according to the demand.
- the magnetically orientable particles preferably consist of powdery lamellate or rod-shaped iron and the object or the surface to be treated may consist of a ferromagnetic base, particularlya steel plate.
- the new method is independent of the thickness of the steel plate and is also effective on wood, plastic, ceramics and similar materials.
- a particularly suitable device to carry out the method of the invention to magnetize the permanent magnetic particles of the primer layer comprises an electric conductor which is shaped according to the desired magnetic field, which can be applied to the primer and through which a high electric current is sent. This can preferably be achieved by the use ofa conventional circuit which utilizes the discharge from a condenser. Further, apparatus to carry out the method of the invention is characterized in that the electric conductor is insulated and is imbedded in recesses provided in the surface of an iron terminal.
- the permanent magnetic particles are made of a material having a (B-H),,,,, value of 1-4-10 gauss'oersted.
- the coercivity I'I has preferably a value which is higher than 2,000 oersted and the retentivity B, has a value of 2,000 to 4,000 gauss.
- composition which is suitable for a primer according to the invention although it is not to be construed that other compositions arenot equally suitable.
- the primer is hardened by baking and the desired pattern is afterwards applied to it by-magnetization:
- ricinine alkyd 10 parts of urea or melamine resin 10 parts of titanium dioxide 10 parts of talc parts of benzol hydrocarbon and 35 parts of OX 300, that is a powdery anisotropic ferrite of the type of MO-6Fe O wherein M can be one or more of the elements Ba, Sr, Co or Pb.
- the method according to the invention has particularly proved to be suitable for objects made of ferromagnetic material, particularly steel plate, and provided with a permanent magnetic primer of the type above described.
- FIG. 1 shows a magnetic plate which has been provided with a striped pattern
- FIG. 2 shows a rose-like pattern provided on an iron surface
- FIG. 3 shows a top view of another form of magnetic pattern plate.
- a permanent magnetic plate which is provided with a pattern defined by striped areas of alternating polarity. This pattern is produced by magnetization of the plate according to a known procedure which is similar to the one used in the manufacture of permanent magnets.
- an ele ctromagnet can also be used in which insulated electric conductors are imbedded in parallel grooves provided in the surface of an iron plate 1.
- the permanent magnetic particles can also be magnetized by the lines of flux in such a way that they invisibly carry the pattern 2 of FIG.
- FIG. 2 shows a six-poled, frontal magnetization effect produced by a ring magnet made of barium ferrite.
- the shape and the range of the magnetic field can be very accurately determined therein.
- FIG. 3 shows a magnetic plate to produce a particular pattern containing an arrangement of circles and rectangles.
- a pattern can also be obtained by combining electromagnets.
- elongated strips 4 cut out of a flexible permanent magnet, or electromagnets corresponding in shape thereto and other forms of magnetic metal parts 5 can be located at various distances from said strips 4, or correspondingly shaped electromagnets are fixedly arranged in a mounting support 3.
- the surfaces provided with such new and aesthetically arranged patterns of magnetic particles can be applied to household objects, to the panelling of safes and buildingwallsgenerally, and can also be used in furniture and in the glass and ceramic industry, particularly for the manufacture of tiles.
- the final coating, or coatings, of liquid material containing magnetically orientable particles can thus be applied after the treated surfaces, or panels, have been put in place.
- Method of producing a pattern in a coating applied to the surface of an object comprising the steps of combining permanent magnetic ferrite particles having a coercivity H greater than 2,000 oersted in a fluid binder, applying said mixture of fluid binder and particles to the surface of an object, hardening said mixture to secure said magnetic particles to said object, magnetizing said magnetic particles to define a predetermined pattern, applying a fluid coating which includes magnetically orientable particles, and hardening the second coating so that the magnetically orientable particles adopt the pattern defined by the previously applied magnetic particles.
- Method of claim 1 which includes the step of applying at least one intermediate coating after said binder and prior to the application of the coating including magnetically orientable particles.
- Method of claim I which includes the step of subjecting said magnetic particles to the influence of magnetic lines of force to define said pattern.
- Method of claim 12 which includes the step of utilizing a permanent magnet to supply said magnetic lines of force.
- Method of claim 12 which includes the step of utilizing an electromagnet to supply said magnetic lines offorce.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
A patterned effect can be produced in coatings applied to any surface by employing a preliminary coating which includes a liquid vehicle in which permanent magnet particles are suspended; the coating being applied and then hardened, after which the particles are magnetized under the influence of magnetic lines of force arranged in a predetermined pattern, and another coating containing magnetically orientable particles is applied, which particles become oriented by the magnetic field product by the particles first applied.
Description
United States Patent [191 Steingroever [451 Feb. 12, 1974 METHOD OF ORNAMENTING ARTICLES BY MEANS OF MAGNETIC-ALLY ORIENTED PARTICLES [75] Inventor:
[73] Assignees: Magnetfabrik Bonn G.m.b.H.,
Bonn/Bad Goldesberg; Weilburger Lackfabrik ,1. Grebe, Weilburg/Lahn, both of, Germany; part interest to each [22] Filed: Nov. 5, 1971 [21] Appl. No.: 196,171
Erich Steingroever, Bonn, Germany [30] Foreign Application Priority Data Nov, 7, 1970 Germany 2054934 [52] US. Cl. 117/238, 117/239 [51] Int. Cl. H01f 10/00 [58] Field of Search 1 17/234-240; 252/6254 [56] References Cited UNITED STATES PATENTS 3,676,273 7/1972 Graves 117/238 X 3,149,996 9/1964 Wagner et a1. 117/239 3,043,685 7/1962 Rosenthal 117/238 X 3,371,044 2/1968 Cochardt 252/6254 2,570,856 lO/l95l Pratt et a1. 117/238 X 3,047,428 7/1962 Hiroshi et a1. 117/238 Primary ExaminerWi1liam D. Martin Assistant Examiner-Bernard D. Pianalto Attorney, Agent, or Firm-Arnold B. Christen [57] ABSTRACT A patterned effect can be produced in coatings applied to any surface by employing a preliminary coating which includes a liquid vehicle in which permanent magnet particles are suspended; the coating beingapplied and then hardened, after which the particles are magnetized under the influence of magnetic lines of force arranged in a predetermined pattern, and another coating containing magnetically orientable particles is applied, which particles become oriented by the magnetic field product by the particles first applied.
14 Claims, 3 Drawing Figures METHOD OF ORNAMENTING ARTICLES BY MEANS OF MAGNETICALLY ORIENTED PARTICLES The present invention relates to a method for producing a pattern on surfaces by applying a coating thereto, which contains magnetically orientable particles, and creating a pattern in this coating by means of magnetic fields.
lt is already known to create nacre-like effects in plastic materials by admixing thereto lamellate or rodshaped crystals with a high index of refraction. A known method of positioning the crystals in a desired way within the plastic material, for instance parallel to the surface of the object, consists in orienting the crystals by means of an electric or magnetic field. The basic idea of this method is derived from the fact that these crystals naturally possess a dipole moment of force, or else that such a moment of force can be induced in them under the effect of a magnetic field. Under the effect of such a field the crystals orient themselves parallel to the lines of flux. For example, a known process for manufacturing an abrasive utilizes this method.
Further, a method for producing transparent plastic materials is known, which can be used to manufacture objects or panels commercially in large amounts. According to this method, polytetrafluorethylene dispersions are used to manufacture decorated transparent plastic materials by admixing preferably lamellate particles withthe plastic material, varying the positions of the particles by means of a magnetic field and subsequently drying the mixture.
Up to the present, however, there has always been the desire to also provide opaque objects with finishes having particular patterns, which could not be achieved with the methods hitherto known in the coating industry. Therefore, a method has been proposed for producing a pattern during the coating of surfaces, according to which a finish containing magnetic components is applied, under the effect of magnetic fields, onto the surfaces to be coated. For this purpose, the objects are placed on devices which product magnetic fields in accordance with the desired patterns. The lines of magnetic flux act through the surface to be coated and extend in arcuate paths from the north pole to the south pole, as is well known. The surface is then covered with a coating containing magnetic components. These magnetic particles orient themselves in the still unhardened coating according to the lines of magnetic flux. After hardening, the coating displays the desired pattern which reproduces the magnetic pattern used by virtue of differences in brightness and reflectivity.
Further, it has been proposed to create the patterns in a similar way in panels of ceramic material, enamel, pigment solutions with or without binders, pastes, varnishes, lacquers, and synthetic resins, etc. either colored or uncolored. For instance, according to this method, the powdery or pasty ceramic material is exposed to the effect of magnetic fields, then melted, and finally hardened.
According to the known and ,proposed methods the corresponding arrangement of the magnets, in front or in back of the respective surface to be coated or to be provided with the color patterns, has to be maintained during the whole coating and hardening process, to permit the lines of magnetic flux to act upon the still movable magnetically orientable particles in the coating. Further, if the magnets are arranged, according to both the known and proposed processes, above the recently coated, but unhardened, layer, there is the danger that the magnetically orientable particles will be drawn out of the coating if the magnetic fields are too strong. Moreover, the known methods are very timeconsuming since the hardening of the coating has to be completed while the magnetic particles disposed therein are fixedly oriented.
The object of the present invention is therefore to provide a method which permits the application of patterns on surface coatings in any paint shop without requiring magnet arrangements from the outside.
