US3791256A - Machine gun - Google Patents
Machine gun Download PDFInfo
- Publication number
- US3791256A US3791256A US00207938A US3791256DA US3791256A US 3791256 A US3791256 A US 3791256A US 00207938 A US00207938 A US 00207938A US 3791256D A US3791256D A US 3791256DA US 3791256 A US3791256 A US 3791256A
- Authority
- US
- United States
- Prior art keywords
- bolt
- receiver
- carrier
- cartridge
- movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A35/00—Accessories or details not otherwise provided for
- F41A35/02—Dust- or weather-protection caps or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A15/00—Cartridge extractors, i.e. devices for pulling cartridges or cartridge cases at least partially out of the cartridge chamber; Cartridge ejectors, i.e. devices for throwing the extracted cartridges or cartridge cases free of the gun
- F41A15/12—Cartridge extractors, i.e. devices for pulling cartridges or cartridge cases at least partially out of the cartridge chamber; Cartridge ejectors, i.e. devices for throwing the extracted cartridges or cartridge cases free of the gun for bolt-action guns
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A15/00—Cartridge extractors, i.e. devices for pulling cartridges or cartridge cases at least partially out of the cartridge chamber; Cartridge ejectors, i.e. devices for throwing the extracted cartridges or cartridge cases free of the gun
- F41A15/12—Cartridge extractors, i.e. devices for pulling cartridges or cartridge cases at least partially out of the cartridge chamber; Cartridge ejectors, i.e. devices for throwing the extracted cartridges or cartridge cases free of the gun for bolt-action guns
- F41A15/14—Cartridge extractors, i.e. devices for pulling cartridges or cartridge cases at least partially out of the cartridge chamber; Cartridge ejectors, i.e. devices for throwing the extracted cartridges or cartridge cases free of the gun for bolt-action guns the ejector being mounted on or within the bolt; Extractors per se
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A19/00—Firing or trigger mechanisms; Cocking mechanisms
- F41A19/06—Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms
- F41A19/13—Percussion or firing pins, i.e. fixed or slidably-mounted striker elements; Mountings therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A19/00—Firing or trigger mechanisms; Cocking mechanisms
- F41A19/06—Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms
- F41A19/25—Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms having only slidably-mounted striker elements, i.e. percussion or firing pins
- F41A19/27—Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms having only slidably-mounted striker elements, i.e. percussion or firing pins the percussion or firing pin being movable relative to the breech-block
- F41A19/29—Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms having only slidably-mounted striker elements, i.e. percussion or firing pins the percussion or firing pin being movable relative to the breech-block propelled by a spring under tension
- F41A19/30—Mechanical firing mechanisms, e.g. counterrecoil firing, recoil actuated firing mechanisms having only slidably-mounted striker elements, i.e. percussion or firing pins the percussion or firing pin being movable relative to the breech-block propelled by a spring under tension in bolt-action guns
- F41A19/34—Cocking mechanisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A3/00—Breech mechanisms, e.g. locks
- F41A3/12—Bolt action, i.e. the main breech opening movement being parallel to the barrel axis
- F41A3/14—Rigid bolt locks, i.e. having locking elements rigidly mounted on the bolt or bolt handle and on the barrel or breech-housing respectively
- F41A3/16—Rigid bolt locks, i.e. having locking elements rigidly mounted on the bolt or bolt handle and on the barrel or breech-housing respectively the locking elements effecting a rotary movement about the barrel axis, e.g. rotating cylinder bolt locks
- F41A3/26—Rigid bolt locks, i.e. having locking elements rigidly mounted on the bolt or bolt handle and on the barrel or breech-housing respectively the locking elements effecting a rotary movement about the barrel axis, e.g. rotating cylinder bolt locks semi-automatically or automatically operated, e.g. having a slidable bolt-carrier and a rotatable bolt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A3/00—Breech mechanisms, e.g. locks
- F41A3/64—Mounting of breech-blocks; Accessories for breech-blocks or breech-block mountings
- F41A3/72—Operating handles or levers; Mounting thereof in breech-blocks or bolts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A9/00—Feeding or loading of ammunition; Magazines; Guiding means for the extracting of cartridges
- F41A9/38—Loading arrangements, i.e. for bringing the ammunition into the firing position
- F41A9/39—Ramming arrangements
- F41A9/40—Ramming arrangements the breech-block itself being the rammer
- F41A9/41—Ramming arrangements the breech-block itself being the rammer pushing unbelted ammunition from a box magazine on the gun frame into the cartridge chamber
Definitions
- the machine gun of this invention features a unitary bolt and bolt drive assembly reciprocably mounted within a receiver along three longitudinally extending bearing supports symmetrically arranged in spaced relation to the receiver; the bolt and bolt drive assembly, together with a recoil bufier constituting an integral operating group removably maintained within the receiver by a single latch mechanism; a bolt carrier of the assembly incorporating actuating means for cartridge belt advance, cartridge extraction and ejection; the bolt carrier housing not only a rotary, frontlocking bolt but also a cam follower which fixes a firing pin to the carrier and moves within a contoured slot in the bolt for locking and unlocking it in battery.
- This machine gun also features a gas recoil system for the bolt and bolt drive assembly having anti-fouling porting means for purging gas from the system under high pressure after firing; an ejector operated by the recoiling bolt and bolt drive assembly independently of its velocity; an automatically engageable, selfaligning barrel and receiver latch construction; and a sight assembly featuring a zero backlash precision screw adjustment means.
- This invention relates to machine guns and particularly concerns air-cooled, disintegrating link belt fed, gas operated machine guns.
- a primary object of this invention is to provide an improved machine gun having a mechanical operating and assembly design which significantly simplifies construction, minimizes the number of operating parts with a corresponding reduction in logistical requirements, reduces costs and is rugged and reliable while also being quick and easy to operate and maintain.
- Another object of this invention is to provide an improved machine gun having an operating group, including bolt and bolt drive assemblies and a recoil buffer, which is readily removable as a separate unit in a one step operation for facile field maintenance.
