US3785879A - Magnesium oxide coatings - Google Patents

Magnesium oxide coatings Download PDF

Info

Publication number
US3785879A
US3785879A US00236250A US3785879DA US3785879A US 3785879 A US3785879 A US 3785879A US 00236250 A US00236250 A US 00236250A US 3785879D A US3785879D A US 3785879DA US 3785879 A US3785879 A US 3785879A
Authority
US
United States
Prior art keywords
lithium
magnesium oxide
mgo
coating
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00236250A
Inventor
L Lee
Y Uyeda
L Heneghan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARINE MAGNESIUM COMPANY A PARTNERSHIP OF PA
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Application granted granted Critical
Publication of US3785879A publication Critical patent/US3785879A/en
Assigned to MARINE MAGNESIUM COMPANY, A PARTNERSHIP OF PA. reassignment MARINE MAGNESIUM COMPANY, A PARTNERSHIP OF PA. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CALGON CORPORATION, MERCK & CO., INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder

Definitions

  • This invention relates to coatings for ferrous material and, more particularly, an improved magnesium oxide/magnesium hydroxide coating for grain oriented silicon steel, and the material coated by such process.
  • the cores of the transformers are usually formed of a ferrous material, such as, for example, silicon steel, which may be provided with a preferred grain growth orientation to provide optimum electrical and magnetic properties. It has been found necessary to provide a coating on the ferrous material prior to the final high temperature grain growth anneal. This coating will perform three separate functions.
  • the first function of the coating is to provide separation of the various turns or layers of the coiled material to prevent their sticking or welding together during high temperature anneals.
  • a second function is that of aiding in the chemical purification of the ferrous material to develop the desired optimum magnetic characteristics of such material.
  • the third function of the coating is to form on the surface of the ferrous material a refractory type coating which will provide electrical insulation of one layer of ferrous material from the next, for example, during its use as a core in a transformer.
  • the most widely used coating for the ferrous material which is used as the magnetic core of the electrical apparatus is a coating of magnesium oxide and/or magnesium hydroxide.
  • These coatings are, in general, applied to the ferrous material in the form of a suspension of magnesium oxide and/or magnesium hydroxide in water.
  • the suspension comprises a quantity of magnesium oxide in water and is mixed sufficiently for the desired application, the magnesium oxide being hydrated to an extent dependent on the character of the oxide used, the duration of mixing and the temperature of the suspension. Therefore, the term magnesium oxide coating is with reference to a coating of magnesium hydroxide which may include magnesium oxide which has not been hydrated.
  • portions of an annealing separator of magnesium oxide can, during a heat treatment at suitable temperatures, be caused to react with silica particles on or near the surfaces of previously oxidized silicon-iron sheet stock to form a glass-like coating, which coating is useful as an interlaminary insulator inthe use of silicon-iron in electrical apparatus, e.g. in the cores of transformers.
  • the steel In the production of silicon steel for the magnetic cores of transformers, the steel is generally annealed to provide optimum grain growth and grain orientation which develops the magnetic properties of the silicon steel.
  • This anneal is usually carried out in a hydrogen atmosphere at temperatures ranging from approximately 950 to 1,500 C. from about 2 to about 50 hours.
  • This anneal also aids in purifying the steel, aided by the coating placed on the steel.
  • a portion of the magnesium oxide coating reacts with the silica on the surface of the silicon steel to form a glass-like coating of magnesium silicate.
  • This glass-like coating provides electrical insulation during the use of the silicon steel in electrical apparatus, e.g., in the cores of transformers.
  • a number of additives have been proposed in the past to be added to the magnesium hydroxide and/or magnesium oxide in order to improve the MgO Si0 reaction.
  • U.S. Pat. No. 2,809,137 (Robinson) involves the use of silica to be combined with the MgO and/or Mg(OH) for the purpose of improving the insulating properties of the glass-like film obtained after high temperature annealing.
  • U.S. Pat. No. 2,394,047 (Elsey, et al.) relates to the use of additives to produce oxidized surface metal and to enhance glass film formation.
  • This invention relates to an improved MgO/Mg(OI-l coating which forms a superior insulating glass film when applied to silicon steel surfaces which have been previously oxidized.
  • an improved MgO/Mg(OI-l coating which forms a superior insulating glass film when applied to silicon steel surfaces which have been previously oxidized.
  • one such method of oxidation which may be employed is taught in U.S. Pat. No. 2,385,332, discussed above.
  • More particularly the invention concerns coatings containing magnesium oxide/magnesium hydroxide and organic or inorganic lithium bearing compounds which when applied to silicon sheet steel imparts unexpected and improved insulation qualities to the silicon steel after the final high temperature anneal.
  • Representative members of the class of organic and inorganic lithium bearing compounds includes the following:
  • lithium acetate lithium borate such as lithium metaborate, lithium metaborate hydrate, lithium pentaborate, lithium tetraborate and lithium borohydrate lithium chromate lithium fluoride lithium hydroxide lithium lactate lithium nitrate lithium phosphate lithium silicate lithium sulfate lithium zirconate lithium zirconium silicate lithium hydroxide monohydrate lithium carbonate lithium acetylsalicylate lithium metaaluminate lithium aluminum hydride lithium amide lithium antimonide lithium orthoarsenate lithium azide lithium benzoate lithium bromide lithium bromide, dihydrate lithium carbide lithium bicarbonate lithium chlorate lithium chlorate hydrate lithium perchlorate lithium perchlorate trihydrate lithium chloride lithium chloride monohydrate lithium chloroplatinate lithium bichromate dihydrate lithium dichromate lithium citrate lithium fluosilicate lithium fluosulfonate lithium formate monohydrate lithium gallium hydride lithium gallium nitride lithium metagerrnanate lithium hydride lithium iodate lithium iodine
  • lithium compounds which have a relatively high weight percent of lithium are preferred for use in the instant invention since the anion portion of the lithium compound (assuming it to be a salt) would ordinarily serve no purpose. It should be emphasized, however, that any lithium compound (or mixtures of such compounds) may be utilized to obtain the advantageous function here involved since the key to this function is the presence of the lithium atom or ion.
  • Analysis of the composition of the glass film formed according to the practice of this invention reveals a novel film containing predominately well crystallized MgO, magnesium silicate and lithium.
  • the concentration of the lithium bearing compound calculated as U 0 with respect to the amount of the MgO employed in the coating is not critical and may vary from about 0.1 to about 30 weight percent of the magnesium oxide. A satisfactory concentration for most practical purposes (calculated as Li,O) has been found to be from about 0.2 to [2.5 weight percent of MgO. It should be noted that the particular grade of MgO to be utilized is not critical and any commercially available MgO may be employed in the practice of the invention.
  • the lithium-MgO/Mg( OH coatings of the invention may be applied to the grain-oriented silicon steel using techniques conventionally employed in the coating of these materials. Among the well known procedures that are presently employed in applying the MgO/Mg(Ol-l coatings, a continuous strip of the ferrous material is passed through a bath containing the MgO/Mg(OH) suspension and then through a drying furnace.
  • the amount of MgO/Mg(OH) (exclusive of lithium additive) that is applied to the silicon steel in the practice of this invention is similar to those amounts that heretofore had been employed in MgO/Mg(OI-i) coatings and in general will vary from about 0.020 to 0.060 ounces of MgO per square foot of steel surface.
  • the manner and time at which the lithium compounds are combined with the magnesium oxide is not critical. As described by the various examples set forth below, these procedures include adding the lithium compound to a magnesium material, such as magnesium basic carbonate or Mg(Ol-l),, prior to their conversion to the magnesium oxide; blending the lithium material with the MgO or Mg(OH) adding the lithium compound separately during coating slurry make-up; or mixing the lithium material in the water used for coating slurry make-up prior to the addition of the MgO powder.
  • a magnesium material such as magnesium basic carbonate or Mg(Ol-l
  • the annealing of the silicon steel that has previously been coated with the coating composition of the invention may be carried out in a reducing atmosphere at temperatures ranging from approximately 950 to l,500 C. for from about 2 to 50 hours using techniques well known to the art. 7
  • EXAMPLE 1 A slurry containing about 1 lb. MgO/gal. concentration was made up by mixing 60 g. of a commercial grade MgO with 6 g. of a reagent grade lithium carbonate, and then adding 500 ml. of deionized water in a Waring blender for 1 minute. The resulting slurry was coated on strips of silicon steel (size 3 mm. X 30.5 mm.) at a coating weight of 0.038 oz./ft., dried at 250-275 C., and annealed in hydrogen atmosphere at l,200 C. for about 30 hours. For comparative purposes, identical silicon strips were coated with an identical MgO slurry at the same concentration but without the lithium compound. After annealing and cooling, the excess magnesium oxide coating was scrubbed off all samples with a nylon brush and a cloth. These strips were tested for resistance on both surfaces with a Franklin tester (ASTM-A344-60T). The results are:
  • EXAMPLE 7 60 g. of a commercial magnesium oxide and 6 g. of lithium acetate (LiC l-l O 211 0) were thoroughly mixed and added to 500 ml. of deionized water in a Waring blender. The resulting slurry was coated on strips of silicon steel and tested in the same manner as described in Example 1. Franklin tests on the surfaces show:
  • zirconate 5% 0.98 infinity (Com- (Li,ZrO,) plete insulation) Lithium 1% 0.14 12.9 zirconium 5% 0.70 11.8 silicate (2Li,O.ZrO,.SiO,) Lithium 1% 0.12 3.8
  • a composition useful in the coating of surface oxi- 0 50 1085 5 64 40 dized silicon steel prior to the step of annealing said coated silicon steel comprising MgO, Mg(OH) or mixtures of MgO and Mg(Ol-l and at least one lithium borate or lithium chromate 2.
  • composition of claim 2 wherein the lithium borate is lithium metaborate.
  • composition of claim 1 which contains lithium chromate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Lithium additives in magnesium oxide/magnesium hydroxide coatings for silicon steel and the material coated by such process.