This object can be accomplished, according to the invention, by applying a primer or other preliminary coating containing permanent magnetic particles to the desired surface, hardening said primer and magnetizing it according to the desired pattern, after which a liquid coating containing magnetically orientable particles can be applied to said primer and be hardened. The new method according to the invention offers the advantageous possibility that the untreated objects whose surfaces normally require a primer anyway, can be supplied to the industry, for their subsequent treatment, already provided with this layer of primer. Thus, only the desired finish coating needs to be applied in the usual manner, and the desired pattern automatically appears. The new method can further be advantageously applied to thick objects which cannot be magnetically influenced from the opposite side, generally the bottom side, such as for example thick steel plates and brickwork;
According to the invention the primer or first coating preferably contains magnetizable permanent magnetic particles with high coercivity and consisting of ferrite of the type MO X6Fe O wherein M can be one or more of the elements Ba, Sr, Ca or Pb. The fluid coating containing the magnetically orientable particles can have a composition as disclosed in the German patent application No. P 20 06 848.8. A baking or vulcanizing or other form of hardening step can also be used instead of the above mentioned drying step.
The originally unmagnetized permanent magnetic particles are added to a conventional liquid vehicle, wuch as a primer and the mixture is applied to the surface. Whilst the particles are still movable in the primer which has not yet hardened, or even after the particles are already fixed due to the drying of the primer, the desired magnet arrangement, or a magnetization device having a similar effect, is applied to the surface, either at the front or at the back of it. The particles become magnetized and, as the result of their high coercivity, produce a magnetic field which corresponds to the magnet arrangement.
Generally, the primer consists of a pigmented layer in which the permanent magnetic particles are not visible. A plate or object which has been pre-treated in this way can thus be marketed. For example, the manufacturer can sell this object together with coatings containing magnetically orientable particles.
A particular feature of .the invention consists in that the finish coating containing the magnetically orientable particles may either be directly applied to the primer or to further intermediate layers of varnish, plastic, resin or similar materials to said primer, since the lines of magnetic flux will act through these layers. The time required for the magnetization can be considerably reduced by this new method, since the magnetization of the primer can be carried out in its dry condition, thus only requiring a fraction of a second. It is also possible to obtain particular patterns by applying the magnet several times, and in different directions, to the primer, without having to take into consideration the hardening time,.since the primer is already hard and dry. The whole working cycle becomes more flexible, since the step of applying the primer, of magnetizing it and of applying the coating containing the magnetically orientable particles can be carried out completely independent from each other. The product of the first and second steps can be stored in large quantities, in order to be furnished to the second or third step, respectively, according to the demand.
According to the invention the magnetically orientable particles preferably consist of powdery lamellate or rod-shaped iron and the object or the surface to be treated may consist of a ferromagnetic base, particularlya steel plate. However, the new method is independent of the thickness of the steel plate and is also effective on wood, plastic, ceramics and similar materials.
A particularly suitable device to carry out the method of the invention to magnetize the permanent magnetic particles of the primer layer comprises an electric conductor which is shaped according to the desired magnetic field, which can be applied to the primer and through which a high electric current is sent. This can preferably be achieved by the use ofa conventional circuit which utilizes the discharge from a condenser. Further, apparatus to carry out the method of the invention is characterized in that the electric conductor is insulated and is imbedded in recesses provided in the surface of an iron terminal.
, According to a particular feature of the invention the permanent magnetic particles are made of a material having a (B-H),,,,, value of 1-4-10 gauss'oersted. The coercivity I'I has preferably a value which is higher than 2,000 oersted and the retentivity B, has a value of 2,000 to 4,000 gauss.
Following is a description of a composition which is suitable for a primer according to the invention although it is not to be construed that other compositions arenot equally suitable. The primer is hardened by baking and the desired pattern is afterwards applied to it by-magnetization:
20 parts of ricinine alkyd 10 parts of urea or melamine resin 10 parts of titanium dioxide 10 parts of talc parts of benzol hydrocarbon and 35 parts of OX 300, that is a powdery anisotropic ferrite of the type of MO-6Fe O wherein M can be one or more of the elements Ba, Sr, Co or Pb. The method according to the invention has particularly proved to be suitable for objects made of ferromagnetic material, particularly steel plate, and provided with a permanent magnetic primer of the type above described.
Other advantages, features and applications of the present invention will be apparent from the following detailed description with relation to the accompanied drawings, in which:
FIG. 1 shows a magnetic plate which has been provided with a striped pattern,
FIG. 2 shows a rose-like pattern provided on an iron surface, and
FIG. 3 shows a top view of another form of magnetic pattern plate.
To create the magnetic field a permanent magnetic plate can be used which is provided with a pattern defined by striped areas of alternating polarity. This pattern is produced by magnetization of the plate according to a known procedure which is similar to the one used in the manufacture of permanent magnets. Instead of the permanent magnetic plate an ele ctromagnet can also be used in which insulated electric conductors are imbedded in parallel grooves provided in the surface of an iron plate 1. When a strong electric current is sent through theconductors the pattern shown in FIG. 1 appears on the object or surface 2 provided with the primer containing the magnetic particles. The permanent magnetic particles can also be magnetized by the lines of flux in such a way that they invisibly carry the pattern 2 of FIG. 1 on the primed surface and with the result that lines of flux run from the permanent magnetic particles along lines N to the particles along the parallel lines S. This pattern can be immediately made visible 'by applying'the finish coating containing particles which are sensitive to the magnetic fields of the magnetic particles in the primer defining said invisible pattern on plate 2,
FIG. 2 shows a six-poled, frontal magnetization effect produced by a ring magnet made of barium ferrite. The shape and the range of the magnetic field can be very accurately determined therein.
FIG. 3 shows a magnetic plate to produce a particular pattern containing an arrangement of circles and rectangles. Such a pattern can also be obtained by combining electromagnets. For example, elongated strips 4 cut out of a flexible permanent magnet, or electromagnets corresponding in shape thereto and other forms of magnetic metal parts 5 can be located at various distances from said strips 4, or correspondingly shaped electromagnets are fixedly arranged in a mounting support 3.
The surfaces provided with such new and aesthetically arranged patterns of magnetic particles can be applied to household objects, to the panelling of safes and buildingwallsgenerally, and can also be used in furniture and in the glass and ceramic industry, particularly for the manufacture of tiles.
The final coating, or coatings, of liquid material containing magnetically orientable particles can thus be applied after the treated surfaces, or panels, have been put in place.
I claim:
1. Method of producing a pattern in a coating applied to the surface of an object, comprising the steps of combining permanent magnetic ferrite particles having a coercivity H greater than 2,000 oersted in a fluid binder, applying said mixture of fluid binder and particles to the surface of an object, hardening said mixture to secure said magnetic particles to said object, magnetizing said magnetic particles to define a predetermined pattern, applying a fluid coating which includes magnetically orientable particles, and hardening the second coating so that the magnetically orientable particles adopt the pattern defined by the previously applied magnetic particles.
2. Method of claim 1, wherein said magnetically orientable particles comprise lamellar iron.
produces a lustrous finish.
7. Method of claim 1, which includes the step of applying at least one intermediate coating after said binder and prior to the application of the coating including magnetically orientable particles.
8. Method of claim 1, wherein said magnetically orientable particles comprise powdered iron.
9. Method of claim 7, wherein said intermediate coating produces a lustrous finish.
10. Method of claim 7, wherein said intermediate coating comprises a synthetic plastic.
11. Method of claim 1, wherein said object comprises a steel plate.
12. Method of claim I, which includes the step of subjecting said magnetic particles to the influence of magnetic lines of force to define said pattern.
13. Method of claim 12, which includes the step of utilizing a permanent magnet to supply said magnetic lines of force.
14. Method of claim 12, which includes the step of utilizing an electromagnet to supply said magnetic lines offorce.
Claims (13)
- 2. Method of claim 1, wherein said magnetically orientable particles comprise lamellar iron.
- 3. Method of claim 1, wherein said binder is combined with magnetizable permanent magnetic particles having high coercivity and consisting of a ferrite of the type MO.6Fe2O3, wherein M is at least one of the elements Ba, Sr, Ca and Pb.
- 4. Method of claim 1, wherein said magnetically orientable particles comprise rod-shaped iron.
- 5. Method of claim 1, wherein said binder comprises a primer.
- 6. Method of claim 1, wherein said second coating produces a lustrous finish.
- 7. Method of claim 1, which includes the step of applying at least one intermediate coating after said binder and prior to the application of the coating including magnetically orientable particles.
- 8. Method of claim 1, wherein said magnetically orientable particles comprise powdered iron.
- 9. Method of claim 7, wherein said intermediate coating produces a lustrous finish.
- 10. Method of claim 7, wherein said intermediate coating comprises a synthetic plastic.
- 11. Method of claim 1, wherein said object comprises a steel plate.
- 12. Method of claim 1, which includes the step of subjecting said magnetic particles to the inFluence of magnetic lines of force to define said pattern.
- 13. Method of claim 12, which includes the step of utilizing a permanent magnet to supply said magnetic lines of force.