- Still another object of this invention is the provision of an improved balanced support system for the operating group within the receiver.
- a further object of this invention is to provide an improved operating group and associated trigger group incorporating a variety of improved safety features for fail-safe operation of the machine gun.
- a still further object of this invention is to provide a machine gun of significantly improved and simplified design featuring a one piece receiver which primarily serves as a cover and incorporates an improved arrangement of operating parts which minimizes repair and service requirements and also facilitates disassembly and reassembly of the machine gun without tools.
- Another object of this invention is to provide an improved machine gun incorporating a self-aligning, selflatching quick change barrel minimizing any need for hand protection when changing hot barrels.
- a still further object of this invention is to provide a significantly improved bolt assembly suited to be maintained in open battery before firing, whiich is of a retary, front locking, multi-lug type and which additionally controls the advance of a cartridge belt as well as positive ejection of spent cartridges through the bottom of the receiver irrespective of the attitude of the gun.
- Another object of this invention is the provision of an improved feed system for advancing live rounds in succession to a stripping station of a machine gun and which is controlled by reciprocation of the bolt assembly.
- Still another object of this invention is to provide an improved machine gun which can be readily charged with a pistol grip mounted for sliding movement on the receiver for either left or right hand operation without need to change or vary the arrangement of the operating components.
- Another object of this invention is to provide an improved gas recoil system for a machine gun featuring gas purging of the system under relatively high gas pressure.
- Still another object of this invention is to provide a machine gun having an improved ejector operated by the driving force of the recoiling mass, independently of its velocity and without requiring a spring as a driving force.
- a yet further object of this invention is to provide an improved sight assembly usablein a machine gun and which is particularly suited to effect precision sight adjustment while minimizing any possibility of backlash during such adjustment.
- FIG. 1 is a side view, partly broken away and partly in section, showing a machine gun incorporating the invention
- FIG. 2 is an exploded isometric view, partly broken away, of the machine gun of FIG. 1;
- FIG. 3 is an enlarged sectional view taken along line 33 of FIG. 1;
- FIG. 4 is an enlarged front view of a bolt face of a bolt assembly of this invention.
- FIG. 5 is an enlarged sectional view, partly broken away, taken along line 5-5 of FIG. 1;
- FIG. 6 is an enlarged sectional view, partly broken away, showing a machine gun gas porting arrangement embodied in this invention
- FIG. 7 is an enlarged sectional view, partly broken away, showing details of a sight assembly embodied in this invention.
- FIG. 8 is a side view of a trigger group safety embodied in the machine gun of this invention.
- FIG. 9 is an enlarged isometric view, partly broken away, of an actuator lug of the cartridge advancing system of this invention.
- FIG. 10 is an enlarged view, partly broken away, of a retaining pawl of the cartridge advancing system
- FIG. 11 is an enlarged sectional view, partly broken away, showing an ejector of the machine gun of this invention.
- FIG. 12 is an enlarged sectional view partly broken away, showing details of the bolt assembly of this invention.
- a barrel 10 of the machine gun embodying this invention is shown mounted on an elongated, hollow sheet metal receiver 12.
- a cylinder 14 of a gas recoil system is fitted into a gas porting head 16 shown fixed to the barrel I0 and having an attached, fixed front sight 18.
- the gas cylinder 14 is removably locked to the receiver 12 by a forward hand grip 20 mounted by a suitable tongue and groove connection to a portion 22 of the cylinder 14 protruding downwardly through a bottom opening 24 in the receiver 12.
- an automatically engageable barrel and receiver latch assembly For changing hot barrels without requiring hand protection for a gunner, an automatically engageable barrel and receiver latch assembly is provided.
- a pivotable carrying handle 26 is secured to the barrel 10 which has a rear barrel socket 28 for receipt in a bore 30 of a barrel bearing block 32 fixed in the receiver 12.
- a boss 34 circumferentially extends about the barrel l0 and is preferably chamfered along its upper surface for camming up a smoothly contoured boss engaging lip 36 on the front of a latch 38 pivotally mounted on a crosspin 40 fixed to the block .32.
- Extending rearwardly of the lip 36 is an upright center web 42 which readily seats within an alignment slot 44 in the boss 34 on the upper portion of the barrel upon passing the boss 34 under the lip 36 into engagement with the block 32.
- a coil spring 46 continuously urges the lip 36 downwardly to maintain the barrel 10 in locked assembly with the receiver 12.
- the latch 38 automatically aligns and locks the barrel 10 against rotation as well as longitudinal movement relative to the receiver 12.
- the latch 38 is merely depressed to overcome the spring force and release the barrel 10.
- a unitary bolt and bolt drive assembly together with a recoil buffer has been provided in accordance with this invention in a single operating group 50 which is easily removed as a separate unit from the receiver 12.
- the operating group 50 of this invention not only functions to carry a bolt 52 between open bolt and locked battery positions but additionally controls feeding of live rounds into the barrel 10 and the ejection of spent cartridges through the receiver 12.
- the interior receiver walls 54, 56 are particularly suited to be substantially free of expensive machining normally required to provide such multiple functions whereby the receiver 12 essentially serves as a simple cover for the operating components.
- a recoil buffer 58 is secured to a buttst'ock 60 in operative alignment behind a bolt assembly 62.
- the recoil buffer 58 is preferably of a hydraulic type.
- a plunger 64 is provided having an apertured piston 66 received within a liquid filled chamber 68, and an exposed end portion of the plunger 64 is continuously urged by a return spring 70 to project forwardly out of the buffer 58 to absorb shock loading imposed on the gun during recoil of the bolt assembly 62.
- the bolt assembly 62 is provided with a balanced bearing support arrangement along three symmetrically spaced axes of bearing support. Specifically, the bolt assembly 62 is supported for reciprocating movement on two simple guide rods'72, 74 mounted within outwardly projecting side wall portions 76, 78 of the receiver 12 in outboard parallel relation to the buffer plunger 64.
- the bolt assembly 62 also includes a gas piston 80 suitably secured to extend forwardly of a bolt carrier 82 of the assembly 62 for reciprocating movement within the gas cylinder 14 which serves to provide a third bearing support means for the bolt assembly 62.
