US3790333A - Infra-red burner - Google Patents

Infra-red burner Download PDF

Info

Publication number
US3790333A
US3790333A US00198681A US3790333DA US3790333A US 3790333 A US3790333 A US 3790333A US 00198681 A US00198681 A US 00198681A US 3790333D A US3790333D A US 3790333DA US 3790333 A US3790333 A US 3790333A
Authority
US
United States
Prior art keywords
generator
reflector
fuel
wall
reflectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00198681A
Inventor
P Padovani
S Boerio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pyronics Inc
Original Assignee
Pyronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pyronics Inc filed Critical Pyronics Inc
Application granted granted Critical
Publication of US3790333A publication Critical patent/US3790333A/en
Assigned to PYRONICS, INC. reassignment PYRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: M.S. INVESTMENTS, AN OHIO PARTNERSHIP
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2700/00Special arrangements for combustion apparatus using fluent fuel
    • F23C2700/04Combustion apparatus using gaseous fuel
    • F23C2700/043Combustion apparatus using gaseous fuel for surface combustion

Definitions

  • ABSTRACT A gas fired infra-red generator having afirst generally flat nonporous reflector and second curved nonporous reflector spaced from the flat reflector in a concave relationship therewith.
  • a combustible fuel gas mixture is directed through elongated fissures in a plenum chamber and the first reflector to impinge and be ignited at the second reflector and then diverted to impinge the first reflector.
  • the heated reflectors then both radiate thermic energy outwardly therefrom.
  • the first and second reflectors are both mounted relative to the generator so as to permit thermic dilatation dur- 9 Claims, 6 Drawing Figures PAIENIEBFEB 5W INVENTORS.
  • INF RA-RED BURNER This application pertains to the art of radiant heating and more particularly to an apparatus for radiant heatmg.
  • the invention is particularly applicable to a gas fired infra-red generator for use in industrial drying operations and for the treatment of various materials and will be described with particular reference thereto; however, it will be appreciated that the invention has broader applications and may be used in other instances in industrial and commercial environments where infra-red type heating is desirable.
  • caloric energy has been used as radiating energy in processes conducted at relatively low temperature, that is, below l,000 C; in industrial drying environments and in the treatment of materials. it is also known that the radiating energy possesses a wave length which is ideal in most of these processes and that the wave length ranges from 2 to 6 microns.
  • the electromagnetic radiations included in the short, medium and long wave infra-red field penetrate the treatable materials more easily than other radiation and are more effective than the convective type heating systems due to their penetrating capacity as opposed to being limited to treatment of surface areas.
  • the result of using infra-heating is an acceleration of the thermic process, the ability to obtain a higher degree of uniformity of heating and a cost reduction in the treating operations.
  • screens or reflectors are utilized in most industrial applications. These screens or reflectors are constructed from metal or a special refractory material and are capable of emitting radiations in the required wave length when properly treated and heated as is known in the art. In these cases, approximately 92 percent of the energy radiated by a metallic body brought to the proper temperature falls within the desired wave length range.
  • the availability of metallic and refractory materials which possess the desired characteristics has substantially increased over the past few years resulting in a constant qualitive improvement therein insofar as the output of radiating panels,'gas burners and similar equipment which are currently available still do not provide satisfactory results to the needs for radiating energy in the infra-red spectrum.
  • the present equipment offers a rather low yield with values of specific thermic power ranging from 1.3 to 4 Kcal/h/cm of radiating surface.
  • the principal object'of the present invention is the enced since different temperatures are reached in the various areas of the radiating surfaces.
  • the present invention contemplates a new and improved apparatus which overcomes all of the above referred problems and others and provides an infra-red generator capable of producing therrnic energy comprised, for the most part, of radiations of the infra-red spectrum having a wave length ranging from 2 to 6 microns, operates at a relatively low temperature, offers a high thermic power yield and is relatively simple in design and construction.
  • an infra-red generator including an outer trough-like casing having a bottom wall and continuous wall portions upstanding therefrom.
  • An inner wall spaced from the bottom wall toward the open top end ofthe trough-like casing forms a plenum chamber with the bottom wall.
  • a first non-porous generally flat reflector is spaced from the inner wall toward the open top end of the trough-like casing and the inner wall and first reflector are thermally insulated from each other.
  • a second nonporous reflector having a generally semicircular cross section is'disposed adjacent the open top end of the casing in a concave position relative to the first reflector such that the side walls thereof are spaced inwardly from the continuous walls of the outer casing to form flue areas between the casing and the reflector.