- 14. Method of claim 12, which includes the step of utilizing an electromagnet to supply said magnetic lines of force.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19702054934 DE2054934C (en) | 1970-11-07 | Method for generating patterns by means of magnetic fields in surface layers |
Publications (1)
Publication Number | Publication Date |
---|---|
US3791864A true US3791864A (en) | 1974-02-12 |
Family
ID=5787506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00196171A Expired - Lifetime US3791864A (en) | 1970-11-07 | 1971-11-05 | Method of ornamenting articles by means of magnetically oriented particles |
Country Status (5)
Country | Link |
---|---|
US (1) | US3791864A (en) |
BE (1) | BE774930A (en) |
FR (1) | FR2113650A1 (en) |
IT (1) | IT938725B (en) |
NL (1) | NL7115172A (en) |
Cited By (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058116A (en) * | 1974-10-09 | 1977-11-15 | Louis Bucalo | Methods, materials, and devices for providing electrical conductivity particularly for living beings |
US4767584A (en) * | 1985-04-03 | 1988-08-30 | Massachusetts Institute Of Technology | Process of and apparatus for producing design patterns in materials |
US4935083A (en) * | 1988-09-21 | 1990-06-19 | Massachusetts Inst Technology | Process for producing design patterns on materials |
US5364689A (en) * | 1992-02-21 | 1994-11-15 | Hashimoto Forming Industry Co., Ltd. | Painting with magnetically formed pattern and painted product with magnetically formed pattern |
WO1999012662A1 (en) * | 1997-09-08 | 1999-03-18 | E.I. Du Pont De Nemours And Company | Patterned release finish |
WO2003000801A2 (en) | 2001-04-27 | 2003-01-03 | Flex Products, Inc. | Multi-layered magnetic pigments and foils |
US20030165637A1 (en) * | 2001-05-07 | 2003-09-04 | Flex Products, Inc. | Methods for producing imaged coated articles by using magnetic pigments |
US20040051297A1 (en) * | 2002-07-15 | 2004-03-18 | Flex Products, Inc., A Jds Uniphase Company | Method and apparatus for orienting magnetic flakes |
US20040151827A1 (en) * | 2002-09-13 | 2004-08-05 | Flex Products, Inc., A Jds Uniphase Company | Opaque flake for covert security applications |
US20040166308A1 (en) * | 2003-02-13 | 2004-08-26 | Raksha Vladimir P. | Robust multilayer magnetic pigments and foils |
US20050009846A1 (en) * | 2001-06-27 | 2005-01-13 | Fischer Peter Martin | 2,6,9-Substituted purine derivatives and their use in the treatment of proliferative disorders |
US20050037192A1 (en) * | 2003-08-14 | 2005-02-17 | Flex Prodcuts, Inc., A Jds Uniphase Company | Flake for covert security applications |
US20050106367A1 (en) * | 2002-07-15 | 2005-05-19 | Jds Uniphase Corporation | Method and apparatus for orienting magnetic flakes |
US6902807B1 (en) | 2002-09-13 | 2005-06-07 | Flex Products, Inc. | Alignable diffractive pigment flakes |
US20060077496A1 (en) * | 1999-07-08 | 2006-04-13 | Jds Uniphase Corporation | Patterned structures with optically variable effects |
US20060097515A1 (en) * | 2002-07-15 | 2006-05-11 | Jds Uniphase Corporation | Kinematic images formed by orienting alignable flakes |
EP1669213A1 (en) | 2004-12-09 | 2006-06-14 | Sicpa Holding S.A. | Security element having a viewing-angle dependent aspect |
US20060194040A1 (en) * | 2002-09-13 | 2006-08-31 | Jds Uniphase Corporation | Two-step method of coating an article for security printing |
US20060198998A1 (en) * | 2002-07-15 | 2006-09-07 | Jds Uniphase Corporation | Dynamic appearance-changing optical devices (dacod) printed in a shaped magnetic field including printable fresnel structures |
US20060263539A1 (en) * | 2002-07-15 | 2006-11-23 | Jds Uniphase Corporation | Alignable Diffractive Pigment Flakes And Method And Apparatus For Alignment And Images Formed Therefrom |
WO2007065998A1 (en) * | 2005-12-08 | 2007-06-14 | Pivaudran Techniques Et Innovations | Method for producing an object from a magnetisable moulded synthetic material and object thus produced |
US20070139744A1 (en) * | 2002-09-13 | 2007-06-21 | Jds Uniphase Corporation | Security Device With Metameric Features Using Diffractive Pigment Flakes |
EP1745940A3 (en) * | 2005-07-20 | 2007-07-11 | JDS Uniphase Corporation | A two-step method of coating an article for security printing |
US20070172261A1 (en) * | 2002-07-15 | 2007-07-26 | Jds Uniphase Corporation | Apparatus For Orienting Magnetic Flakes |
US20070183047A1 (en) * | 2000-01-21 | 2007-08-09 | Jds Uniphase Corporation | Optically Variable Security Devices |
US7258900B2 (en) | 2002-07-15 | 2007-08-21 | Jds Uniphase Corporation | Magnetic planarization of pigment flakes |
US20070195392A1 (en) * | 1999-07-08 | 2007-08-23 | Jds Uniphase Corporation | Adhesive Chromagram And Method Of Forming Thereof |
US20070237891A1 (en) * | 2006-04-05 | 2007-10-11 | Inoac Corporation | Pattern Forming Apparatus and Pattern Forming Method |
US20080003413A1 (en) * | 2002-09-13 | 2008-01-03 | Jds Uniphase Corporation | Stamping A Coating Of Cured Field Aligned Special Effect Flakes And Image Formed Thereby |
EP1880866A1 (en) | 2006-07-19 | 2008-01-23 | Sicpa Holding S.A. | Oriented image coating on transparent substrate |
US20080019924A1 (en) * | 2003-08-14 | 2008-01-24 | Jds Uniphase Corporation | Non-Toxic Flakes For Authentication Of Pharmaceutical Articles |
US20080024847A1 (en) * | 1999-07-08 | 2008-01-31 | Jds Uniphase Corporation | Patterned Optical Structures With Enhanced Security Feature |
US20080073613A1 (en) * | 2006-03-29 | 2008-03-27 | Inoac Corporation | Coating Composition for Forming Pattern and Coated Article |
US20080098912A1 (en) * | 2006-10-30 | 2008-05-01 | Sang Broli Company Limited | Process and compound for producing printed design creating three-dimensional visual effect |
US20080107856A1 (en) * | 2002-09-13 | 2008-05-08 | Jds Uniphase Corporation | Provision of Frames Or Borders Around Pigment Flakes For Covert Security Applications |
US20080292862A1 (en) * | 2007-05-21 | 2008-11-27 | Filippov Andrey V | Method for producing anisoptropic bulk materials |
US20090072185A1 (en) * | 2001-07-31 | 2009-03-19 | Jds Uniphase Corporation | Anisotropic Magnetic Flakes |
US20090130448A1 (en) * | 2007-11-16 | 2009-05-21 | Arnold Magnetic Technologies | Flexible magnets having a printable surface and methods of production |
US20090184169A1 (en) * | 2006-05-12 | 2009-07-23 | Sicpa Holding S.A. | Coating Composition for Producing Magnetically Induced Images |
JP2009530093A (en) * | 2006-03-21 | 2009-08-27 | アクゾ ノーベル コーティングス インターナショナル ビー ヴィ | Method for applying a pattern to a substrate |
US20100003503A1 (en) * | 2008-03-03 | 2010-01-07 | Nokia Corporation | Electromagnetic wave transmission lines using magnetic nanoparticle composites |
US7645510B2 (en) | 2002-09-13 | 2010-01-12 | Jds Uniphase Corporation | Provision of frames or borders around opaque flakes for covert security applications |
US20100040845A1 (en) * | 2006-10-17 | 2010-02-18 | Sicpa Holding S.A. | Method and Means for Magnetically Transferring Indicia to a Coating Composition Applied on a Substrate |
WO2010055008A1 (en) * | 2008-11-11 | 2010-05-20 | Crown Packaging Technology, Inc. | Magnetised coating effect |
US20100208351A1 (en) * | 2002-07-15 | 2010-08-19 | Nofi Michael R | Selective and oriented assembly of platelet materials and functional additives |
WO2010115928A2 (en) | 2009-04-07 | 2010-10-14 | Sicpa Holding Sa | Piezochromic security element |
WO2011012520A2 (en) | 2009-07-28 | 2011-02-03 | Sicpa Holding Sa | Transfer foil comprising optically variable magnetic pigment, method of making, use of transfer foil, and article or document comprising such |
EP1759446B2 (en) † | 2004-06-15 | 2011-08-10 | Aumann GMBH | Winding device |
WO2011107527A1 (en) | 2010-03-03 | 2011-09-09 | Sicpa Holding Sa | Security thread or stripe comprising oriented magnetic particles in ink, and method and means for producing same |
US8025952B2 (en) | 2002-09-13 | 2011-09-27 | Jds Uniphase Corporation | Printed magnetic ink overt security image |
WO2012038531A1 (en) | 2010-09-24 | 2012-03-29 | Sicpa Holding Sa | Device, system and method for producing a magnetically induced visual effect |
CN101394939B (en) * | 2006-03-21 | 2012-07-18 | 阿克佐诺贝尔国际涂料股份有限公司 | Method of applying a pattern to a substrate |
US20130160785A1 (en) * | 2004-10-05 | 2013-06-27 | L'oreal | Method of applying makeup to a surface and a kit for implementing such a method |
NO20120739A1 (en) * | 2012-06-25 | 2013-12-26 | Inst Energiteknik | A method of forming a body with a particle structure fixed in a matrix material |
WO2014001334A1 (en) * | 2012-06-25 | 2014-01-03 | Institutt For Energiteknikk | Method for forming a body comprising a particle structure fixated in a matrix material |
US8658280B2 (en) | 2002-09-13 | 2014-02-25 | Jds Uniphase Corporation | Taggent flakes for covert security applications having a selected shape |
WO2014086556A1 (en) | 2012-12-07 | 2014-06-12 | Sicpa Holding Sa | Oxidatively drying ink compositions |