- the guide rods 72, 74 extend through apertured side lugs (only one shown at 84 in FIG. 2) in the bolt carrier 82 which is maintained in assembly on the rods 72, 74 by an enlarged forward end portion (shown at 86) on each rod 72, 74 suited to be received in an opening such as at 88 formed in the barrel bearing block 32.
- a driving spring 90 is coiled about each guide rod 72, 74 between its respective lug 84 and the recoil buffer 58 to which the guide rods 72, 74 are secured.
- a buffer return spring of lower stiffness may be used and only a minimal amount of energy has to be returned by the buffer plunger 64, sufficient to fully return the plunger for engaging the bolt assembly 62 during its next recoil cycle. Accordingly, shock loading on recoil is reduced and the service life of other associated parts is correspondingly increased.
- each guide rod 72, 74 (FIG. 5) is preferably necked down by a groove 92 adjacent its rear end which is received in a suitable opening 94 in the buffer 58.
- An apertured plate 96 is fitted into a lateral slot 98 in the buffer 58 communicating with its openings 94 such that opposite side edges of the retaining plate 96 are disposed in interfering relation within the grooves 92 of the rods 72, 74 to lock the same into operative position.
- the retaining plate 96 may be removably fixed within the buffer 58 by a spring-biased plunger 100 mounted in the buffer 58 to extend through thercentral opening 102 in the retaining plate 96.
- the bolt assembly 62 thus may be disassembled from its drive and buffer systems by the simple expedient of merely removing the retaining plate 96.
- a single latching means for maintaining the operating group 50 in its entirety in fixed operative position within the receiver 12.
- a cavity 104 is formed in the buffer 58 in communication with a bottom opening 106 at the rear of the receiver 12.
- a push-button latch 108 is fitted for pivotal movement within a groove 110 at the forward end of the cavity 104.
- the latch 108 is suitably dimensioned and configured to bottom against the buffer 58 with a lower portion of the latch 108 protruding outwardly into engagement with the receiver 12 under the force of a leaf spring 112. Rearward movement of the operating group 50 relative to the receiver 12 is thus effectively blocked unless the latch 108 is first pressed inwardly to clear the receiver 12.
- a trigger group 114 For charging the machine gun a trigger group 114 is provided having a housing 116 mounted for sliding movement within a channel 118 along the bottom of the receiver 12 with a manual pistol grip 120 fixed to project downwardly from the housing 116.
- the trigger housing 116 has a fixed pin 122 serving as a pivot for a sear 124 biased upwardly by a spring 126 to engage a shoulder 128 on the bottom of the bolt carrier 82 for cocking it against the biasing force of the driving springs 90, 90 upon drawing the pistol grip 120 rearwardly and compressively loading the springs 90, 90.
- the gun is normally handled and carried with the pistol grip 120 in a forward charging position indicated by broken lines 130 in FIG. 1.
- an elongated ejection port 132 in the bottom of the receiver 12 is covered by the trigger group 114 and an attached stop plate 134 is slidably received within the channel 118.
- the stop plate 134 abuts against the buttstock 60 upon drawing the pistol grip 120 rearwardly to additionally limit its movement and establish a rear firing position for the trigger group 114.
- a latch 136 engages the receiver 12 to fix group 114 in firing position.
- the latch 108 for the operating group 50 is located in the receiver 12 so as to be entirely covered by the trigger group 114 in firing position.
- a trigger 140 is pivotally supported on the shaft 138 with a finger 142 extending forwardly for engagement with a rearwardly extending finger 144 on the sear 124.
- a trigger squeeze thus tends to pivot the sear 124 downwardly to ride off the shoulder 128 of the bolt carrier 82 and snap release it from its cocked position.
- the full diameter portion of the shaft 138 additionally serves as a crossbolt safety to normally engage a rear dog 146 on the sear 124 upon squeezing the trigger 140 whereby only limited sear movement is permitted, and such limited movement is insufficient to disengage the sear 124 from the bolt carrier 82.
- a relieved portion 148 (FIG. 8) of the shaft 138 is brought into alignment with the path of travel of the sear dog 146 whereby trigger actuation will permit free movement of the sear 124 to release the bolt carrier 82.
- Still another safety function is performed by the shaft 138 while being held in its safety position by a springbiased detent 150 engaging a cutout 152 in the shaft 138. While in safety position, an end of the shaft 138 protrudes through a half moon-shaped opening 154 in the side wall of the receiver 12 to secure the trigger group 114 in firing position even though its latch 136 might be inadvertently released. Accordingly, the shaft 138 must be laterally offset, not only to condition the trigger 140 to disengage the sear 124 from the bolt carrier 82, but also to align slots 155, 155 in opposite end portions of the shaft 138 with bottom channel rails 118A, 118A to clear the receiver 12 for unlatching the trigger group 114 to permit charging.
- the gas piston 80 is positioned in a chamber 161 of the gas porting head 16 with an inlet port 162 of the piston 80 in communication with the barrel bore via a gas conduit 164 which serves as an inlet to the chamber 161.
- a forwardly opening chamber 166 in the piston 80 receives a metered amount of compressed gases developed upon firing the gun during the time the conduit 164 is connected to the chamber 166 after the exiting bullet has passed the conduit 164 and before the piston 80 moves a sufficient distance rearwardly to cover or cut off the conduit 164.
- the driving force imparted to the piston 80 of the bolt assembly 62 is accordingly uniform irrespective of the climatic conditions or the type of ammunition being fired.
- the gas porting head 16 is intentionally purged under high pressure shortly after gas cutoff by the piston 80.
- an anti-fouling exhaust port 168 is provided in the gas porting head 16 and is shown as providing an opening circumferentially aligned in the chamber 161 with its gas conduit opening.
- the exhaust port 168 is initially covered by the piston during recoil. As the piston uncovers the port 168, the high pressure gases are purged from the chamber 161 and the gas conduit 164 is again exposed.