Description

United States Patent 1191 Lee et a]. 1 Jan. 15, 1974 1 1 MAGNESIUM OXIDE COATINGS [56] References Cited [75] Inventors: Leonard S. Lee, Daly City; Yoshio UNITED STATES PATENTS Uyeda; Leo F. Heneghan, both of 3,489,693 1/1970 Bovard 252/475 San Mateo, all of Calif. 3,265,600 8/1966 Carter.... 148/27 3,544,396 12/1970 Taylor 148/113 1 1 Asslgneei Merck & 4 Railway, Ni 3,465,424 9/1969 Deringer.... 117/53 3,669,715 6/1972 Meyer 117/53 [22] 1972 2,355,988 8/1944 Mathias 148/24 [21] Appl. No.: 236,250 2,686,134 8/1954 Wooding.... 148/26 2,550,709 5 1951 M 148/26 Related US. Application Data I I 06 1 Division g- 1970, Primary Examiner-L. Dewayne Rutledge Continuation of Ser. No. 40,479, May 22, 1970. Assistant Examiner peter Rosenberg AttorneyJulian S. Levitt [52] US. Cl 148/27, 117/169, 252/475,
252/476 57 ABSTRACT [51] Int. Cl B23k 35/24 l h [58] Field of Search 148/27, 113, 6, 112, mm a magnesum e magneslum droxide coatings for silicon steel and the material coated by such process.
4 Claims, No Drawings MAGNESIUM OXIDE COATINGS This application is a continuation-in-part of U.S. Pat. application Ser. No. 40,479, filed May 22, 1970.
This application is a division of U.S. Pat. application Ser. No. 64,644, which application is a continuation-inpart of U.S. Pat. application Ser. No. 40,479, filed May 22, 1970.
This invention relates to coatings for ferrous material and, more particularly, an improved magnesium oxide/magnesium hydroxide coating for grain oriented silicon steel, and the material coated by such process.
In many fields of use and, in particular, in the electrical industry, it is necessary to provide a coating on ferrous material. This coating desirably performs the function of separating and purifying the ferrous material and reacting with surface silica in the steel to form an electrical insulating layer. For example, in the transformer art, the cores of the transformers are usually formed of a ferrous material, such as, for example, silicon steel, which may be provided with a preferred grain growth orientation to provide optimum electrical and magnetic properties. It has been found necessary to provide a coating on the ferrous material prior to the final high temperature grain growth anneal. This coating will perform three separate functions. The first function of the coating is to provide separation of the various turns or layers of the coiled material to prevent their sticking or welding together during high temperature anneals. A second function is that of aiding in the chemical purification of the ferrous material to develop the desired optimum magnetic characteristics of such material. The third function of the coating is to form on the surface of the ferrous material a refractory type coating which will provide electrical insulation of one layer of ferrous material from the next, for example, during its use as a core in a transformer.
In the present state of the electrical apparatus art, the most widely used coating for the ferrous material which is used as the magnetic core of the electrical apparatus is a coating of magnesium oxide and/or magnesium hydroxide. These coatings are, in general, applied to the ferrous material in the form of a suspension of magnesium oxide and/or magnesium hydroxide in water. The suspension comprises a quantity of magnesium oxide in water and is mixed sufficiently for the desired application, the magnesium oxide being hydrated to an extent dependent on the character of the oxide used, the duration of mixing and the temperature of the suspension. Therefore, the term magnesium oxide coating is with reference to a coating of magnesium hydroxide which may include magnesium oxide which has not been hydrated.
As set forth in U.S. Pat. No. 2,385,332, in the names of Victor W. Carpenter et al., portions of an annealing separator of magnesium oxide can, during a heat treatment at suitable temperatures, be caused to react with silica particles on or near the surfaces of previously oxidized silicon-iron sheet stock to form a glass-like coating, which coating is useful as an interlaminary insulator inthe use of silicon-iron in electrical apparatus, e.g. in the cores of transformers.