WO2014108303A1 (en) | 2013-01-09 | 2014-07-17 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect, processes and devices for their production, items carrying an optical effect layer, and uses thereof |
CN104129153A (en) * | 2013-03-27 | 2014-11-05 | Jds尤尼弗思公司 | Optical device having an illusive optical effect and method of fabrication |
CN104260572A (en) * | 2014-09-26 | 2015-01-07 | 惠州市华阳光学技术有限公司 | Magnetic orientation pattern and preparation method thereof |
WO2015086257A1 (en) | 2013-12-13 | 2015-06-18 | Sicpa Holding Sa | Processes for producing effects layers |
US9102195B2 (en) | 2012-01-12 | 2015-08-11 | Jds Uniphase Corporation | Article with curved patterns formed of aligned pigment flakes |
WO2016016028A1 (en) | 2014-07-30 | 2016-02-04 | Sicpa Holding Sa | Belt-driven processes for producing optical effect layers |
WO2016026896A1 (en) | 2014-08-22 | 2016-02-25 | Sicpa Holding Sa | Apparatus and method for producing optical effect layers |
CN105452847A (en) * | 2013-08-02 | 2016-03-30 | 锡克拜控股有限公司 | Method and device for determining the orientation of pigment particles over an extended region of an optically effect layer |
US9458324B2 (en) | 2002-09-13 | 2016-10-04 | Viava Solutions Inc. | Flakes with undulate borders and method of forming thereof |
US9482800B2 (en) | 2013-06-10 | 2016-11-01 | Viavi Solutions Inc. | Durable optical interference pigment with a bimetal core |
WO2016193252A1 (en) | 2015-06-02 | 2016-12-08 | Sicpa Holding Sa | Processes for producing optical effects layers |
US9609934B2 (en) | 2004-10-05 | 2017-04-04 | L'oreal | Method of applying makeup by means of a magnetic composition including at least one interferential pigment |
WO2017064052A1 (en) | 2015-10-15 | 2017-04-20 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2017080698A1 (en) * | 2015-11-10 | 2017-05-18 | Sicpa Holding Sa | Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US9659696B2 (en) | 2013-06-14 | 2017-05-23 | Sicpa Holding Sa | Permanent magnet assemblies for generating concave field lines and process for creating optical effect coating therewith (inverse rolling bar) |
EP3178569A1 (en) | 2016-06-29 | 2017-06-14 | Sicpa Holding Sa | Processes and devices for producing optical effect layers using a photomask |
US9701152B2 (en) | 2012-08-29 | 2017-07-11 | Sicpa Holding Sa | Optically variable security threads and stripes |
US9724956B2 (en) | 2013-01-09 | 2017-08-08 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect; processes and devices for their production; items carrying an optical effect layer; and uses thereof |
WO2017148789A1 (en) | 2016-02-29 | 2017-09-08 | Sicpa Holding Sa | Appartuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US9844969B2 (en) | 2012-08-01 | 2017-12-19 | Sicpa Holdings Sa | Optically variable security threads and stripes |
WO2018019594A1 (en) | 2016-07-29 | 2018-02-01 | Sicpa Holding Sa | Processes for producing effect layers |
WO2018033512A1 (en) | 2016-08-16 | 2018-02-22 | Sicpa Holding Sa | Processes for producing effects layers |
WO2018054819A1 (en) | 2016-09-22 | 2018-03-29 | Sicpa Holding Sa | Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2018141547A1 (en) | 2017-01-31 | 2018-08-09 | Sicpa Holding Sa | Apparatuses and methods for producing optical effect layers |
US10052903B2 (en) | 2014-07-29 | 2018-08-21 | Sicpa Holding Sa | Processes for in-field hardening of optical effect layers produced by magnetic-field generating devices generating concave field lines |
WO2019038370A1 (en) | 2017-08-25 | 2019-02-28 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
WO2019038369A1 (en) | 2017-08-25 | 2019-02-28 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
WO2019038371A1 (en) | 2017-08-25 | 2019-02-28 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US10279618B2 (en) | 2013-08-05 | 2019-05-07 | Sicpa Holding Sa | Magnetic or magnetisable pigment particles and optical effect layers |
US10309614B1 (en) | 2017-12-05 | 2019-06-04 | Vital Vivo, Inc. | Light directing element |
US10328436B2 (en) | 2014-11-27 | 2019-06-25 | Giamag Technologies As | Magnet apparatus for generating high gradient magnetic field |
US10343436B2 (en) | 2006-02-27 | 2019-07-09 | Viavi Solutions Inc. | Security device formed by printing with special effect inks |
US10357582B1 (en) | 2015-07-30 | 2019-07-23 | Vital Vio, Inc. | Disinfecting lighting device |
WO2019141453A1 (en) | 2018-01-17 | 2019-07-25 | Sicpa Holding Sa | Processes for producing optical effects layers |
US10391519B2 (en) | 2013-12-04 | 2019-08-27 | Sicpa Holding Sa | Devices for producing optical effect layers |
US10413626B1 (en) | 2018-03-29 | 2019-09-17 | Vital Vio, Inc. | Multiple light emitter for inactivating microorganisms |
WO2019215148A1 (en) | 2018-05-08 | 2019-11-14 | Sicpa Holding Sa | Magnetic assemblies, apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2020025482A1 (en) | 2018-07-30 | 2020-02-06 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented magnetic or magnetizable pigment particles |
WO2020025218A1 (en) | 2018-07-30 | 2020-02-06 | Sicpa Holding Sa | Processes for producing optical effects layers |
WO2020052862A1 (en) | 2018-09-10 | 2020-03-19 | Sicpa Holding Sa | Processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US10617774B2 (en) | 2017-12-01 | 2020-04-14 | Vital Vio, Inc. | Cover with disinfecting illuminated surface |
WO2020160993A1 (en) | 2019-02-08 | 2020-08-13 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US10753575B2 (en) | 2015-07-30 | 2020-08-25 | Vital Vio, Inc. | Single diode disinfection |
WO2020173693A1 (en) | 2019-02-28 | 2020-09-03 | Sicpa Holding Sa | Method for authenticating a magnetically induced mark with a portable device |
WO2020193009A1 (en) | 2019-03-28 | 2020-10-01 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US10918747B2 (en) | 2015-07-30 | 2021-02-16 | Vital Vio, Inc. | Disinfecting lighting device |
WO2021083809A1 (en) | 2019-10-28 | 2021-05-06 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2021083808A1 (en) | 2019-10-28 | 2021-05-06 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2021239607A1 (en) | 2020-05-26 | 2021-12-02 | Sicpa Holding Sa | Magnetic assemblies and methods for producing optical effect layers comprising oriented platelet-shaped magnetic or magnetizable pigment particles |
WO2021259527A1 (en) | 2020-06-23 | 2021-12-30 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles |
US11230127B2 (en) | 2002-07-15 | 2022-01-25 | Viavi Solutions Inc. | Method and apparatus for orienting magnetic flakes |
WO2022049024A1 (en) | 2020-09-02 | 2022-03-10 | Sicpa Holding Sa | Security documents or articles comprising optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers |
WO2022049025A1 (en) | 2020-09-02 | 2022-03-10 | Sicpa Holding Sa | Security marking, method and device for reading the security marking, security document marked with the security marking, and method and system for verifying said security document |
US11369704B2 (en) | 2019-08-15 | 2022-06-28 | Vyv, Inc. | Devices configured to disinfect interiors |
WO2022207692A1 (en) | 2021-03-31 | 2022-10-06 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia |
WO2022258521A1 (en) | 2021-06-11 | 2022-12-15 | Sicpa Holding Sa | Optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers |
US11541135B2 (en) | 2019-06-28 | 2023-01-03 | Vyv, Inc. | Multiple band visible light disinfection |
US11639897B2 (en) | 2019-03-29 | 2023-05-02 | Vyv, Inc. | Contamination load sensing device |
WO2023161464A1 (en) | 2022-02-28 | 2023-08-31 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia |
US11768321B2 (en) | 2000-01-21 | 2023-09-26 | Viavi Solutions Inc. | Optically variable security devices |
US11878084B2 (en) | 2019-09-20 | 2024-01-23 | Vyv, Inc. | Disinfecting light emitting subcomponent |
WO2024028408A1 (en) | 2022-08-05 | 2024-02-08 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia |
EP4338854A2 (en) | 2023-12-20 | 2024-03-20 | Sicpa Holding SA | Processes for producing optical effects layers |
WO2024208695A1 (en) | 2023-04-03 | 2024-10-10 | Sicpa Holding Sa | Apparatuses and processes for producing optical effects layers |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3820709A1 (en) * | 1988-06-18 | 1989-12-21 | Michael Steiner | METHOD AND DEVICE FOR PRODUCING COLOR PATTERNS ON DOCKS |
DE19520172A1 (en) * | 1995-06-01 | 1996-12-05 | Siemens Ag | Magnetization device for a magnetoresistive thin-film sensor element with a bias layer part |
US6893489B2 (en) * | 2001-12-20 | 2005-05-17 | Honeywell International Inc. | Physical colored inks and coatings |
BE1020786A3 (en) * | 2012-07-10 | 2014-05-06 | Agc Glass Europe | METHOD FOR PRODUCING MAGNETICALLY INDUCED PATTERNS IN A LAYER DEPOSITED ON A GLASS SHEET |
EP2871065A1 (en) | 2013-11-12 | 2015-05-13 | AGC Glass Europe | Method for producing patterns magnetically induced in a layer deposited on a glass sheet |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570856A (en) * | 1947-03-25 | 1951-10-09 | Du Pont | Process for obtaining pigmented films |