- the bolt assembly 62 As the bolt assembly 62 travels rearwardly during its recoil cycle, the bolt assembly 62 strikes the recoil buffer 58 and compressively loads the buffer spring 70 while the energy is being dissipated. Assuming the trigger has been released, the shoulder 128 of the bolt carrier 82 sets up on the sear 124 to condition the gun to fire the next round. If the trigger 140 has not been released, the bolt carrier 82 clears the sear 124 during a forward or counter-recoil movement, and the springs 90, 90 drive the bolt assembly 62 forwardly again to repeat the operation of chambering and firing whereby a continuous burst of fire occurs until trigger release or until there are no more rounds to be fired, whichever first occurs.
- a feed tray 170 is shown nested into an upper opening 172 in the receiver 12.
- a cover 174 is associated with the feed tray 170, both of which are pivotally mounted on a pair of upstanding lugs 176, 176 on the barrel bearing block 32.
- a stepped flange 178 on the cover 174 engages a sliding latch 180 for maintaining the feed tray 1711 in operative position.
- a stripping slot 182 dimensioned somewhat narrower than a cartridge but sufficiently wide to permit the stripping lug 156 of the bolt 52 to pass through for stripping a round from the belt.
- the slot 182 in the feed tray 170 defines the cartridge stripping station for receiving and positioning rounds to be stripped from the belt.
- a cartridge guide 184 is suitably hinged for pivotal movement about an edge of the feed tray cover 174 to continuously press each cartridge downwardly into the stripping slot 182 under the biasing force of a torsion spring 186.
- a shaft 188 is fixed to ears 189 (FIG. 10) projecting from the cartridge guide 184 and serves to mount the torsion spring 186 which is biased against the cover 174.
- the same shaft 188 supports a retaining pawl 190 and its torsion spring 192 for biasing the pawl downwardly toward the stripping slot 182.
- the pawl 190 projects through an opening 193 in the cartridge guide 184 for engaging links 195 of the cartridge belt to prevent any tendency of the belt to back out under its own weight or to withdraw under the retracting force of the feed pawls.
- the feed tray 1711 and its cover 174 are suitably apertured to provide a link chute of a preselected size permitting ejection of empty belt links while preventing their tipping into the stripping slot 182 on the feed tray 1170. Undesired forward movement of the links during stripping is prevented by a downwardly protruding lip 194 formed on the cartridge guide 184.
- a pair of feed pawls 196, 196 are supported in offset relation to the operating group 50 for oscillating pivotal movement within a pair of transverse slots 198, 198 in the feed tray 170 communicating with its stripping slot 182.
- a torsion spring 200 is shown resiliently biasing the feed pawls 196 upwardly to engage each round in succession from below the feed tray 170 and advance the cartridge belt over a rounded side lip 202 of the tray 170 and into the stripping station.
- the feed pawls 196, 196 are drivingly connected outside the receiver 12 to a pivotable actuator 294. 204.
- the actuator 204 is shown having a curved rocker 206 joined to the feed pawls 196, 196 at one end of a horizontally extending arm 208 fixed to an inwardly extending lug 210 received within an aperture 212 of the receiver 12 and pivotally supported for rocking movement on the enlarged end 86 of the guide rod 72.
- the curved rocker 206 of the actuator 204 disposed outside the receiver 12 is configured to correspond with the projecting receiver side wall portion 76. Bearing surfaces for the curved rocker 206 of the actuator 204 are thereby provided by the outer side wall surface of the receiver 12 and an inside surface ofa removable actuator cover 214 suitably secured to the outside of the receiver 12, preferably with the assistance of the lip 202 on the side of the feed tray 170.
- two cam paths 216, 218 are formed di rectly on the bolt carrier 82.
- a lower feed cam path 216 on the bolt carrier 82 provides a camming movement to a roller 220 rotatably supported on the actuator lug 210 to cause the feed pawls 196, 196 to move upwardly and engage a cartridge to feed the belt over the feed tray 170.
- the feed cam path 216 is contoured to ensure that the following movement of the roller 220 during feeding will result in the feed pawls 196, 196 pushing each cartridge in succession past the stripping slot 182, preferably to an extent limited by a suitable cartridge stop (not shown) which can be integrally formed, e.g., on the feed tray cover 174.
- an upper return cam path 218 on the bolt carrier 82 contacts a wiper pad 222 on the actuator lug 210 to retract the feed pawls 196, 196 from the stripping slot 182.
- the retaining pawl 190 then engages a link of the belt and, with the assistance of the cartridge guide 184, the round is properly positioned in the stripping slot 182 with the feed pawls 196, 196 being in a lowered retracted position due to the contour of the cam path 218.
- the bolt assembly not only strips a round from the belt but also chambers the round, locks it in battery, fires the round and extracts the cartridge substantially independently of the receiver 12 without any need for complex rails, rollers and other structures being mounted on the interior wall surfaces of the receiver as normally associated with machine guns of this type.
- the bolt 52 is housed within a longitudinally extending opening 224 within the bolt carrier 82 which moves the bolt 52 for and aft of the receiver 12. As the bolt 52 moves forwardly during counter-recoil, it is fixed to the carrier 82 by an upright cam follower 226.
- the cam follower 226 is carried by and supported for vertical movement within the bolt carrier 82 and extends through a firing pin 228 received within a longitudinal chamber 230 in the bolt 52.
- the firing pin 228 is provided with conical strikers 232 at its opposite longitudinal ends to permit it to be reversibly assembled within the bolt 52.
- a cam follower spring 238 and the cam follower 226 are readily inserted through the bolt 52 and firing pin 228.
- the cam follower 226 is then retained in position within the bolt carrier 82 by a crosspin 240 fixed to the cam follower 226.
- the crosspin 240 extends laterally outwardly, through elongated oversize vertical openings (only one shown at 242) in opposite sides of the bolt carrier 82, and is dimensioned to position opposite free ends of the crosspin 240 adjacent the interior side wall surfaces 54, 56 of the receiver 12.
- cam follower 226 is biased by the spring 238 into an upper position within the top openings 234, 236 in the bolt 52 and bolt carrier 82 whereby the bolt 52, the bolt carrier 82 and the firing pin 228 move as an integral unit.
- a downwardly extending tapered cartridge ramp 248 is formed in the rear barrel socket 28. After the round passes the feed tray 170, the round will be trapped between the firing chamber 250 and the ramp 248 with a forwardly directed force being applied by the bolt 52. Once the round is received in the chamber 250, contoured guide surfaces of the chamber ensure proper seating of the round.
- the bolt 52 With the cam follower 226 in retracted position, the bolt 52 may be locked in battery and the chambered round fired after the block 52 has reached its forward limit position in locked battery.
- a curved slot 254 is formed in the bottom of the bolt 52 to provide a contoured cam surface engageable with the cam follower 226.
- the slot 254 is dimensioned to provide continued travel of the retracted cam follower 226 within the bolt 52 to cause the firing pin striker 232 to extend through a pin hole 248 in the bolt face 246 to engage the chambered round and fire the gun.
- Initial rearward travel of the bolt carrier 82 relative to the locked bolt 52 provides a time delay allowing the release of gases from the barrel 10 after the bullet is out but before the gas conduit 164 is uncovered by the piston 80. Such delay minimizes gas blow back from the barrel 10 once the bolt 52 is counter-rotated by the cam follower 226 to unlock from the barrel socket 28.
- the bolt face 246 additionally incorporates a fixed extractor lip 260.
- the latter extends in spaced relation to the bolt face 246 along an arc of about 120 included angle adjacent the bottom of the bolt face 246 for engaging the rim of the cartridge for withdrawing it from the chamber 250 during recoil.
- a cartridge retaining plunger 262 is mounted within the bolt face 246 to extend forwardly under the bias of a spring 264 trapped within the bolt 52.
- the plunger 262 is positioned above the striker pin hole 248 and projects over the extractor lip 260 for engagement with the cartridge during its extraction.
- the guide lip 244 will be seen to be spaced from the cartridge rim (shown in broken lines at 266 in FIG. 4) in noninterfering relation with the seated cartridge during extraction.
- An additional purpose is served by the guide flange 268 in preventing any possibility of the bolt 52 stripping and firing a round out of battery should a malfunction of the spring 238 ever occur to misalign the bolt 52 within carrier 82. In such event, the rear end of the flange 268 will serve to interfere with a bolt lug to stop the bolt 52 and carrier 82 short before a round can be fully stripped from the feed tray 170.
- a still further safety feature embodied in this invention is provided in positioning the buffer plunger 64 behind the bolt assembly 62 in operative alignment for engaging both the bolt carrier 82 and the bolt 52 during recoil. Accordingly, should the rear end of the bolt 52 be offset from the carrier 82 for any reason, the buffer plunger 64 will positively engage both members to ensure proper seating of the cam follower 226 to condition the bolt assembly 62 for the next counter-recoil cycle.
- an ejector lever 270 is shown mounted above the ejection port I32 and connected to an ejector crank 272 through an interlocking drive.
- a pivot shaft 320 of the lever 270 is drivingly connected to a pivot shaft 274 of the crank'272.
- the pivot shafts 274. 320 are rotatably supported by a base member 276 fixed on top of the receiver 12 and, as best seen in FIG. 11, the shaft 274 of the crank 272 is coaxially received within an opening 322 for limited freedom of angular movement relative to the lever 270.
- the opening 322 receives an end portion of the shaft 274 and has an enlarged compartment of an hourglass cross-sectional shape defining contact surfaces 324, 326 for driving engagement with parallel flat shoulders 328, 330 formed on an intermediate portion of the crank shaft 274.
- a single torsion return spring 332 is shown (in phantom lines) coiled about crank shaft 274. Opposite ends 334, 336 of the spring 332 are fixed to the lever 270 and crank 272 respectively to continuously bias the same into direct driving engagement in its illustrated operative position shown in full lines in FIG. 11.
- a free end 280 of the lever 270 is located by the feed tray in operative position and is resiliently maintained therein by an intermediate spring portion 338 biased into engagement with the base member 276 behind the ejector.
- a positive mechanical ejector drive is effected by the driving force of the recoiling bolt carrier 82 in timed relation thereto irrespective of its velocity, while also eliminating any requirements for the use of springs serving as a driving force for cartridge ejection.
- Contact of the lug 278 with the crank 272 will force the crank into its rear broken line position shown at 340 in FIG. 11 to positively drive the lever 270 against its spring loading and swing its free end 280 downwardly to strike a forward end of the extracted cartridge and simply bat it out over the bolt extractor lip 260 through an opening in the bolt carrier 82 and the receiver ejection port 132.
- This action further loads the spring 332 engaged with the base member 276 to return the ejector to its operative position with the free end 280 of the lever 270 abutting the feed tray 1170 after the lug 278 has passed by the crank 272.
- the above-described interlocking connection between the lever 270 and its crank 272 permits free travel of the crank 272 to its forward limit position (shown in broken lines at 342) established by contact engagement between the crank shoulders 328, 330 and surfaces 344, 346 of the hourglass opening 322.
- the lever 270 remains in position during pivotal movement of the crank 272 which is returned by the spring 332 into operative position to be automatically re-engaged in driving engagement with the lever 270.
- the base member 276 on which the ejector mechanism is supported also serves as a mount for a rear sight 284.
- a rear peep sight member 286 is mounted for vertical movement on a sight bracket 288 having a threaded post 290 fixed relative to the sight member 286 and extending through an apertured mounting lug 292 thereon. Elevation adjustment of the sight is effected by an adjusting nut 294 threaded onto the post 290 in engagement with the mounting lug 292.
- a windage screw 296 is engaged within a threaded opening 298 in the bottom of the bracket 288 for selectively moving the bracket and its peep sight 286 in a selected lateral direction by rotating an adjusting knob 300-fixed to an end of the windage screw 296.
- the latter serves as a pivot for the bracket 288 and is supported within two upstanding ears 302 on the base member 276.