  • the first and second reflectors are mounted within the outer casing so as to permit free expansion thereof during generator operation.
  • the outer casing, inner wall, first reflector and second reflector are elongated and the means for permitting the fuel gas to impinge the second reflector and the flue areas extend generally longitudinal of the generator.
  • an electrode is disposed to penetrate the generator through the plenum chamber and is connected to a means for supplying electrical energy in order that the generator may be ignited thereby and/or provision of a new and improved gas fired infra-red generator which provides a high thermic power radiating operation.
  • Another object of the present invention is the provision of a new and improved gas fired infra-red generator in which the thermic power of the radiating surface is approximately 5 times more than that of the present commercial gas fired generators.
  • Another object of the present invention is the provision of a new and'improved gas fired infra-red generator which employs nonporous reflector elements to extend reflector effective life.
  • Another object of the present invention is a provision of a new and improved gas fired infra-red generator which operates efficiently at a relatively low temperature.
  • Still another object of the present invention is the provision of a new and improved gas fired infra-red generator which prevents auto-ignition.
  • Still another object of the present invention is the provision of a new and improved gas fired infra-red generator which presents a high therrnic uniformity of the radiating surfaces.
  • Still a further object of the present invention is the provision of a new and improved gas fired infra-red generator which effects a vortiginous recycling of the products of combustion.
  • Yet another object of the present invention is the provision of a new and improved gas fired infra-red generator which is of modular construction.
  • FIG. 1 is a schematic front elevation of the generator formed in accordance with the present invention
  • FIG. 2 is a schematic side elevation of the generator shown in FIG. 1;
  • FIG. 3 is a plan view of. the generator shown in FIG.
  • FIG. 4 is a cross sectional view taken along lines 4-4 in FIG. 1;
  • FIG. Si is a cross sectional view taken along lines 55 in FIG. 1;
  • FIG. 6 is a cross sectional view similar to that of FIG. 4 showing a second embodiment of the present invention'which includes a starting and/or monitoring electrode.
  • FIGURES show the infrared generator A mounted to a column or base B.
  • Generator A includes a stamped and welded outer casing 10 constructedfrom any suitablematerial such as for example, stainless steel, and is generally in the shape of an open topped parallelepipedon. Disposed to be closely received within outer casing 10 is a second or inner casing 12 which, in the preferred embodiment, is also constructed from stainless steel in the general configuration of an open topped parallelepipedon. Inner casing 12 is welded to outer casing 10 so as to form a plenum chamber 14 between the bottom walls of the two casings. It is to be noted that the shapes of inner and outer casings 10,12 were designed in such a way to maintain the speed of a combustible fuel gas mixture constant in its longitudinal flow within plenum chamber 14 as will hereinafter become apparent. Inner casing 12 includes a pair of longitudinal upwardly extending rims or lips 16 which are spaced apart from each other in order to form a fissure l8 therebetween as best shown in FIG. 5.
  • the combustible fuel gas mixture comprises a mixture of air and gas as is known in the art which is supplied to a series of generators A by means of a conduit or duct 20 having dimensions commensurate with the number of generators involved which is only generally shown in the Figures as it does not form a part of the present invention.
  • This conduit or duct is linked with each generator A by means of base B formed from an aluminum sleeve 30 which conveys the fuel gas mixture to the inside of the generator through a circular orifice 32 (FIG. 4) disposed generally centrally in the bottom wall of outer casing 10.
  • Hydraulic packings 34 provide a tight sealing relationship between conduit 20 and sleeve 30 and hydraulic packing 36 provide a tight sealing relationship between the bottom wall of casing 10 and sleeve 30.
  • a first reflector 40 is disposed inside inner casing 12 and supported in position adjacent the inner casing by four columns 42 extending generally longitudinally across the generator and by two columns 44 extending laterally across the generator. Columns 42,44 are conveniently welded to outer casing 10. Reflector 40 is V comprised of two identical longitudinal sections 46,48
  • a generally semi-circular elongated reflector Disposed adjacent the open top end of outer casing 10 is a generally semi-circular elongated reflector supported in a concave relationship relative reflector 40 by four columns 72 conveniently welded to outer and inner casings 10,12 to extend inwardly into the burner.
  • Reflector 70 also includes receiving holes of a slightly larger diameter than columns 72 in order that the columns may be slideably received therein to per- Reflectors 40,70 are preferably constructed from a nickel-chrome alloy such as for example, the alloy commercially known as INCONEL" marketed by the International Nickel Company. It has been found that this alloy best possesses those characteristics of radiation required and is also more resistant to severe thermal-chemical impulses which exert their action on the radiating surfaces of gas fired generators of this general type. This alloy also has a high resistance to corrosion which results from being exposed to high temperatures, although the temperatures in the infra-red range do not exceed l,l0O C.