US3043685A (en) * | 1957-07-18 | 1962-07-10 | Xerox Corp | Xerographic and magnetic image recording and reproducing |
US3047428A (en) * | 1958-01-27 | 1962-07-31 | Fuji Photo Film Co Ltd | Magnetic recording material |
US3149996A (en) * | 1960-11-16 | 1964-09-22 | Basf Ag | Magnetic record member |
US3371044A (en) * | 1963-01-25 | 1968-02-27 | Westinghouse Electric Corp | Ferrite magnets |
US3676273A (en) * | 1970-07-30 | 1972-07-11 | Du Pont | Films containing superimposed curved configurations of magnetically orientated pigment |
-
1971
- 1971-10-20 IT IT12997/71A patent/IT938725B/en active
- 1971-11-03 NL NL7115172A patent/NL7115172A/xx unknown
- 1971-11-04 BE BE774930A patent/BE774930A/en unknown
- 1971-11-05 FR FR7139853A patent/FR2113650A1/fr not_active Withdrawn
- 1971-11-05 US US00196171A patent/US3791864A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2570856A (en) * | 1947-03-25 | 1951-10-09 | Du Pont | Process for obtaining pigmented films |
US3043685A (en) * | 1957-07-18 | 1962-07-10 | Xerox Corp | Xerographic and magnetic image recording and reproducing |
US3047428A (en) * | 1958-01-27 | 1962-07-31 | Fuji Photo Film Co Ltd | Magnetic recording material |
US3149996A (en) * | 1960-11-16 | 1964-09-22 | Basf Ag | Magnetic record member |
US3371044A (en) * | 1963-01-25 | 1968-02-27 | Westinghouse Electric Corp | Ferrite magnets |
US3676273A (en) * | 1970-07-30 | 1972-07-11 | Du Pont | Films containing superimposed curved configurations of magnetically orientated pigment |
Cited By (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058116A (en) * | 1974-10-09 | 1977-11-15 | Louis Bucalo | Methods, materials, and devices for providing electrical conductivity particularly for living beings |
US4767584A (en) * | 1985-04-03 | 1988-08-30 | Massachusetts Institute Of Technology | Process of and apparatus for producing design patterns in materials |
US4935083A (en) * | 1988-09-21 | 1990-06-19 | Massachusetts Inst Technology | Process for producing design patterns on materials |
US5364689A (en) * | 1992-02-21 | 1994-11-15 | Hashimoto Forming Industry Co., Ltd. | Painting with magnetically formed pattern and painted product with magnetically formed pattern |
US5630877A (en) * | 1992-02-21 | 1997-05-20 | Hashimoto Forming Industry Co., Ltd. | Painting with magnetically formed pattern and painted product with magnetically formed pattern |
WO1999012662A1 (en) * | 1997-09-08 | 1999-03-18 | E.I. Du Pont De Nemours And Company | Patterned release finish |
US6103361A (en) * | 1997-09-08 | 2000-08-15 | E. I. Du Pont De Nemours And Company | Patterned release finish |
US7667895B2 (en) | 1999-07-08 | 2010-02-23 | Jds Uniphase Corporation | Patterned structures with optically variable effects |
US7876481B2 (en) | 1999-07-08 | 2011-01-25 | Jds Uniphase Corporation | Patterned optical structures with enhanced security feature |
US20060077496A1 (en) * | 1999-07-08 | 2006-04-13 | Jds Uniphase Corporation | Patterned structures with optically variable effects |
US20080024847A1 (en) * | 1999-07-08 | 2008-01-31 | Jds Uniphase Corporation | Patterned Optical Structures With Enhanced Security Feature |
US7880943B2 (en) | 1999-07-08 | 2011-02-01 | Jds Uniphase Corporation | Patterned optical structures with enhanced security feature |
US20070195392A1 (en) * | 1999-07-08 | 2007-08-23 | Jds Uniphase Corporation | Adhesive Chromagram And Method Of Forming Thereof |
US11768321B2 (en) | 2000-01-21 | 2023-09-26 | Viavi Solutions Inc. | Optically variable security devices |
US20070183047A1 (en) * | 2000-01-21 | 2007-08-09 | Jds Uniphase Corporation | Optically Variable Security Devices |
US6818299B2 (en) | 2001-04-27 | 2004-11-16 | Flex Products, Inc. | Multi-layered magnetic pigments and foils |
US6838166B2 (en) | 2001-04-27 | 2005-01-04 | Flex Products, Inc. | Multi-layered magnetic pigments and foils |
US20040028905A1 (en) * | 2001-04-27 | 2004-02-12 | Phillips Roger W. | Multi-layered magnetic pigments and foils |
WO2003000801A2 (en) | 2001-04-27 | 2003-01-03 | Flex Products, Inc. | Multi-layered magnetic pigments and foils |
US20030165637A1 (en) * | 2001-05-07 | 2003-09-04 | Flex Products, Inc. | Methods for producing imaged coated articles by using magnetic pigments |
US6759097B2 (en) | 2001-05-07 | 2004-07-06 | Flex Products, Inc. | Methods for producing imaged coated articles by using magnetic pigments |
US20050009846A1 (en) * | 2001-06-27 | 2005-01-13 | Fischer Peter Martin | 2,6,9-Substituted purine derivatives and their use in the treatment of proliferative disorders |
US9662925B2 (en) | 2001-07-31 | 2017-05-30 | Viavi Solutions Inc. | Anisotropic magnetic flakes |
US20090072185A1 (en) * | 2001-07-31 | 2009-03-19 | Jds Uniphase Corporation | Anisotropic Magnetic Flakes |
US9257059B2 (en) | 2001-07-31 | 2016-02-09 | Viavi Solutions Inc. | Dynamic appearance-changing optical devices (DACOD) printed in a shaped magnetic field including printable fresnel structures |
US7047883B2 (en) | 2002-07-15 | 2006-05-23 | Jds Uniphase Corporation | Method and apparatus for orienting magnetic flakes |
US20060263539A1 (en) * | 2002-07-15 | 2006-11-23 | Jds Uniphase Corporation | Alignable Diffractive Pigment Flakes And Method And Apparatus For Alignment And Images Formed Therefrom |
US11230127B2 (en) | 2002-07-15 | 2022-01-25 | Viavi Solutions Inc. | Method and apparatus for orienting magnetic flakes |
US9027479B2 (en) | 2002-07-15 | 2015-05-12 | Jds Uniphase Corporation | Method and apparatus for orienting magnetic flakes |
US20060198998A1 (en) * | 2002-07-15 | 2006-09-07 | Jds Uniphase Corporation | Dynamic appearance-changing optical devices (dacod) printed in a shaped magnetic field including printable fresnel structures |
US8726806B2 (en) | 2002-07-15 | 2014-05-20 | Jds Uniphase Corporation | Apparatus for orienting magnetic flakes |
US8343615B2 (en) | 2002-07-15 | 2013-01-01 | Jds Uniphase Corporation | Dynamic appearance-changing optical devices (DACOD) printed in a shaped magnetic field including printable fresnel structures |
US7934451B2 (en) | 2002-07-15 | 2011-05-03 | Jds Uniphase Corporation | Apparatus for orienting magnetic flakes |
US20070172261A1 (en) * | 2002-07-15 | 2007-07-26 | Jds Uniphase Corporation | Apparatus For Orienting Magnetic Flakes |
US20060097515A1 (en) * | 2002-07-15 | 2006-05-11 | Jds Uniphase Corporation | Kinematic images formed by orienting alignable flakes |
US7258900B2 (en) | 2002-07-15 | 2007-08-21 | Jds Uniphase Corporation | Magnetic planarization of pigment flakes |
US9522402B2 (en) | 2002-07-15 | 2016-12-20 | Viavi Solutions Inc. | Method and apparatus for orienting magnetic flakes |
US20050106367A1 (en) * | 2002-07-15 | 2005-05-19 | Jds Uniphase Corporation | Method and apparatus for orienting magnetic flakes |
US10173455B2 (en) | 2002-07-15 | 2019-01-08 | Viavi Solutions Inc. | Dynamic appearance-changing optical devices (DACOD) printed in a shaped magnetic field including printable fresnel structures |
US20100208351A1 (en) * | 2002-07-15 | 2010-08-19 | Nofi Michael R | Selective and oriented assembly of platelet materials and functional additives |
US10059137B2 (en) | 2002-07-15 | 2018-08-28 | Viavi Solutions Inc. | Apparatus for orienting magnetic flakes |
US7625632B2 (en) | 2002-07-15 | 2009-12-01 | Jds Uniphase Corporation | Alignable diffractive pigment flakes and method and apparatus for alignment and images formed therefrom |
US7604855B2 (en) | 2002-07-15 | 2009-10-20 | Jds Uniphase Corporation | Kinematic images formed by orienting alignable flakes |
US7517578B2 (en) | 2002-07-15 | 2009-04-14 | Jds Uniphase Corporation | Method and apparatus for orienting magnetic flakes |
US20040051297A1 (en) * | 2002-07-15 | 2004-03-18 | Flex Products, Inc., A Jds Uniphase Company | Method and apparatus for orienting magnetic flakes |
US7729026B2 (en) | 2002-09-13 | 2010-06-01 | Jds Uniphase Corporation | Security device with metameric features using diffractive pigment flakes |
US9164575B2 (en) | 2002-09-13 | 2015-10-20 | Jds Uniphase Corporation | Provision of frames or borders around pigment flakes for covert security applications |
US20080107856A1 (en) * | 2002-09-13 | 2008-05-08 | Jds Uniphase Corporation | Provision of Frames Or Borders Around Pigment Flakes For Covert Security Applications |
US20040151827A1 (en) * | 2002-09-13 | 2004-08-05 | Flex Products, Inc., A Jds Uniphase Company | Opaque flake for covert security applications |
US8025952B2 (en) | 2002-09-13 | 2011-09-27 | Jds Uniphase Corporation | Printed magnetic ink overt security image |
US8118963B2 (en) | 2002-09-13 | 2012-02-21 | Alberto Argoitia | Stamping a coating of cured field aligned special effect flakes and image formed thereby |
US7241489B2 (en) | 2002-09-13 | 2007-07-10 | Jds Uniphase Corporation | Opaque flake for covert security applications |
US6902807B1 (en) | 2002-09-13 | 2005-06-07 | Flex Products, Inc. | Alignable diffractive pigment flakes |
US7674501B2 (en) | 2002-09-13 | 2010-03-09 | Jds Uniphase Corporation | Two-step method of coating an article for security printing by application of electric or magnetic field |