In the production of silicon steel for the magnetic cores of transformers, the steel is generally annealed to provide optimum grain growth and grain orientation which develops the magnetic properties of the silicon steel. This anneal is usually carried out in a hydrogen atmosphere at temperatures ranging from approximately 950 to 1,500 C. from about 2 to about 50 hours. This anneal also aids in purifying the steel, aided by the coating placed on the steel. During this anneal a portion of the magnesium oxide coating reacts with the silica on the surface of the silicon steel to form a glass-like coating of magnesium silicate. This glass-like coating provides electrical insulation during the use of the silicon steel in electrical apparatus, e.g., in the cores of transformers.
A number of additives have been proposed in the past to be added to the magnesium hydroxide and/or magnesium oxide in order to improve the MgO Si0 reaction. For example, U.S. Pat. No. 2,809,137 (Robinson) involves the use of silica to be combined with the MgO and/or Mg(OH) for the purpose of improving the insulating properties of the glass-like film obtained after high temperature annealing. U.S. Pat. No. 2,394,047 (Elsey, et al.) relates to the use of additives to produce oxidized surface metal and to enhance glass film formation.
This invention relates to an improved MgO/Mg(OI-l coating which forms a superior insulating glass film when applied to silicon steel surfaces which have been previously oxidized. For example, one such method of oxidation which may be employed is taught in U.S. Pat. No. 2,385,332, discussed above. More particularly the invention concerns coatings containing magnesium oxide/magnesium hydroxide and organic or inorganic lithium bearing compounds which when applied to silicon sheet steel imparts unexpected and improved insulation qualities to the silicon steel after the final high temperature anneal.
Representative members of the class of organic and inorganic lithium bearing compounds includes the following:
lithium acetate lithium borate, such as lithium metaborate, lithium metaborate hydrate, lithium pentaborate, lithium tetraborate and lithium borohydrate lithium chromate lithium fluoride lithium hydroxide lithium lactate lithium nitrate lithium phosphate lithium silicate lithium sulfate lithium zirconate lithium zirconium silicate lithium hydroxide monohydrate lithium carbonate lithium acetylsalicylate lithium metaaluminate lithium aluminum hydride lithium amide lithium antimonide lithium orthoarsenate lithium azide lithium benzoate lithium bromide lithium bromide, dihydrate lithium carbide lithium bicarbonate lithium chlorate lithium chlorate hydrate lithium perchlorate lithium perchlorate trihydrate lithium chloride lithium chloride monohydrate lithium chloroplatinate lithium bichromate dihydrate lithium dichromate lithium citrate lithium fluosilicate lithium fluosulfonate lithium formate monohydrate lithium gallium hydride lithium gallium nitride lithium metagerrnanate lithium hydride lithium iodate lithium iodine lithium iodide, trihydrate lithium laurate lithium permanganate lithium molybdate lithium myristate lithium nitrate trihydrate lithium nitride lithium nitrite lithium oxalate lithium acid oxalate lithium oxide lithium palmitate lithium metaphosphate lithium orthophosphate lithium orthophosphate hydrate lithium dihydrogen phosphate lithium salicylate lithium selenide lithium metasilicate lithium orthosilicate lithium silicide lithium stearate lithium sulfate lithium hydrogen sulfate lithium sulfate monohydrate lithium sulfide lithium hydrosulfide lithium sulfite monohydrate lithium tartrate lithium thallium dl-tartrate lithium dithionate lithium thiocyanate lithium tungstate lithium titanate lithium manganite lithium vanadate lithium cobaltite and the like.
It will be appreciated that lithium compounds which have a relatively high weight percent of lithium are preferred for use in the instant invention since the anion portion of the lithium compound (assuming it to be a salt) would ordinarily serve no purpose. It should be emphasized, however, that any lithium compound (or mixtures of such compounds) may be utilized to obtain the advantageous function here involved since the key to this function is the presence of the lithium atom or ion. Analysis of the composition of the glass film formed according to the practice of this invention reveals a novel film containing predominately well crystallized MgO, magnesium silicate and lithium.