  • the generator of the subject invention utilizes a combustible mixture of fuel and air in which the air volume may be adjusted to higher or lower values.
  • the generator may be used with any type of fuel which'has previously been mixed with air by means of any proportional mixes equipped with a Venturi tube or by mechanical compressor-mixers.
  • a proportional mixer of adequate dimensions it is possible to adapt its therrnic power within ratios higher than 10:1, thus adjusting the generator, with regard to the wave length produced, to the thermie requirements of a particular industrial process. Adjustment may be proportional or modulated and it is also possible to obtain oxidizing or reducing atmospheres from the combustion as may be required.
  • the combustible fuel gas mixture received in plenum chamber 14 through sleeve 30 from conduit 20 is circulated within plenum chamber 14 by means of a deflector disposed therein (FIG. 4).
  • Fuel which has been circulated within the chamber passes through longitudinal fissure 18 and impinges reflector 70 where it is ignited and reflected against screen or reflector 40.
  • the products of combustion then pass through openings 82 between'reflector 70 and the side walls of reflector 40 toward the material to be-treated.
  • the combustible fuel gas mixture flowing inside conduit is retained at a temperature substantially below that required for auto-ignition to thus prevent back firing.
  • substantially the entire surface thereof facing the material to be treated radiates thermic energy.
  • These radiations are generated by both the generally semi-circular reflector 70 and by the flat surface of reflector 40 which cover substantially 100 percent (FIG. 3) of the surface facing the material to be treated.
  • the geometric characteristics of these reflectors in addition to the material, i.e., INCONEL," selected for their manufacture, provide the generator with a high radiation yield. It has been found that with a temperature of the radiating surfaces amounting to approximately 800 C. and with a fuel mixture having 120 percent of excess air, the total thermic potential absorbed by the generator amounts to approximately 5,000 Kcal/h.
  • the generator reaches a specific thermic power of approximately 20.8 Kcal/h/cm of radiating surface.
  • the radiating yield amounts to 55 percent, that is, 55 percent of the heat spent in the combustion is transferred by the generator as radiating thermic energy ranging between 2 and 6 microns.
  • the generator may include means for automatic ignition of the combustible fuel gas mixture by means of an electric are which is formed between an ignition electrode and walls of the generator when a difference of potential in the amount of approximately 6,000 volts is applied therebetween.
  • the electrode be used to control ignition,but it may also be employed to monitor the flame by linking it to the appropriate electronic system which uses the principle of rectification of an A/C current flowing between the electrode and the generator as a result of the ionization of the flame.
  • Electrode 90 includes an insulating sleeve 94 which passes through conduit 20 and sleeve 30, a centering washer 96 disposed between the bottom wall of inner casing 12 and deflector 80 and penetrates into the generators core through fissure 18. In this position, insulator 94 does not cover the electrode to thus allow the formation of a voltaic are between reflector 40 and the electrode whenever a selected difference of potential is applied between the two metals.
  • Such a difference of potential could, for example, amount to 6,000 volts.
  • the non-insulated portion of electrode 17 is able to capture an ionization current which signals that the generator is functioning.
  • auxiliary equipment for example, when it is desired to obtain a simultaneous or sequential automatic ignition and/or to monitor the presence of the flame in each generator of a system equipped with multiple generators.
  • auxiliary equipment for example, when it is desired to obtain a simultaneous or sequential automatic ignition and/or to monitor the presence of the flame in each generator of a system equipped with multiple generators.
  • each generator has two mixture inputs 100 as shown in FIGS. 1 and 2 in order to control the fuel gas mixture input pressure and for sampling the mixture for any desired chemical analysis.
  • a gas fired infra-red generator comprising:
  • an outer trough-like casing having a bottom wall and continuous wall portions upstanding therefrom defining an open top end;
  • a first nonporous generally flat reflector spaced from said inner wall and coextensive therewith;
  • a second nonporous reflector having a generally curved cross section and disposed adjacent said open top end in a concave position relative to said first reflector, the side walls of said second reflector being spaced from said continuous wall portions to form at least two flue areas;
  • the generator as defined in claim 1 further including means for igniting said combustible gas at least at impingement with said second reflector.
  • said flow directing means comprises fuel flow openings in 'said inner wall and said first reflector, said openings chamber adjacent said inlet to deflect said fuel mixture throughout said chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Spray-Type Burners (AREA)
  • Gas Burners (AREA)

Abstract

A gas fired infra-red generator having a first generally flat nonporous reflector and second curved nonporous reflector spaced from the flat reflector in a concave relationship therewith. A combustible fuel gas mixture is directed through elongated fissures in a plenum chamber and the first reflector to impinge and be ignited at the second reflector and then diverted to impinge the first reflector. The heated reflectors then both radiate thermic energy outwardly therefrom. The first and second reflectors are both mounted relative to the generator so as to permit thermic dilatation during generator operation.

Description

United States Patent 1191 Padovani et al.
[ Feb. 5, 1974 lNFRA-RED BURNER [75] Inventors: Piero Padovani, Donato Milanese;
Sergio Boerio, Donato l-lilanese, both of Italy [73] Assignee: Pyronics, Inc., Cleveland, Ohio 22 Filed: Nov. 15, 1971 [21] Appl. No.: 198,681
[30] Foreign Application Priority Data Nov. 26, 1970 Italy 3230/70 [52] U.S. Cl 431/266, 431/347, 431/350, 126/92 B [51] Int. Cl. F23g 3/00 [58] Field Of Search... 431/266, 350, 347, 348, 171; 126/92 B [56] References Cited UNITED STATES PATENTS 2,287,246 6/1942 Hess 431/171 755,687 3/1904 Mygatt.... 431/347 2,876,831 3/1959 Knight .1: 431/350 ing generator operation.
1/1963 Baker et al. 431/266 3,073,121 1,705,532 3/1929 Olesen 431/350 FOREIGN PATENTS OR APPLICATIONS 572,491 1958 'Italy 126/92 B 536,774 1922 France 284,749 4/1931 Italy 431/350 Primary Examiner-Carroll B. Dority, Jr. Attorney, Agent, or Firm Meyer, Tilberry & Body [57] ABSTRACT A gas fired infra-red generator having afirst generally flat nonporous reflector and second curved nonporous reflector spaced from the flat reflector in a concave relationship therewith. A combustible fuel gas mixture is directed through elongated fissures in a plenum chamber and the first reflector to impinge and be ignited at the second reflector and then diverted to impinge the first reflector. The heated reflectors then both radiate thermic energy outwardly therefrom. The first and second reflectors are both mounted relative to the generator so as to permit thermic dilatation dur- 9 Claims, 6 Drawing Figures PAIENIEBFEB 5W INVENTORS.
PIERO PADOVANI SERGIO BOERIO ATTORNEYS.
PATENIED FEB W4 MHZBFQ INVENTOR Pl E R0 S. PADOVANI SERGIO BOERIO W/W/ #JW ATTORNEYS,
PATENTED 5 I974 3. 790. 333
SHEEI 3 OF 4 INVENTORS. PIERO PADOVANI SERGIO BOERIO ATTORNEYS.
PATENTEB FEB 5 I974 sumunrq INVENTORS. PIER-O PADOVANI SERGIO BOERIO ATTORNEYS.
INF RA-RED BURNER This application pertains to the art of radiant heating and more particularly to an apparatus for radiant heatmg.
The invention is particularly applicable to a gas fired infra-red generator for use in industrial drying operations and for the treatment of various materials and will be described with particular reference thereto; however, it will be appreciated that the invention has broader applications and may be used in other instances in industrial and commercial environments where infra-red type heating is desirable.
It is known that caloric energy has been used as radiating energy in processes conducted at relatively low temperature, that is, below l,000 C; in industrial drying environments and in the treatment of materials. it is also known that the radiating energy possesses a wave length which is ideal in most of these processes and that the wave length ranges from 2 to 6 microns. The electromagnetic radiations included in the short, medium and long wave infra-red field penetrate the treatable materials more easily than other radiation and are more effective than the convective type heating systems due to their penetrating capacity as opposed to being limited to treatment of surface areas. The result of using infra-heating is an acceleration of the thermic process, the ability to obtain a higher degree of uniformity of heating and a cost reduction in the treating operations. As the usual flames and furnaces are not rich in the desired radiations, screens or reflectors are utilized in most industrial applications. These screens or reflectors are constructed from metal or a special refractory material and are capable of emitting radiations in the required wave length when properly treated and heated as is known in the art. In these cases, approximately 92 percent of the energy radiated by a metallic body brought to the proper temperature falls within the desired wave length range.
Although the availability of metallic and refractory materials which possess the desired characteristics has substantially increased over the past few years resulting in a constant qualitive improvement therein insofar as the output of radiating panels,'gas burners and similar equipment which are currently available still do not provide satisfactory results to the needs for radiating energy in the infra-red spectrum. Specifically, the present equipment offers a rather low yield with values of specific thermic power ranging from 1.3 to 4 Kcal/h/cm of radiating surface. Furthermore, nearly all the presently known gas burner reflectors present either metallic reticula which tend to bend over a period of years or porous materials which tend to deteriorate as a result of the impurities collected within the poresand a progressive retreat of the combustion front within the alveoli with an increase of surface temperature.
Another serious drawback presented by present gas burners is the possibility of auto-ignition when the temperature of the combustible fuel gas is about to reach the auto-ignition level. Further, a lack of uniformity in the output of the radiating energy is oftentimes experithe presence of aflame monitored.
The principal object'of the present invention is the enced since different temperatures are reached in the various areas of the radiating surfaces.
The present invention contemplates a new and improved apparatus which overcomes all of the above referred problems and others and provides an infra-red generator capable of producing therrnic energy comprised, for the most part, of radiations of the infra-red spectrum having a wave length ranging from 2 to 6 microns, operates at a relatively low temperature, offers a high thermic power yield and is relatively simple in design and construction.
In accordance with the present invention, there is provided an infra-red generator including an outer trough-like casing having a bottom wall and continuous wall portions upstanding therefrom. An inner wall spaced from the bottom wall toward the open top end ofthe trough-like casing forms a plenum chamber with the bottom wall. A first non-porous generally flat reflector is spaced from the inner wall toward the open top end of the trough-like casing and the inner wall and first reflector are thermally insulated from each other. A second nonporous reflector having a generally semicircular cross section is'disposed adjacent the open top end of the casing in a concave position relative to the first reflector such that the side walls thereof are spaced inwardly from the continuous walls of the outer casing to form flue areas between the casing and the reflector. Means'are also provided for introducing a combustible fuel gas mixture into the plenum chamber and for directing a continuous flow of the fuel gas mixture from the plenum chamber into impinging contact with the concave portion of the second reflector for ignition and reflection for impingement of the first reflector.
In accordance with another aspect of the present invention, the first and second reflectors are mounted within the outer casing so as to permit free expansion thereof during generator operation.
in accordance with another aspect of the present invention, the outer casing, inner wall, first reflector and second reflector are elongated and the means for permitting the fuel gas to impinge the second reflector and the flue areas extend generally longitudinal of the generator.
In accordance with still another aspect of the present invention, an electrode is disposed to penetrate the generator through the plenum chamber and is connected to a means for supplying electrical energy in order that the generator may be ignited thereby and/or provision of a new and improved gas fired infra-red generator which provides a high thermic power radiating operation.
Another object of the present invention is the provision of a new and improved gas fired infra-red generator in which the thermic power of the radiating surface is approximately 5 times more than that of the present commercial gas fired generators. I
Another object of the present invention is the provision of a new and'improved gas fired infra-red generator which employs nonporous reflector elements to extend reflector effective life.
Another object of the present invention is a provision of a new and improved gas fired infra-red generator which operates efficiently at a relatively low temperature.
Still another object of the present invention is the provision of a new and improved gas fired infra-red generator which prevents auto-ignition.
Still another object of the present invention is the provision of a new and improved gas fired infra-red generator which presents a high therrnic uniformity of the radiating surfaces.
Still a further object of the present invention is the provision of a new and improved gas fired infra-red generator which effects a vortiginous recycling of the products of combustion.
Yet another object of the present invention is the provision of a new and improved gas fired infra-red generator which is of modular construction.
The invention may take physical form in certain parts and arrangements of parts, a preferred embodiment of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:
FIG. 1 is a schematic front elevation of the generator formed in accordance with the present invention;
FIG. 2 is a schematic side elevation of the generator shown in FIG. 1;
FIG. 3 is a plan view of. the generator shown in FIG.
I FIG. 4 is a cross sectional view taken along lines 4-4 in FIG. 1;
FIG. Sis a cross sectional view taken along lines 55 in FIG. 1; and,
FIG. 6 is a cross sectional view similar to that of FIG. 4 showing a second embodiment of the present invention'which includes a starting and/or monitoring electrode.
Referring now to the drawings wherein the showings are for the purposes of illustrating the preferred embodiment of the invention only and not for the purposes of limiting same, the FIGURES show the infrared generator A mounted to a column or base B.
Generator A includes a stamped and welded outer casing 10 constructedfrom any suitablematerial such as for example, stainless steel, and is generally in the shape of an open topped parallelepipedon. Disposed to be closely received within outer casing 10 is a second or inner casing 12 which, in the preferred embodiment, is also constructed from stainless steel in the general configuration of an open topped parallelepipedon. Inner casing 12 is welded to outer casing 10 so as to form a plenum chamber 14 between the bottom walls of the two casings. It is to be noted that the shapes of inner and outer casings 10,12 were designed in such a way to maintain the speed of a combustible fuel gas mixture constant in its longitudinal flow within plenum chamber 14 as will hereinafter become apparent. Inner casing 12 includes a pair of longitudinal upwardly extending rims or lips 16 which are spaced apart from each other in order to form a fissure l8 therebetween as best shown in FIG. 5.
The combustible fuel gas mixture comprises a mixture of air and gas as is known in the art which is supplied to a series of generators A by means of a conduit or duct 20 having dimensions commensurate with the number of generators involved which is only generally shown in the Figures as it does not form a part of the present invention. This conduit or duct is linked with each generator A by means of base B formed from an aluminum sleeve 30 which conveys the fuel gas mixture to the inside of the generator through a circular orifice 32 (FIG. 4) disposed generally centrally in the bottom wall of outer casing 10. Hydraulic packings 34 provide a tight sealing relationship between conduit 20 and sleeve 30 and hydraulic packing 36 provide a tight sealing relationship between the bottom wall of casing 10 and sleeve 30.
A first reflector 40 is disposed inside inner casing 12 and supported in position adjacent the inner casing by four columns 42 extending generally longitudinally across the generator and by two columns 44 extending laterally across the generator. Columns 42,44 are conveniently welded to outer casing 10. Reflector 40 is V comprised of two identical longitudinal sections 46,48
separated along median fissure l8. Disposed between reflector 40 and inner casing 12 are two layers of a ceramic fiber 58,60 of a known type which possess extremely low coefficients of heat transmission power and insulating layer 58 includes two openings whereby columns 44 may extend therethrough into the combustion chamber. As columns 42,44 are not rigidly affixed to reflector 40, they permit the reflector to expand freely in any direction during'operation of the generator.
Disposed adjacent the open top end of outer casing 10 is a generally semi-circular elongated reflector supported in a concave relationship relative reflector 40 by four columns 72 conveniently welded to outer and inner casings 10,12 to extend inwardly into the burner. Reflector 70 also includes receiving holes of a slightly larger diameter than columns 72 in order that the columns may be slideably received therein to per- Reflectors 40,70 are preferably constructed from a nickel-chrome alloy such as for example, the alloy commercially known as INCONEL" marketed by the International Nickel Company. It has been found that this alloy best possesses those characteristics of radiation required and is also more resistant to severe thermal-chemical impulses which exert their action on the radiating surfaces of gas fired generators of this general type. This alloy also has a high resistance to corrosion which results from being exposed to high temperatures, although the temperatures in the infra-red range do not exceed l,l0O C.
Again, the generator of the subject invention utilizes a combustible mixture of fuel and air in which the air volume may be adjusted to higher or lower values. The generator may be used with any type of fuel which'has previously been mixed with air by means of any proportional mixes equipped with a Venturi tube or by mechanical compressor-mixers. By using a proportional mixer of adequate dimensions, it is possible to adapt its therrnic power within ratios higher than 10:1, thus adjusting the generator, with regard to the wave length produced, to the thermie requirements of a particular industrial process. Adjustment may be proportional or modulated and it is also possible to obtain oxidizing or reducing atmospheres from the combustion as may be required. v
The combustible fuel gas mixture received in plenum chamber 14 through sleeve 30 from conduit 20 is circulated within plenum chamber 14 by means of a deflector disposed therein (FIG. 4). Fuel which has been circulated within the chamberpasses through longitudinal fissure 18 and impinges reflector 70 where it is ignited and reflected against screen or reflector 40. The products of combustion then pass through openings 82 between'reflector 70 and the side walls of reflector 40 toward the material to be-treated. Due to the high insulating effectiveness of insulating layers 58,60 and to the cooling properties of the combustible fuel gas mixture flowing inside plenum chamber 14 and through fissure 18, the combustible fuel gas mixture flowing inside conduit is retained at a temperature substantially below that required for auto-ignition to thus prevent back firing.
Due to the particular design of the generator hereinabove described, substantially the entire surface thereof facing the material to be treated radiates thermic energy. These radiations are generated by both the generally semi-circular reflector 70 and by the flat surface of reflector 40 which cover substantially 100 percent (FIG. 3) of the surface facing the material to be treated. The geometric characteristics of these reflectors, in addition to the material, i.e., INCONEL," selected for their manufacture, provide the generator with a high radiation yield. It has been found that with a temperature of the radiating surfaces amounting to approximately 800 C. and with a fuel mixture having 120 percent of excess air, the total thermic potential absorbed by the generator amounts to approximately 5,000 Kcal/h. In this instance, the generator reaches a specific thermic power of approximately 20.8 Kcal/h/cm of radiating surface. By way of calculation, it is therefore apparent that the radiating yield amounts to 55 percent, that is, 55 percent of the heat spent in the combustion is transferred by the generator as radiating thermic energy ranging between 2 and 6 microns.
In accordance with another embodiment of the present invention, the generator may include means for automatic ignition of the combustible fuel gas mixture by means of an electric are which is formed between an ignition electrode and walls of the generator when a difference of potential in the amount of approximately 6,000 volts is applied therebetween. Not only may the electrode be used to control ignition,but it may also be employed to monitor the flame by linking it to the appropriate electronic system which uses the principle of rectification of an A/C current flowing between the electrode and the generator as a result of the ionization of the flame.
More specifically, and with reference to FIGS. 1, 2 and 6, it is shown that the body of an electrode 90 (insulator and connectinglid to the high power cable), and supported by a support member 92, is conveniently affixed to the bottom side of conduit 20 whereby the electrodeis continuously cooled bythe gas mixture. Electrode 90 includes an insulating sleeve 94 which passes through conduit 20 and sleeve 30, a centering washer 96 disposed between the bottom wall of inner casing 12 and deflector 80 and penetrates into the generators core through fissure 18. In this position, insulator 94 does not cover the electrode to thus allow the formation of a voltaic are between reflector 40 and the electrode whenever a selected difference of potential is applied between the two metals. Such a difference of potential could, for example, amount to 6,000 volts. In the other application in which the electrode is used to monitor the presence of a flame, the non-insulated portion of electrode 17 is able to capture an ionization current which signals that the generator is functioning.
it is also possible to link the system to some auxiliary equipment; for example, when it is desired to obtain a simultaneous or sequential automatic ignition and/or to monitor the presence of the flame in each generator of a system equipped with multiple generators. In certain instances, it is also possible to alternate the two functions of the electrode, i.e., ignition and control, in adjacent generators or in generators placed in irregular sequence.
It is also further possible to equip each generator with two mixture inputs 100 as shown in FIGS. 1 and 2 in order to control the fuel gas mixture input pressure and for sampling the mixture for any desired chemical analysis.
The invention has been described with reference to the preferred embodiment. Obviously, modifications and alterations will occur to others upon the reading and understanding of this specification. It is our intention to include all suchmodifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Having thus defined our invention, we now claim:
1. A gas fired infra-red generator comprising:
an outer trough-like casing having a bottom wall and continuous wall portions upstanding therefrom defining an open top end;
an inner wall spaced from said bottom wall toward said open top end forming a plenum chamber therebetween; I
a first nonporous generally flat reflector spaced from said inner wall and coextensive therewith;
means for insulating said first reflector from said inner wall;
a second nonporous reflector having a generally curved cross section and disposed adjacent said open top end in a concave position relative to said first reflector, the side walls of said second reflector being spaced from said continuous wall portions to form at least two flue areas;
means for introducing a combustible fuel gas mixture into said chamber; and, 1
means for directing a continuous flow of said fuel from said chamber to impinge the concave portion of said second reflector and be reflected to impinge said first reflector.
2. The generator as defined in claim 1 further including means for igniting said combustible gas at least at impingement with said second reflector.
3. The generator as defined in claim 2 wherein said flow directing means comprises fuel flow openings in 'said inner wall and said first reflector, said openings chamber adjacent said inlet to deflect said fuel mixture throughout said chamber.
3,790,333 7 8 so as to permit independent movement thereof relative from the walls of said outer casing. to said generator during thermic dilatation of said re- 9. The generator as defined in claim 1 wherein said flectors. first and second reflectors are constructed from a nick- 8. The generator as defined in claim 7 wherein said el-chrome alloy. mounting means comprise columns extending inwardly