US9458324B2 (en) | 2002-09-13 | 2016-10-04 | Viava Solutions Inc. | Flakes with undulate borders and method of forming thereof |
US20060194040A1 (en) * | 2002-09-13 | 2006-08-31 | Jds Uniphase Corporation | Two-step method of coating an article for security printing |
US7300695B2 (en) | 2002-09-13 | 2007-11-27 | Jds Uniphase Corporation | Alignable diffractive pigment flakes |
USRE45762E1 (en) | 2002-09-13 | 2015-10-20 | Jds Uniphase Corporation | Printed magnetic ink overt security image |
US8658280B2 (en) | 2002-09-13 | 2014-02-25 | Jds Uniphase Corporation | Taggent flakes for covert security applications having a selected shape |
US8999616B2 (en) | 2002-09-13 | 2015-04-07 | Jds Uniphase Corporation | Taggent flakes for covert security applications having a selected shape |
US20080003413A1 (en) * | 2002-09-13 | 2008-01-03 | Jds Uniphase Corporation | Stamping A Coating Of Cured Field Aligned Special Effect Flakes And Image Formed Thereby |
US20070139744A1 (en) * | 2002-09-13 | 2007-06-21 | Jds Uniphase Corporation | Security Device With Metameric Features Using Diffractive Pigment Flakes |
US20100002275A9 (en) * | 2002-09-13 | 2010-01-07 | Jds Uniphase Corporation | Security Device With Metameric Features Using Diffractive Pigment Flakes |
US7645510B2 (en) | 2002-09-13 | 2010-01-12 | Jds Uniphase Corporation | Provision of frames or borders around opaque flakes for covert security applications |
US7169472B2 (en) | 2003-02-13 | 2007-01-30 | Jds Uniphase Corporation | Robust multilayer magnetic pigments and foils |
US20040166308A1 (en) * | 2003-02-13 | 2004-08-26 | Raksha Vladimir P. | Robust multilayer magnetic pigments and foils |
US7258915B2 (en) | 2003-08-14 | 2007-08-21 | Jds Uniphase Corporation | Flake for covert security applications |
US7550197B2 (en) | 2003-08-14 | 2009-06-23 | Jds Uniphase Corporation | Non-toxic flakes for authentication of pharmaceutical articles |
US20080019924A1 (en) * | 2003-08-14 | 2008-01-24 | Jds Uniphase Corporation | Non-Toxic Flakes For Authentication Of Pharmaceutical Articles |
US20050037192A1 (en) * | 2003-08-14 | 2005-02-17 | Flex Prodcuts, Inc., A Jds Uniphase Company | Flake for covert security applications |
EP1759446B2 (en) † | 2004-06-15 | 2011-08-10 | Aumann GMBH | Winding device |
US20130160785A1 (en) * | 2004-10-05 | 2013-06-27 | L'oreal | Method of applying makeup to a surface and a kit for implementing such a method |
US9649261B2 (en) * | 2004-10-05 | 2017-05-16 | L'oreal | Method of applying makeup to a surface and a kit for implementing such a method |
US9609934B2 (en) | 2004-10-05 | 2017-04-04 | L'oreal | Method of applying makeup by means of a magnetic composition including at least one interferential pigment |
US20090230670A1 (en) * | 2004-12-09 | 2009-09-17 | Sicpa Holding S.A. | Security Element Having a Viewing- Angle Dependent Aspect |
US8211531B2 (en) | 2004-12-09 | 2012-07-03 | Sicpa Holding Sa | Security element having a viewing-angel dependent aspect |
JP2008529823A (en) * | 2004-12-09 | 2008-08-07 | シクパ・ホールディング・ソシエテ・アノニム | Security element with a viewing angle dependent appearance |
EP1669213A1 (en) | 2004-12-09 | 2006-06-14 | Sicpa Holding S.A. | Security element having a viewing-angle dependent aspect |
AU2006201842B8 (en) * | 2005-07-20 | 2011-06-02 | Viavi Solutions Inc. | A two-step method of coating an article for security printing |
AU2006201842B2 (en) * | 2005-07-20 | 2011-02-03 | Viavi Solutions Inc. | A two-step method of coating an article for security printing |
EP1745940A3 (en) * | 2005-07-20 | 2007-07-11 | JDS Uniphase Corporation | A two-step method of coating an article for security printing |
CN1899847B (en) * | 2005-07-20 | 2011-05-18 | Jds尤尼弗思公司 | Method of coating an article, method for forming image on a substrate and the image |
AU2006201842A8 (en) * | 2005-07-20 | 2011-06-02 | Viavi Solutions Inc. | A two-step method of coating an article for security printing |
FR2894508A1 (en) * | 2005-12-08 | 2007-06-15 | Pivaudran Tech Et Innovations | METHOD FOR MANUFACTURING MAGNETIZED MOLDED MOLDED SYNTHETIC OBJECT AND OBJECT OBTAINED |
WO2007065998A1 (en) * | 2005-12-08 | 2007-06-14 | Pivaudran Techniques Et Innovations | Method for producing an object from a magnetisable moulded synthetic material and object thus produced |
US10343436B2 (en) | 2006-02-27 | 2019-07-09 | Viavi Solutions Inc. | Security device formed by printing with special effect inks |
US11504990B2 (en) | 2006-02-27 | 2022-11-22 | Viavi Solutions Inc. | Security device formed by printing with special effect inks |
US8354145B2 (en) | 2006-03-21 | 2013-01-15 | Akzo Nobel Coatings International B.V. | Method of applying a pattern to a substrate |
US20090280307A1 (en) * | 2006-03-21 | 2009-11-12 | Akzo Nobel Coating International B.V. | Method of applying a pattern to a substrate |
CN101394939B (en) * | 2006-03-21 | 2012-07-18 | 阿克佐诺贝尔国际涂料股份有限公司 | Method of applying a pattern to a substrate |
JP2009530093A (en) * | 2006-03-21 | 2009-08-27 | アクゾ ノーベル コーティングス インターナショナル ビー ヴィ | Method for applying a pattern to a substrate |
US20080073613A1 (en) * | 2006-03-29 | 2008-03-27 | Inoac Corporation | Coating Composition for Forming Pattern and Coated Article |
US8147925B2 (en) * | 2006-04-05 | 2012-04-03 | Inoac Corporation | Pattern forming method |
EP1845537A3 (en) * | 2006-04-05 | 2007-10-24 | Inoac Corporation | Pattern forming apparatus and pattern forming method |
US20070237891A1 (en) * | 2006-04-05 | 2007-10-11 | Inoac Corporation | Pattern Forming Apparatus and Pattern Forming Method |
US8303700B1 (en) | 2006-05-12 | 2012-11-06 | Sicpa Holding Sa | Coating composition for producing magnetically induced |
US8246735B2 (en) | 2006-05-12 | 2012-08-21 | Sicpa Holding Sa | Coating composition for producing magnetically induced images |
US20090184169A1 (en) * | 2006-05-12 | 2009-07-23 | Sicpa Holding S.A. | Coating Composition for Producing Magnetically Induced Images |
US20090200791A1 (en) * | 2006-07-19 | 2009-08-13 | Sicpa Holding S.A. | Oriented Image Coating on Transparent Substrate |
EP1880866A1 (en) | 2006-07-19 | 2008-01-23 | Sicpa Holding S.A. | Oriented image coating on transparent substrate |
US8696031B2 (en) | 2006-07-19 | 2014-04-15 | Sicpa Holding Sa | Oriented image coating on transparent substrate |
US20100040845A1 (en) * | 2006-10-17 | 2010-02-18 | Sicpa Holding S.A. | Method and Means for Magnetically Transferring Indicia to a Coating Composition Applied on a Substrate |
US8557403B2 (en) | 2006-10-17 | 2013-10-15 | Sicpa Holding S.A. | Method and means for magnetically transferring indicia to a coating composition applied on a substrate |
US20080098912A1 (en) * | 2006-10-30 | 2008-05-01 | Sang Broli Company Limited | Process and compound for producing printed design creating three-dimensional visual effect |
US10242788B2 (en) | 2007-03-21 | 2019-03-26 | Viavi Solutions Inc. | Anisotropic magnetic flakes |
US8057889B2 (en) * | 2007-05-21 | 2011-11-15 | Corning Incorporated | Method for producing anisoptropic bulk materials |
US20080292862A1 (en) * | 2007-05-21 | 2008-11-27 | Filippov Andrey V | Method for producing anisoptropic bulk materials |
US20120001368A1 (en) * | 2007-05-21 | 2012-01-05 | Filippov Andrey V | Method for producing anisoptropic bulk materials |
US8551389B2 (en) * | 2007-05-21 | 2013-10-08 | Corning Incorporated | Method for producing anisoptropic bulk materials |
US20090130448A1 (en) * | 2007-11-16 | 2009-05-21 | Arnold Magnetic Technologies | Flexible magnets having a printable surface and methods of production |
US9011752B2 (en) | 2008-03-03 | 2015-04-21 | Nokia Corporation | Electromagnetic wave transmission lines using magnetic nanoparticle composites |
US20100003503A1 (en) * | 2008-03-03 | 2010-01-07 | Nokia Corporation | Electromagnetic wave transmission lines using magnetic nanoparticle composites |
WO2010055008A1 (en) * | 2008-11-11 | 2010-05-20 | Crown Packaging Technology, Inc. | Magnetised coating effect |
WO2010115928A2 (en) | 2009-04-07 | 2010-10-14 | Sicpa Holding Sa | Piezochromic security element |
WO2011012520A2 (en) | 2009-07-28 | 2011-02-03 | Sicpa Holding Sa | Transfer foil comprising optically variable magnetic pigment, method of making, use of transfer foil, and article or document comprising such |
US9216605B2 (en) | 2010-03-03 | 2015-12-22 | Sicpa Holding Sa | Security thread or stripe comprising oriented magnetic particles in ink, and method and means for producing same |
WO2011107527A1 (en) | 2010-03-03 | 2011-09-09 | Sicpa Holding Sa | Security thread or stripe comprising oriented magnetic particles in ink, and method and means for producing same |
WO2012038531A1 (en) | 2010-09-24 | 2012-03-29 | Sicpa Holding Sa | Device, system and method for producing a magnetically induced visual effect |
US11198315B2 (en) | 2012-01-12 | 2021-12-14 | Viavi Solutions Inc. | Article with curved patterns formed of aligned pigment flakes |
US10562333B2 (en) | 2012-01-12 | 2020-02-18 | Viavi Solutions Inc. | Article with curved patterns formed of aligned pigment flakes |