The concentration of the lithium bearing compound calculated as U 0 with respect to the amount of the MgO employed in the coating is not critical and may vary from about 0.1 to about 30 weight percent of the magnesium oxide. A satisfactory concentration for most practical purposes (calculated as Li,O) has been found to be from about 0.2 to [2.5 weight percent of MgO. It should be noted that the particular grade of MgO to be utilized is not critical and any commercially available MgO may be employed in the practice of the invention.
The lithium-MgO/Mg( OH coatings of the invention may be applied to the grain-oriented silicon steel using techniques conventionally employed in the coating of these materials. Among the well known procedures that are presently employed in applying the MgO/Mg(Ol-l coatings, a continuous strip of the ferrous material is passed through a bath containing the MgO/Mg(OH) suspension and then through a drying furnace. In addition to employing conventional coating techniques, the amount of MgO/Mg(OH) (exclusive of lithium additive) that is applied to the silicon steel in the practice of this invention is similar to those amounts that heretofore had been employed in MgO/Mg(OI-i) coatings and in general will vary from about 0.020 to 0.060 ounces of MgO per square foot of steel surface.
The manner and time at which the lithium compounds are combined with the magnesium oxide is not critical. As described by the various examples set forth below, these procedures include adding the lithium compound to a magnesium material, such as magnesium basic carbonate or Mg(Ol-l),, prior to their conversion to the magnesium oxide; blending the lithium material with the MgO or Mg(OH) adding the lithium compound separately during coating slurry make-up; or mixing the lithium material in the water used for coating slurry make-up prior to the addition of the MgO powder.
The annealing of the silicon steel that has previously been coated with the coating composition of the invention may be carried out in a reducing atmosphere at temperatures ranging from approximately 950 to l,500 C. for from about 2 to 50 hours using techniques well known to the art. 7
The unobvious and unexpected properties of the instant invention are clearly revealed by the following Examples:
EXAMPLE 1 A slurry containing about 1 lb. MgO/gal. concentration was made up by mixing 60 g. of a commercial grade MgO with 6 g. of a reagent grade lithium carbonate, and then adding 500 ml. of deionized water in a Waring blender for 1 minute. The resulting slurry was coated on strips of silicon steel (size 3 mm. X 30.5 mm.) at a coating weight of 0.038 oz./ft., dried at 250-275 C., and annealed in hydrogen atmosphere at l,200 C. for about 30 hours. For comparative purposes, identical silicon strips were coated with an identical MgO slurry at the same concentration but without the lithium compound. After annealing and cooling, the excess magnesium oxide coating was scrubbed off all samples with a nylon brush and a cloth. These strips were tested for resistance on both surfaces with a Franklin tester (ASTM-A344-60T). The results are:
Additive (MgO basis) Resistance 0% 3.7 ohms-cm Li,CO (4.0% as infinity (complete Li,0) insulation) EXAMPLE 2 Additive (MgO basis) Resistance 0% 3.9 chins-cm 1% Li,CO (0.4% as 11.0 ohms-cm EXAMPLE 3 60 g. of a commercial grade magnesium oxide was added to a Waring blender containing 500 ml. of deionized water. 4.8 g. of a reagent grade lithium hydroxide was then added and mixed thoroughly for 1 minute. The slurry was coated on silicon steel strips and tested in the same manner as described in Example 1. Franklin test results showed:
Additive (MgO basis) Resistance 1.8 ohms-cm infinity (complete insulation) 0% 8% LiOH (5.0% as up) EXAMPLE 4 60 g. of a commercial grade magnesium oxide and 12 g. of a reagent grade lithium hydroxide monohydrate were mixed thoroughly before adding to 500 ml. of deionized water in a Waring blender. The resulting slurry was coated onto silicon strips and tested in the same manner as described in Example 1. Franklin test results show:
Additive (MgO basis) Resistance 1.8 ohms cm infinity (complete insulation) 0% uou.n,o (71% as EXAMPLE 5 0.3 g. of lithium fluoride was mixed with 500 ml. of deionized water. 60 g. of a commercial grade magnesium oxide was poured into the blender containing the lithium fluoride mixture and mixed for one minute. The resulting slurry was coated onto strips of silicon steel, dried and annealed in the same manner as described in Example 1. A comparative sample was also made utilizing identical strips of silicon steel and tested in the same manner. Franklin test results show:
Additive (MgO basis) Resistance 0% 0.5% LiF (0.3% as Li O) EXAMPLE 6 60 g. of a commercial magnesium oxide, 3 g. of lithium metaborate and 500 ml. of deionized water were added simultaneously into a Waringblender and mixed to form a smooth coating slurry. This slurry was coated on silicon steel strips and tested in the same manner as described in Example 1. Franklin test results show:
Additive (MgO basis) Resistance 2.6 ohms-cm infinity (complete insulation) 0% 5% LiBO, (1.5% as Li,0)
EXAMPLE 7 60 g. of a commercial magnesium oxide and 6 g. of lithium acetate (LiC l-l O 211 0) were thoroughly mixed and added to 500 ml. of deionized water in a Waring blender. The resulting slurry was coated on strips of silicon steel and tested in the same manner as described in Example 1. Franklin tests on the surfaces show:
Additive (MgO basis) Resistance 2.6 ohms-cm 38.3 ohms-cm EXAMPLE 8 60 g. of a commercial magnesium oxide, 0.6 g. of lithium sulfate and 500 ml. of deionized water were mixed in a Waring blender. The slurry was coated onto strips of silicon steel in the same manner as described in Example 1. Franklin tests show:
Additive (MgO basis) Resistance 0% 1% Li,SO,.I-I,O (0.2% as Li o) EXAMPLE 9 0.6 g. of lithium nitrate, 500 ml. of deionized water and 60 g. of a commercial grade magnesium oxide were mixed in a Waring blender and the slurry coated onto strips of silicon steel. The strips were dried, annealed and scrubbed in the manner described in Example 1. Franklin test results show:
Additive (MgO basis) Resistance 0% 1.8 ohms-cm 1 7 n n V 8 -Continued and type of lithium compound utilized. Comparable re- AddiiivflMgO basis) Resistance sults t hat indicated ve are achieved em 10 in 1% LiNCh(0.2% as Luo 7.4 ohms-cm t p y g other representative l1th1um compounds encompassed within the sco e of the inventi n. ne skilled in the art EXAMPLE 10 5 p W111 appreclate that subsequent treatments of the Accordmg to the Procedure setfol'th mp 1 coated steel such as described in US. Pat. No. and usmg ldent cal s111con steel stnps the followmg re- 5 34 may be utilized in the production f feflqus sults were obtamed:
Level As percent Additive (MgO basis) Li,O Resistivity CONTROL 1.8 ohms-cm Lithium 1% 0.15 6.9
lactate 5% 0.73 15.0 Lic,11,0, 10% 1.46 38.3 Lithium 1% 0.12 4.3
tetraborate 5% 0.58 infinity (Complete insulation Li,B.o,.sH,0 10% 1.15 do. Lithium 1% 0.36 8.0
phosphate 5% 1.80 24.7 (2Li,P0 H,0 Lithium 1% 0.33 4.7
silicate 5% 1.67 10.3 Li,sio, Lithium 1% 0.20 12.1
zirconate 5% 0.98 infinity (Com- (Li,ZrO,) plete insulation) Lithium 1% 0.14 12.9 zirconium 5% 0.70 11.8 silicate (2Li,O.ZrO,.SiO,) Lithium 1% 0.12 3.8
dichromate 5% 0.60 12.4 Li,cr,0,.H,o 10% 1.20 infinity (Complete insulation) .matenal which finds use 1n the electrical apparatus 1n- Pres- Density Sintering Sintering Sintered 0,(%) du tr sure relative to the tem time densit (kg) theoretic. p (minutes) y Although speclfic embod1ments of the 1nvent1on have been described herein, it is not intended to limit the inf2 g2 g3 :2 35 vention solely thereto but to include all of the obvious a4 1100 15 9a 0.39 variations and modifications within the spirit and scope :3 32 383 32 3-2; of the appended claims. 4 62 1085 9 What is claimed is: 3 23 :33; :3 g; 8-3: 1. A composition useful in the coating of surface oxi- 0 50 1085 5 64 40 dized silicon steel prior to the step of annealing said coated silicon steel comprising MgO, Mg(OH) or mixtures of MgO and Mg(Ol-l and at least one lithium borate or lithium chromate 2. The composition of claim 1 wherein the lithium compound is lithium borate.
3. The composition of claim 2 wherein the lithium borate is lithium metaborate.
4. The composition of claim 1 which contains lithium chromate.