Claims (9)

1. A gas fired infra-red generator comprising: an outer trough-like casing having a bottom wall and continuous wall portions upstanding therefrom defining an open top end; an inner wall spaced from said bottom wall toward said open top end forming a plenum chamber therebetween; a first nonporous generally flat reflector spaced from said inner wall and coextensive therewith; means for insulating said first reflector from said inner wall; a second nonporous reflector having a generally curved cross section and disposed adjacent said open top end in a concave position relative to said first reflector, the side walls of said second reflector being spaced from said continuous wall portions to form at least two flue areas; means for introducing a combustible fuel gas mixture inTo said chamber; and, means for directing a continuous flow of said fuel from said chamber to impinge the concave portion of said second reflector and be reflected to impinge said first reflector.
2. The generator as defined in claim 1 further including means for igniting said combustible gas at least at impingement with said second reflector.
3. The generator as defined in claim 2 wherein said flow directing means comprises fuel flow openings in said inner wall and said first reflector, said openings being disposed generally in alignment with each other so as to direct said fuel flow toward said second reflector.
4. The generator as defined in claim 3 wherein said outer casing, said bottom wall, said first reflector and said second reflector are elongated and said fuel flow openings and said flue areas extend generally longitudinal of said generator.
5. The generator as defined in claim 4 wherein said fuel introducing means comprises a fuel mixture inlet, said generator further including a fuel deflector in said chamber adjacent said inlet to deflect said fuel mixture throughout said chamber.
6. The generator as defined in claim 4 further including an electrode member disposed to penetrate said generator at at least said fuel flow openings and adapted to be connected to a means for supplying electrical energy for permitting an electric arc between said electrode and said generator whereby said generator may be ignited and/or the presence of a flame monitored.
7. The generator as defined in claim 4 wherein means mount said first and second reflectors in said generator so as to permit independent movement thereof relative to said generator during thermic dilatation of said reflectors.
8. The generator as defined in claim 7 wherein said mounting means comprise columns extending inwardly from the walls of said outer casing.
9. The generator as defined in claim 1 wherein said first and second reflectors are constructed from a nickel-chrome alloy.
US00198681A 1970-11-26 1971-11-15 Infra-red burner Expired - Lifetime US3790333A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT3223070 1970-11-26

Publications (1)

Publication Number Publication Date
US3790333A true US3790333A (en) 1974-02-05

Family

ID=11235042

Family Applications (1)

Application Number Title Priority Date Filing Date
US00198681A Expired - Lifetime US3790333A (en) 1970-11-26 1971-11-15 Infra-red burner

Country Status (11)