US10752042B2 (en) | 2012-01-12 | 2020-08-25 | Viavi Solutions Inc. | Article with dynamic frame formed with aligned pigment flakes |
US9102195B2 (en) | 2012-01-12 | 2015-08-11 | Jds Uniphase Corporation | Article with curved patterns formed of aligned pigment flakes |
US10259254B2 (en) | 2012-01-12 | 2019-04-16 | Viavi Solutions Inc. | Article with a dynamic frame formed with aligned pigment flakes |
US10232660B2 (en) | 2012-01-12 | 2019-03-19 | Viavi Solutions Inc. | Article with curved patterns formed of aligned pigment flakes |
WO2014001332A1 (en) * | 2012-06-25 | 2014-01-03 | Institutt For Energiteknikk | Method for forming a body comprising a particle structure fixated in a matrix material |
WO2014001334A1 (en) * | 2012-06-25 | 2014-01-03 | Institutt For Energiteknikk | Method for forming a body comprising a particle structure fixated in a matrix material |
NO20120739A1 (en) * | 2012-06-25 | 2013-12-26 | Inst Energiteknik | A method of forming a body with a particle structure fixed in a matrix material |
US9844969B2 (en) | 2012-08-01 | 2017-12-19 | Sicpa Holdings Sa | Optically variable security threads and stripes |
US9701152B2 (en) | 2012-08-29 | 2017-07-11 | Sicpa Holding Sa | Optically variable security threads and stripes |
US9840632B2 (en) | 2012-12-07 | 2017-12-12 | Sicpa Holding Sa | Oxidatively drying ink compositions |
WO2014086556A1 (en) | 2012-12-07 | 2014-06-12 | Sicpa Holding Sa | Oxidatively drying ink compositions |
WO2014108303A1 (en) | 2013-01-09 | 2014-07-17 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect, processes and devices for their production, items carrying an optical effect layer, and uses thereof |
US9724956B2 (en) | 2013-01-09 | 2017-08-08 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect; processes and devices for their production; items carrying an optical effect layer; and uses thereof |
EP3623058A1 (en) | 2013-01-09 | 2020-03-18 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect; processes and devices for their production; items carrying an optical effect layer; and uses thereof |
US10682877B2 (en) | 2013-01-09 | 2020-06-16 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect, processes and devices for their production, items carrying an optical effect layer, and uses thereof |
US9849713B2 (en) | 2013-01-09 | 2017-12-26 | Sicpa Holding Sa | Optical effect layers showing a viewing angle dependent optical effect, processes and devices for their production, items carrying an optical effect layer, and uses thereof |
CN104129153A (en) * | 2013-03-27 | 2014-11-05 | Jds尤尼弗思公司 | Optical device having an illusive optical effect and method of fabrication |
CN104129153B (en) * | 2013-03-27 | 2018-06-05 | Viavi 科技有限公司 | Optical devices and its manufacturing method with illusive optical effect |
US10029279B2 (en) | 2013-03-27 | 2018-07-24 | Viavi Solutions Inc. | Optical device having an illusive optical effect and method of fabrication |
US9482800B2 (en) | 2013-06-10 | 2016-11-01 | Viavi Solutions Inc. | Durable optical interference pigment with a bimetal core |
US10031269B2 (en) | 2013-06-10 | 2018-07-24 | Viavi Solutions Inc. | Durable optical interference pigment with a bimetal core |
US9659696B2 (en) | 2013-06-14 | 2017-05-23 | Sicpa Holding Sa | Permanent magnet assemblies for generating concave field lines and process for creating optical effect coating therewith (inverse rolling bar) |
US10054535B2 (en) | 2013-08-02 | 2018-08-21 | Sicpa Holding Sa | Method and device for determining the orientation of pigment particles over an extended region of an optically effect layer |
CN105452847A (en) * | 2013-08-02 | 2016-03-30 | 锡克拜控股有限公司 | Method and device for determining the orientation of pigment particles over an extended region of an optically effect layer |
US10279618B2 (en) | 2013-08-05 | 2019-05-07 | Sicpa Holding Sa | Magnetic or magnetisable pigment particles and optical effect layers |
US10391519B2 (en) | 2013-12-04 | 2019-08-27 | Sicpa Holding Sa | Devices for producing optical effect layers |
WO2015086257A1 (en) | 2013-12-13 | 2015-06-18 | Sicpa Holding Sa | Processes for producing effects layers |
US10933442B2 (en) | 2013-12-13 | 2021-03-02 | Sicpa Holding Sa | Processes for producing effects layers |
US10052903B2 (en) | 2014-07-29 | 2018-08-21 | Sicpa Holding Sa | Processes for in-field hardening of optical effect layers produced by magnetic-field generating devices generating concave field lines |
US10500889B2 (en) | 2014-07-30 | 2019-12-10 | Sicpa Holding Sa | Belt-driven processes for producing optical effect layers |
WO2016016028A1 (en) | 2014-07-30 | 2016-02-04 | Sicpa Holding Sa | Belt-driven processes for producing optical effect layers |
US11065866B2 (en) | 2014-08-22 | 2021-07-20 | Sicpa Holding Sa | Apparatuses for producing optical effect layers |
WO2016026896A1 (en) | 2014-08-22 | 2016-02-25 | Sicpa Holding Sa | Apparatus and method for producing optical effect layers |
CN104260572B (en) * | 2014-09-26 | 2016-11-23 | 惠州市华阳光学技术有限公司 | A kind of magnetic orientation pattern and preparation method thereof |
CN104260572A (en) * | 2014-09-26 | 2015-01-07 | 惠州市华阳光学技术有限公司 | Magnetic orientation pattern and preparation method thereof |
US10328436B2 (en) | 2014-11-27 | 2019-06-25 | Giamag Technologies As | Magnet apparatus for generating high gradient magnetic field |
WO2016193252A1 (en) | 2015-06-02 | 2016-12-08 | Sicpa Holding Sa | Processes for producing optical effects layers |
US10328739B2 (en) | 2015-06-02 | 2019-06-25 | Sicpa Holding Sa | Processes for producing optical effects layers |
US12018801B2 (en) | 2015-07-30 | 2024-06-25 | Vyv, Inc. | Single diode disinfection |
US10357582B1 (en) | 2015-07-30 | 2019-07-23 | Vital Vio, Inc. | Disinfecting lighting device |
US11713851B2 (en) | 2015-07-30 | 2023-08-01 | Vyv, Inc. | Single diode disinfection |
US10753575B2 (en) | 2015-07-30 | 2020-08-25 | Vital Vio, Inc. | Single diode disinfection |
US10918747B2 (en) | 2015-07-30 | 2021-02-16 | Vital Vio, Inc. | Disinfecting lighting device |
WO2017064052A1 (en) | 2015-10-15 | 2017-04-20 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US10850305B2 (en) | 2015-10-15 | 2020-12-01 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
RU2732859C2 (en) * | 2015-10-15 | 2020-09-23 | Сикпа Холдинг Са | Magnetic assemblies and methods for producing layers with optical effect containing oriented non-spherical magnetic or magnetisable particles of pigment |
RU2715166C2 (en) * | 2015-11-10 | 2020-02-25 | Сикпа Холдинг Са | Devices and methods for producing layers with optical effect, containing oriented non-spherical magnetic or magnetisable particles of pigment |
US10906066B2 (en) | 2015-11-10 | 2021-02-02 | Sicpa Holding Sa | Appartuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2017080698A1 (en) * | 2015-11-10 | 2017-05-18 | Sicpa Holding Sa | Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US10981401B2 (en) | 2016-02-29 | 2021-04-20 | Sicpa Holding Sa | Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
CN108698077B (en) * | 2016-02-29 | 2021-07-23 | 锡克拜控股有限公司 | Device and method for producing an optical effect layer comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2017148789A1 (en) | 2016-02-29 | 2017-09-08 | Sicpa Holding Sa | Appartuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
TWI798171B (en) * | 2016-02-29 | 2023-04-11 | 瑞士商西克帕控股有限公司 | Processes for producing optical effect layer (oel) comprising oriented non-spherical magnetic or magnetizable pigment particles, oel produced using the same, security document, decorative element and object including the oel, and appartuses for producing the oel, use for producing the oel using the same, and printing apparatus including the same |
CN108698077A (en) * | 2016-02-29 | 2018-10-23 | 锡克拜控股有限公司 | Device and method for the optical effect layer for producing the magnetic or magnetisable granules of pigments for including the non-spherical being orientated |
EP3178569A1 (en) | 2016-06-29 | 2017-06-14 | Sicpa Holding Sa | Processes and devices for producing optical effect layers using a photomask |
US10610888B2 (en) | 2016-07-29 | 2020-04-07 | Sicpa Holding Sa | Processes for producing effect layers |
WO2018019594A1 (en) | 2016-07-29 | 2018-02-01 | Sicpa Holding Sa | Processes for producing effect layers |
US11292027B2 (en) | 2016-08-16 | 2022-04-05 | Sicpa Holding Sa | Processes for producing effect layers |
WO2018033512A1 (en) | 2016-08-16 | 2018-02-22 | Sicpa Holding Sa | Processes for producing effects layers |
US11707764B2 (en) | 2016-08-16 | 2023-07-25 | Sicpa Holding Sa | Processes for producing effect layers |
US10737526B2 (en) | 2016-09-22 | 2020-08-11 | Sicpa Holding Sa | Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2018054819A1 (en) | 2016-09-22 | 2018-03-29 | Sicpa Holding Sa | Apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US11110487B2 (en) | 2017-01-31 | 2021-09-07 | Sicpa Holding Sa | Apparatuses and methods for producing optical effect layers |