- Spring-loaded ball detents (only one shown at 306 in FIG. 7) are carried in the adjusting knob 300 for engagement within cavities such as that shown at 308 formed in a confronting face of the ear 302. Springs such as 310 thus continuously exert a loading force on the windage screw 296 to urge its shoulder 312 into abutment with the ear 302 of the base member 276 to resiliently maintain the windage screw 296 against unintended movement and effectively fix it relative to the bracket 288 so as to achieve precision windage adjustment with zero backlash.
- the ball detents 306 Upon seating in the cavities 308, the ball detents 306 provide an audible click for indicating a predetermined windage adjustment; if desired, a similar adjustment indicator may be incorporated in the adjustment for sight elevation.
- a single leaf spring 314 supported on the base member 276 serves to maintain the sight 284 in both its illustrated upright operative position as well as in an inoperative position wherein the sight 284 is folded down over the spring 314 onto the base member 276.
- a forward end of the spring 314 is fixed to the base member 276 and an opposite free end continuously exerts an upward biasing force to one of two flat surfaces 316, 318 formed on the base of the sight bracket 288 to selectively maintain the sight in either operative or folded positions respectively.
- the base member 276 mounted on the top of the receiver 12 not only provides a mount for the rear sight 284 but additionally serves to support the sliding latch 180 for holding down the feed tray 170 and its cover 174 and is also used to retain the actuator cover 214 in place when the feed tray 170 is raised.
- the construction of the receiver 12 is considerably simplified and essentially serves only as a cover which can be inexpensively manufactured in a mass production operation. Only the cam plates 252 and the barrel bearing block 32 need be fixed inside the receiver.
- the simplicity of the receiver design and the construction of the unitary bolt and bolt drive assembly results in an exceptionally compact, fail-safe operating group 50.
- the integral operating group 50 being readily removable as a separable unit by the simple expedient of pushing down a single latch 108 immediately exposes all parts of the operating group 50 upon removal from the receiver 12 in a one step operation for quick and easy field maintenance and lubrication.
- a gun comprising a receiver, a barrel on the receiver, a bolt having a cam path formed therein, a reciprocable carrier supporting the bolt for longitudinal and angular movement relative to the receiver, a firing pin received within the bolt, and a cam follower carried by the bolt carrier and connecting the firing pin for movement with the bolt carrier, the cam follower being in registration with the cam path of the bolt and extending through the firing pin to a first position in fixed engagement with the bolt for fixing the bolt to the bolt carrier, the cam follower being supported for fore and aft movements coincident with the bolt carrier and the firing pin, the cam follower being reciprocable along an axis perpendicular to the axis of longitudinal movement of the firing pin between said first position and a second position wherein relative movement is permitted between the bolt and bolt carrier, and the cam follower in its second position being movable in relation to the bolt along its cam path to effect relative longitudinal and angular movements of the bolt relative to the bolt carrier for locking and unlocking the bolt in battery with the barrel during longitudinal reciprocable movement of
- the gun of claim 1 further including two guide rods removably mounted within the receiver and supporting the carrier for reciprocable longitudinal movement therein.
- the gun of claim 1 further including a fixed extractor lip on the face of the bolt.
- the firing pin includes an elongated body having a striker at opposite ends thereof for reversible positioning within the bolt.
- the gun of claim 2 further including a gas recoil cylinder and a piston integrally secured to the bolt carrier for reciprocating movement within the cylinder, the two guide rods and the gas cylinder providing bearing surfaces for supporting the bolt carrier for longitudinal reciprocable movement relative to the receiver.
- the gun of claim 1 further including cam plate means fixed within the receiver, and a pin fixed to the cam follower and engageable with the cam plate means for moving the cam follower between its said first and second positions.
- An automatic machine gun comprising a receiver apertured to provide an upper feed opening and a bottom ejection port, a bolt carrier reciprocable within the receiver for chambering, firing and extracting rounds, and a bolt carried by the bolt carrier, the bolt having an upper guide lip projecting from its face in spaced re lation for receiving a rim of a cartridge for ensuring movement thereof in timed relation to the bolt during chambering, a lower extractor lip fixed to project from the bolt face in spaced relation thereto for extracting the cartridge, the guide lip being integrally formed on the bolt face in spaced noninterfering relation to the cartridge when seated within the extractor lip to permit rim remotely disposed from the guide lip for maintain:
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Portable Nailing Machines And Staplers (AREA)
Abstract
Description
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85747969A | 1969-09-12 | 1969-09-12 | |