Country Link
US (1) US3790333A (en)
AT (1) AT322783B (en)
AU (1) AU459633B2 (en)
BE (1) BE775920A (en)
CA (1) CA939257A (en)
CH (1) CH539242A (en)
DE (1) DE2158228C3 (en)
FR (1) FR2117258A5 (en)
GB (1) GB1367923A (en)
NL (1) NL7116172A (en)
SE (1) SE374598B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727854A (en) * 1986-05-08 1988-03-01 Johnson Arthur C W High efficiency infrared radiant energy heating system and reflector therefor
US5057007A (en) * 1989-01-06 1991-10-15 Remeha Fabrieken Low nox atmospheric gas burner
US20110250547A1 (en) * 2010-04-12 2011-10-13 Ford Global Technologies, Llc Burner system and a method of control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599558B2 (en) 2012-08-07 2017-03-21 Carl Zeiss Industrielle Messtechnik Gmbh Measuring device for measuring a measurement object and related method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US755687A (en) * 1901-04-05 1904-03-29 Otis A Mygatt Retort incandescent light.
FR536774A (en) * 1920-11-22 1922-05-09 Gas heating radiator, with reflective mirror
US1705532A (en) * 1927-05-23 1929-03-19 Peter V Olesen Gas-burning heater
US2287246A (en) * 1940-07-29 1942-06-23 Selas Company Furnace wall burner
US2876831A (en) * 1951-03-08 1959-03-10 Surface Combustion Corp Internal-combustion burners
US3073121A (en) * 1958-02-06 1963-01-15 Bendix Corp Igniter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US755687A (en) * 1901-04-05 1904-03-29 Otis A Mygatt Retort incandescent light.
FR536774A (en) * 1920-11-22 1922-05-09 Gas heating radiator, with reflective mirror
US1705532A (en) * 1927-05-23 1929-03-19 Peter V Olesen Gas-burning heater
US2287246A (en) * 1940-07-29 1942-06-23 Selas Company Furnace wall burner
US2876831A (en) * 1951-03-08 1959-03-10 Surface Combustion Corp Internal-combustion burners
US3073121A (en) * 1958-02-06 1963-01-15 Bendix Corp Igniter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727854A (en) * 1986-05-08 1988-03-01 Johnson Arthur C W High efficiency infrared radiant energy heating system and reflector therefor
US5057007A (en) * 1989-01-06 1991-10-15 Remeha Fabrieken Low nox atmospheric gas burner
US20110250547A1 (en) * 2010-04-12 2011-10-13 Ford Global Technologies, Llc Burner system and a method of control

Also Published As

Publication number Publication date
FR2117258A5 (en) 1972-07-21
BE775920A (en) 1972-03-16
DE2158228B2 (en) 1978-05-11
AU3612271A (en) 1973-05-31
GB1367923A (en) 1974-09-25
DE2158228A1 (en) 1972-05-31
NL7116172A (en) 1972-05-30
CA939257A (en) 1974-01-01
DE2158228C3 (en) 1979-02-01
SE374598B (en) 1975-03-10
AT322783B (en) 1975-06-10
AU459633B2 (en) 1975-03-13
CH539242A (en) 1973-07-15

Similar Documents

Publication Publication Date Title
US3245458A (en) Radiant gas burner
US3425675A (en) Burner tube assembly for heat treating furnace
US3561902A (en) Radiant burner
US3852025A (en) Infra-red heater
US3407025A (en) Semi-catalytic infra-red heat producing unit
US3270798A (en) Catalytic radiant heat treating apparatus
US5224542A (en) Gas fired radiant tube heater
FR2678360B1 (en) HEATING APPARATUS WITH CATALYTIC BURNER.
US4437833A (en) Infrared radiating burner article
US3310098A (en) Catalytic infra-red heater
US3228614A (en) Gas fired infra-red heaters
US3784353A (en) Flameless gas catalytic heater
US3790333A (en) Infra-red burner
US3024836A (en) Radiating thermic element with catalytic gas oxidation
US2276527A (en) Apparatus for heating fluids
US3212556A (en) Oil vaporizing device for oil burners
US4825846A (en) Ribbon-type, gas-fired burner head
US2087031A (en) Ingition apparatus for closed-system fluid-combustible burners
US3758261A (en) Atomizing burner
US3336915A (en) End-to-end connecting structure for infra-red gas burners
JP2697157B2 (en) Burner plate
SU775520A1 (en) Light-emitting burner
RU2052722C1 (en) Gas burner unit
JP2855664B2 (en) Infrared heater
JPS61246512A (en) Burner

Legal Events

Date Code Title Description
AS Assignment

Owner name: PYRONICS, INC,. 17700 MILES AVE.,CLEVELAND, OHIO 4

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:M.S. INVESTMENTS, AN OHIO PARTNERSHIP;REEL/FRAME:003843/0725

Effective date: 19801110