WO2018141547A1 (en) | 2017-01-31 | 2018-08-09 | Sicpa Holding Sa | Apparatuses and methods for producing optical effect layers |
WO2019038371A1 (en) | 2017-08-25 | 2019-02-28 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US11065906B2 (en) | 2017-08-25 | 2021-07-20 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
WO2019038370A1 (en) | 2017-08-25 | 2019-02-28 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US11420230B2 (en) | 2017-08-25 | 2022-08-23 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
WO2019038369A1 (en) | 2017-08-25 | 2019-02-28 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US11660902B2 (en) | 2017-08-25 | 2023-05-30 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US10835627B2 (en) | 2017-12-01 | 2020-11-17 | Vital Vio, Inc. | Devices using flexible light emitting layer for creating disinfecting illuminated surface, and related method |
US11426474B2 (en) | 2017-12-01 | 2022-08-30 | Vyv, Inc. | Devices using flexible light emitting layer for creating disinfecting illuminated surface, and related methods |
US10617774B2 (en) | 2017-12-01 | 2020-04-14 | Vital Vio, Inc. | Cover with disinfecting illuminated surface |
US10309614B1 (en) | 2017-12-05 | 2019-06-04 | Vital Vivo, Inc. | Light directing element |
WO2019141453A1 (en) | 2018-01-17 | 2019-07-25 | Sicpa Holding Sa | Processes for producing optical effects layers |
US11691449B2 (en) | 2018-01-17 | 2023-07-04 | Sicpa Holding Sa | Processes for producing optical effects layers |
WO2019141452A1 (en) | 2018-01-17 | 2019-07-25 | Sicpa Holding Sa | Processes for producing optical effects layers |
US11772404B2 (en) | 2018-01-17 | 2023-10-03 | Sicpa Holding Sa | Processes for producing optical effects layers |
US10413626B1 (en) | 2018-03-29 | 2019-09-17 | Vital Vio, Inc. | Multiple light emitter for inactivating microorganisms |
US10806812B2 (en) | 2018-03-29 | 2020-10-20 | Vital Vio, Inc. | Multiple light emitter for inactivating microorganisms |
US11395858B2 (en) | 2018-03-29 | 2022-07-26 | Vyv, Inc. | Multiple light emitter for inactivating microorganisms |
WO2019215148A1 (en) | 2018-05-08 | 2019-11-14 | Sicpa Holding Sa | Magnetic assemblies, apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US11577272B2 (en) | 2018-05-08 | 2023-02-14 | Sicpa Holding Sa | Magnetic assemblies, apparatuses and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US12020864B2 (en) | 2018-07-30 | 2024-06-25 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented magnetic or magnetizable pigment particles |
WO2020025482A1 (en) | 2018-07-30 | 2020-02-06 | Sicpa Holding Sa | Assemblies and processes for producing optical effect layers comprising oriented magnetic or magnetizable pigment particles |
WO2020025218A1 (en) | 2018-07-30 | 2020-02-06 | Sicpa Holding Sa | Processes for producing optical effects layers |
US11577273B2 (en) | 2018-07-30 | 2023-02-14 | Sicpa Holding Sa | Processes for producing optical effects layers |
EP4230311A1 (en) | 2018-07-30 | 2023-08-23 | Sicpa Holding SA | Processes for producing optical effects layers |
WO2020052862A1 (en) | 2018-09-10 | 2020-03-19 | Sicpa Holding Sa | Processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US12115805B2 (en) | 2018-09-10 | 2024-10-15 | Sicpa Holding Sa | Processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2020160993A1 (en) | 2019-02-08 | 2020-08-13 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US12097720B2 (en) | 2019-02-08 | 2024-09-24 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical oblate magnetic or magnetizable pigment particles |
US11823003B2 (en) | 2019-02-28 | 2023-11-21 | Sicpa Holding Sa | Method for authenticating a magnetically induced mark with a portable device |
WO2020173693A1 (en) | 2019-02-28 | 2020-09-03 | Sicpa Holding Sa | Method for authenticating a magnetically induced mark with a portable device |
WO2020193009A1 (en) | 2019-03-28 | 2020-10-01 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US12054000B2 (en) | 2019-03-28 | 2024-08-06 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US11639897B2 (en) | 2019-03-29 | 2023-05-02 | Vyv, Inc. | Contamination load sensing device |
US11541135B2 (en) | 2019-06-28 | 2023-01-03 | Vyv, Inc. | Multiple band visible light disinfection |
US11717583B2 (en) | 2019-08-15 | 2023-08-08 | Vyv, Inc. | Devices configured to disinfect interiors |
US11369704B2 (en) | 2019-08-15 | 2022-06-28 | Vyv, Inc. | Devices configured to disinfect interiors |
US12115267B2 (en) | 2019-08-15 | 2024-10-15 | Vyv, Inc. | Devices configured to disinfect interiors |
US11878084B2 (en) | 2019-09-20 | 2024-01-23 | Vyv, Inc. | Disinfecting light emitting subcomponent |
WO2021083808A1 (en) | 2019-10-28 | 2021-05-06 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
US12090776B2 (en) | 2019-10-28 | 2024-09-17 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2021083809A1 (en) | 2019-10-28 | 2021-05-06 | Sicpa Holding Sa | Magnetic assemblies and processes for producing optical effect layers comprising oriented non-spherical magnetic or magnetizable pigment particles |
WO2021239607A1 (en) | 2020-05-26 | 2021-12-02 | Sicpa Holding Sa | Magnetic assemblies and methods for producing optical effect layers comprising oriented platelet-shaped magnetic or magnetizable pigment particles |
WO2021259527A1 (en) | 2020-06-23 | 2021-12-30 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles |
WO2022049025A1 (en) | 2020-09-02 | 2022-03-10 | Sicpa Holding Sa | Security marking, method and device for reading the security marking, security document marked with the security marking, and method and system for verifying said security document |
US12049097B2 (en) | 2020-09-02 | 2024-07-30 | Sicpa Holding Sa | Security documents or articles comprising optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers |
WO2022049024A1 (en) | 2020-09-02 | 2022-03-10 | Sicpa Holding Sa | Security documents or articles comprising optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers |
WO2022207692A1 (en) | 2021-03-31 | 2022-10-06 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia |
WO2022258521A1 (en) | 2021-06-11 | 2022-12-15 | Sicpa Holding Sa | Optical effect layers comprising magnetic or magnetizable pigment particles and methods for producing said optical effect layers |
WO2023161464A1 (en) | 2022-02-28 | 2023-08-31 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia |
WO2024028408A1 (en) | 2022-08-05 | 2024-02-08 | Sicpa Holding Sa | Methods for producing optical effect layers comprising magnetic or magnetizable pigment particles and exhibiting one or more indicia |
WO2024208695A1 (en) | 2023-04-03 | 2024-10-10 | Sicpa Holding Sa | Apparatuses and processes for producing optical effects layers |
EP4338854A2 (en) | 2023-12-20 | 2024-03-20 | Sicpa Holding SA | Processes for producing optical effects layers |
Also Published As
Publication number | Publication date |
---|---|
NL7115172A (en) | 1972-05-09 |
BE774930A (en) | 1972-03-01 |
DE2054934B2 (en) | 1972-08-24 |
FR2113650A1 (en) | 1972-06-23 |
DE2054934A1 (en) | 1972-08-24 |
IT938725B (en) | 1973-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3791864A (en) | Method of ornamenting articles by means of magnetically oriented particles | |
AU631435B2 (en) | Forming method of patterned coating | |
US2418479A (en) | Process for orienting ferromagnetic flakes in paint films | |
US3853676A (en) | Reference points on films containing curved configurations of magnetically oriented pigment | |
US2570856A (en) | Process for obtaining pigmented films | |
DE2006848A1 (en) | Magnetic loaded varnish for prodn of pat-terns | |
JPS57195327A (en) | Magnetic recording medium | |
GB1375814A (en) | ||
JPS57183630A (en) | Magnetic recording medium | |
JPS57195328A (en) | Magnetic recording medium | |
DE3732116A1 (en) | Magnetisable screen printing ink and process for preparing a sheet magnet | |
US3647661A (en) | Electrodeposition of coating layers on subtrate structures | |
JPS56117336A (en) | Manufacture of magnetic recording medium | |
JPH0517709A (en) | Pattern-forming paint composition and forming of patterned coating film | |
CN101417277B (en) | Processing method of pattern with stereoscopic vision effect on plane or arc surface | |
JPS62201676A (en) | Production of coated surface | |
JPH03193162A (en) | Formation of patterned coating film | |
ATE4616T1 (en) | METHOD OF MAKING ANISOTROPIC UNIAXIAL MAGNETIZATION CREDIT CARD AND CREDIT CARD MADE BY THIS METHOD. | |
JP2000271533A (en) | Manufacture of patterned coat metal sheet | |
JPS57205827A (en) | Manufacture of magnetic recording medium | |
SU274941A1 (en) | Dual Layer Elastic Magnetic Media | |
JPH09248520A (en) | Production of coated metallic sheet with pattern or metallic band | |
GB1333634A (en) | Magnetic flaw detection | |
CH585404A5 (en) | Detection of surface faults in magnetisable material - by applying solvent to ferromagnetic powder coating including pigment and lacquer | |
JPS57212624A (en) | Magnetic recording medium |