US20793871A | 1971-12-14 | 1971-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3791256A true US3791256A (en) | 1974-02-12 |
Family
ID=26902750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00207938A Expired - Lifetime US3791256A (en) | 1969-09-12 | 1971-12-14 | Machine gun |
Country Status (1)
Country | Link |
---|---|
US (1) | US3791256A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4440062A (en) * | 1981-08-07 | 1984-04-03 | Mcqueen Sidney J | Reversible bolt for firearms |
US5259315A (en) * | 1991-06-13 | 1993-11-09 | Schaffler & Co. Gesellschaft M.B.H. | Non-electrical detonator |
US5551179A (en) * | 1995-01-06 | 1996-09-03 | Young; Daniel H. | Bolt carrier |
US6536150B2 (en) | 1999-01-28 | 2003-03-25 | Heckler & Koch Gmbh | Automatic firearm with a moving bolt assembly with locking projections |
US6625917B2 (en) * | 1999-01-28 | 2003-09-30 | Heckler & Koch Gmbh | Bolt assembly for a firearm |
US20070028500A1 (en) * | 2002-03-07 | 2007-02-08 | Woessner Ernst | Machine guns having detachable barrels and methods operating the same |
US20080216375A1 (en) * | 2007-03-07 | 2008-09-11 | Christopher Gene Barrett | Light weight firearm and method of manufacturing |
US20110023694A1 (en) * | 2009-01-15 | 2011-02-03 | Haywood Leroy E | Rapid Fire Weapon with Bidirectional Interchangable Barrel |
US20120131838A1 (en) * | 2010-10-15 | 2012-05-31 | The Parabellum Innovations Corporation | Adaptive Rail System for AK-Style Weapon |
US20140209082A1 (en) * | 2013-01-25 | 2014-07-31 | Kee Action Sports I Llc | Paintball marker with split body |
USD772999S1 (en) | 2014-10-09 | 2016-11-29 | Ronnie Barrett | Firearm |
USD774616S1 (en) | 2014-10-09 | 2016-12-20 | Ronnie Barrett | Handguard for a firearm |
USD785126S1 (en) | 2014-10-09 | 2017-04-25 | Ronnie Barrett | Bipod |
USD799629S1 (en) | 2014-10-09 | 2017-10-10 | Ronnie Barrett | Firearm |
US10006727B2 (en) | 2014-08-11 | 2018-06-26 | Ronnie Barrett | Firearm system |
US20190226789A1 (en) * | 2016-09-21 | 2019-07-25 | Vincent P. Battaglia | Quad lock multicaliber rifle receiver with locking barrel |
US10627187B1 (en) * | 2018-10-30 | 2020-04-21 | Kuan Ting Lin | Shooting controller of paintball gun |
US10704859B2 (en) | 2018-11-06 | 2020-07-07 | Gi Sportz Direct Llc | Compressed gas gun front grip having battery access panel |
US20220325967A1 (en) * | 2019-10-04 | 2022-10-13 | Glock Technology Gmbh | Bolt head for a firearm |
EP4403868A1 (en) * | 2023-01-17 | 2024-07-24 | Schmeisser GmbH | Portable firearm and method for operating a portable firearm |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US476290A (en) * | 1892-06-07 | Paul mauser | ||
US696306A (en) * | 1899-05-02 | 1902-03-25 | Lawrence V Benet | Automatic gun. |
US749214A (en) * | 1904-01-12 | Ho model | ||
US1430661A (en) * | 1918-11-23 | 1922-10-03 | Isaac N Lewis | Firearm |
US2635377A (en) * | 1946-11-02 | 1953-04-21 | Vickers Armstrongs Ltd | Cartridge case ejector for reciprocating breech block type of guns |
US2920538A (en) * | 1958-01-02 | 1960-01-12 | Albert J Lizza | Bolt mechanism for firearms |
US3253362A (en) * | 1964-04-21 | 1966-05-31 | Wilbur C Gitchell | Bolt actions for rifles |
US3318192A (en) * | 1965-02-12 | 1967-05-09 | Armalite Inc | Locked action rifle for automatic and semi-automatic selective firing |
US3386336A (en) * | 1966-03-30 | 1968-06-04 | Colt S Inc | Convertible machine gun for rightand left-hand cartridge feed and operation |
-
1971
- 1971-12-14 US US00207938A patent/US3791256A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US476290A (en) * | 1892-06-07 | Paul mauser | ||
US749214A (en) * | 1904-01-12 | Ho model | ||
US696306A (en) * | 1899-05-02 | 1902-03-25 | Lawrence V Benet | Automatic gun. |
US1430661A (en) * | 1918-11-23 | 1922-10-03 | Isaac N Lewis | Firearm |
US2635377A (en) * | 1946-11-02 | 1953-04-21 | Vickers Armstrongs Ltd | Cartridge case ejector for reciprocating breech block type of guns |
US2920538A (en) * | 1958-01-02 | 1960-01-12 | Albert J Lizza | Bolt mechanism for firearms |
US3253362A (en) * | 1964-04-21 | 1966-05-31 | Wilbur C Gitchell | Bolt actions for rifles |
US3318192A (en) * | 1965-02-12 | 1967-05-09 | Armalite Inc | Locked action rifle for automatic and semi-automatic selective firing |
US3386336A (en) * | 1966-03-30 | 1968-06-04 | Colt S Inc | Convertible machine gun for rightand left-hand cartridge feed and operation |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4440062A (en) * | 1981-08-07 | 1984-04-03 | Mcqueen Sidney J | Reversible bolt for firearms |
US5259315A (en) * | 1991-06-13 | 1993-11-09 | Schaffler & Co. Gesellschaft M.B.H. | Non-electrical detonator |
US5551179A (en) * | 1995-01-06 | 1996-09-03 | Young; Daniel H. | Bolt carrier |
US6536150B2 (en) | 1999-01-28 | 2003-03-25 | Heckler & Koch Gmbh | Automatic firearm with a moving bolt assembly with locking projections |
US6625917B2 (en) * | 1999-01-28 | 2003-09-30 | Heckler & Koch Gmbh | Bolt assembly for a firearm |
US20070028500A1 (en) * | 2002-03-07 | 2007-02-08 | Woessner Ernst | Machine guns having detachable barrels and methods operating the same |
US7347023B2 (en) * | 2002-07-03 | 2008-03-25 | Heckler & Koch, Gmbh | Machine guns having detachable barrels and methods operating the same |
US20080134557A1 (en) * | 2002-07-03 | 2008-06-12 | Ernst Wossner | Machine guns having detachable barrels and methods of operating the same |
US7644528B2 (en) | 2002-07-03 | 2010-01-12 | Heckler & Koch, Gmbh | Machine guns having detachable barrels and methods of operating the same |
US20080216375A1 (en) * | 2007-03-07 | 2008-09-11 | Christopher Gene Barrett | Light weight firearm and method of manufacturing |
US7937877B2 (en) * | 2007-03-07 | 2011-05-10 | Christopher Gene Barrett | Light weight firearm and method of manufacturing |
US20110023694A1 (en) * | 2009-01-15 | 2011-02-03 | Haywood Leroy E | Rapid Fire Weapon with Bidirectional Interchangable Barrel |
US8281698B2 (en) * | 2009-01-15 | 2012-10-09 | Leroy Edward Haywood | Rapid fire weapon with bidirectional interchangable barrel |
US20120131838A1 (en) * | 2010-10-15 | 2012-05-31 | The Parabellum Innovations Corporation | Adaptive Rail System for AK-Style Weapon |
US20140209082A1 (en) * | 2013-01-25 | 2014-07-31 | Kee Action Sports I Llc | Paintball marker with split body |
US8950387B2 (en) * | 2013-01-25 | 2015-02-10 | Kee Action Sports I Llc | Paintball marker with split body |
US9518799B2 (en) | 2013-01-25 | 2016-12-13 | Gi Sportz Direct Llc | Paintball marker with secure barrel engagement |
US10006727B2 (en) | 2014-08-11 | 2018-06-26 | Ronnie Barrett | Firearm system |
USD774616S1 (en) | 2014-10-09 | 2016-12-20 | Ronnie Barrett | Handguard for a firearm |
USD785126S1 (en) | 2014-10-09 | 2017-04-25 | Ronnie Barrett | Bipod |
USD799629S1 (en) | 2014-10-09 | 2017-10-10 | Ronnie Barrett | Firearm |
USD772999S1 (en) | 2014-10-09 | 2016-11-29 | Ronnie Barrett | Firearm |
US20190226789A1 (en) * | 2016-09-21 | 2019-07-25 | Vincent P. Battaglia | Quad lock multicaliber rifle receiver with locking barrel |
US10480890B2 (en) * | 2016-09-21 | 2019-11-19 | Vincent P. Battaglia | Quad lock multicaliber rifle receiver with locking barrel |
US10627187B1 (en) * | 2018-10-30 | 2020-04-21 | Kuan Ting Lin | Shooting controller of paintball gun |
US10704859B2 (en) | 2018-11-06 | 2020-07-07 | Gi Sportz Direct Llc | Compressed gas gun front grip having battery access panel |
US20220325967A1 (en) * | 2019-10-04 | 2022-10-13 | Glock Technology Gmbh | Bolt head for a firearm |
EP4403868A1 (en) * | 2023-01-17 | 2024-07-24 | Schmeisser GmbH | Portable firearm and method for operating a portable firearm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3688641A (en) | Machine gun | |
US3791256A (en) | Machine gun | |
US4058922A (en) | Rifle adapter assembly | |
US3386336A (en) | Convertible machine gun for rightand left-hand cartridge feed and operation | |
US3999461A (en) | Modular lightweight squad automatic weapon system | |
US5050480A (en) | Trigger assembly for a firearm | |
US4580484A (en) | Firearm and firearm conversion unit | |
US3198076A (en) | Convertible gun | |
US3724325A (en) | Rate reducer | |
US3846928A (en) | Bolt latch for auto loading firearm | |
US5050481A (en) | Rolling supports for trigger and firing pin assemblies in a firearm | |
US3857322A (en) | Firearm | |
US4409882A (en) | Hand gun | |
US20110168009A1 (en) | Semiautomatic Rifle with Downward Ejection | |
US20150330736A1 (en) | Semiautomatic pistol | |
US3566744A (en) | Automatic gun receiver combination | |
GB2058304A (en) | Automatic fire control means and conversion to single shot | |
US1892141A (en) | Semiautomatic rifle | |
US3279114A (en) | Grenade launcher | |
US3731588A (en) | Machine gun having trigger group | |
US6415701B1 (en) | Forward mounted breech locking mechanism | |
US4505183A (en) | Gas actuated operating mechanism for autoloading firearm | |
US5038666A (en) | Automatic firearm | |
US4972617A (en) | Automatic firearm | |
US3774500A (en) | Machine pistol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COLT INDUSTRIES, INC., A CORP. OF PA Free format text: MERGER;ASSIGNORS:COLT INDUSTRIES OPERATING CORP. A CORP. OF DE;CENTRAL MOLONEY INC., A CORP. OF DE;REEL/FRAME:004740/0482 Effective date: 19870706 |
|
AS | Assignment |
Owner name: CFPI INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CII HOLDINGS INC., A CORP. OF DE;REEL/FRAME:005253/0543 Effective date: 19891116 |
|
AS | Assignment |
Owner name: CII HOLDINGS INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COLT INDUSTRIES INC., A CORP. OF PA.;REEL/FRAME:005240/0825 Effective date: 19891122 |
|
AS | Assignment |
Owner name: COLT LICENSING LIMITED PARTNERSHIP, 1100 NORTH MAR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CFPI INC., A CORP. OF DE;REEL/FRAME:005261/0928 Effective date: 19900313 |
|
AS | Assignment |
Owner name: CREDITANSTALT-BANKVEREIN Free format text: SECURITY INTEREST;ASSIGNOR:COLT S MANUFACTURING COMPANY, INC.;REEL/FRAME:005277/0057 Effective date: 19900322 |
|
AS | Assignment |
Owner name: CF INTELLECUAL PROPERTY LIMITED PARTNERSHIP A LIMI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CF INTELLECURAL PROPERTY CORP., A CORP. OF DE;REEL/FRAME:005697/0128 Effective date: 19900323 Owner name: CF INTELLECTUAL PROPERTY CORP., A CORP. OF DE Free format text: ASSIGNOR, BY BILL OF SALE, ASSIGNS THE INTIRE INTEREST.;ASSIGNOR:CII HOLDINGS INC., A CORP. OF DE;REEL/FRAME:005697/0094 Effective date: 19900322 Owner name: CF INTELLECTUAL PROPERTY LIMITED PARTNERSHIP, A CT Free format text: ASSIGNOR, BY BILL OF SALE, ASSIGNS THE ENTIRE INTEREST;ASSIGNOR:CFP INC., A CORP. OF DE;REEL/FRAME:005697/0110 Effective date: 19900322 Owner name: CII HOLDINGS INC., A CORP. OF DE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COLT LICENSING LIMITED PARTNERSHIP, A L.P. OF DE;REEL/FRAME:005697/0032 Effective date: 19900313 Owner name: CFPI INC., A CORP. OF DE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COLT LICENSING LIMITED PARTNERSHIP, A L.P. OF DE;REEL/FRAME:005697/0032 Effective date: 19900313 |
|
AS | Assignment |
Owner name: COLT S MANUFACTURING COMPANY, INC., CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDITANSTALT-BANKVERIN;REEL/FRAME:007169/0804 Effective date: 19940928 |