Claims (3)

  1. 2. The composition of claim 1 wherein the lithium compound is lithium borate.
  2. 3. The composition of claim 2 wherein the lithium borate is lithium metaborate.
  3. 4. The composition of claim 1 which contains lithium chromate.
US00236250A 1972-03-20 1972-03-20 Magnesium oxide coatings Expired - Lifetime US3785879A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23625072A 1972-03-20 1972-03-20

Publications (1)

Publication Number Publication Date
US3785879A true US3785879A (en) 1974-01-15

Family

ID=22888733

Family Applications (1)

Application Number Title Priority Date Filing Date
US00236250A Expired - Lifetime US3785879A (en) 1972-03-20 1972-03-20 Magnesium oxide coatings

Country Status (1)

Country Link
US (1) US3785879A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907612A (en) * 1974-02-15 1975-09-23 Pennwalt Corp Preanneal rinse process for inhibiting pin point rust
US4168189A (en) * 1977-05-20 1979-09-18 Armco Inc. Process of producing an electrically insulative film
US5011548A (en) * 1987-06-03 1991-04-30 Allegheny Ludlum Corporation Composition for deboronizing grain-oriented silicon steel
CN110669910A (en) * 2019-09-30 2020-01-10 鞍钢股份有限公司 Recycling method of oriented silicon steel high-temperature annealing base separant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907612A (en) * 1974-02-15 1975-09-23 Pennwalt Corp Preanneal rinse process for inhibiting pin point rust
US4168189A (en) * 1977-05-20 1979-09-18 Armco Inc. Process of producing an electrically insulative film
US5011548A (en) * 1987-06-03 1991-04-30 Allegheny Ludlum Corporation Composition for deboronizing grain-oriented silicon steel
CN110669910A (en) * 2019-09-30 2020-01-10 鞍钢股份有限公司 Recycling method of oriented silicon steel high-temperature annealing base separant

Similar Documents

Publication Publication Date Title
US3697322A (en) Magnesium oxide coatings
Primak et al. X-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors1
RU2436865C1 (en) Sheet of electro-technical steel with oriented grained structure and procedure for its manufacture
US3945862A (en) Coated ferrous substrates comprising an amorphous magnesia-silica complex
US3785879A (en) Magnesium oxide coatings
US3941621A (en) Coatings for ferrous substrates
JP2686455B2 (en) Magnesium oxide coating for electric steel and coating method
US4011107A (en) Boron diffusion coating process
US3956030A (en) Coatings for ferrous substrates
JPS60122797A (en) Production of aluminum nitride single crystal
US3932202A (en) Magnesia coatings for ferrous substrates comprising amorphous magnesia-silica complexes
US3879234A (en) Lithia-containing frit additives for MgO coatings
CA1084818A (en) Silicon steel and processing therefore
CS217967B2 (en) Fire resisting oxide composition for coating the silicon steel containing the boron
SE450496B (en) COMPOSITION TO PREPARE A NON-LEADING GLASS MOVIE ON SURFACES OF ORIENTED SILICON-ALLOY STEEL AND WAY TO PREPARE THE COMPOSITION
JPH07278827A (en) Low-iron-loss grain-oriented silicon steel sheet having magnesium oxide-aluminum oxide composite coating film and its production
US3941622A (en) Coatings for ferrous substrates
US3375144A (en) Process for producing oriented silicon steels in which an annealing separator is used which contains a sodium or potassium, hydroxide or sulfide
JPS60248776A (en) Barium or chromium additive to magnesium oxide paint slurry
US2050408A (en) Process of treating magnetic material
US3932201A (en) Magnesium oxide coating composition and process
JPS6142783B2 (en)
US4781769A (en) Separating-agent composition and method using same
US2046629A (en) Process of cementation
US4948675A (en) Separating-agent coatings on silicon steel

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARINE MAGNESIUM COMPANY, A PARTNERSHIP OF PA., PE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MERCK & CO., INC.;CALGON CORPORATION;REEL/FRAME:005072/0585

Effective date: 19890227

STCF Information on status: patent grant

Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES)